Skip to main content

Methylation of Proteins: Biochemistry and Functional Consequences

  • Living reference work entry
  • First Online:
Cellular Ecophysiology of Microbe

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 112 Accesses

Abstract

Methylation is one of the most abundant modifications that the proteome of living cells undergo. Catalyzed by enzymes of the methyltransferase family, it occurs in many biological processes of prokaryotes and eukaryotes. The most common methylations occur on the amino groups of lysine and arginine side chains providing them with hydrophobic and steric properties that affect the way they behave and recognize other proteins and nucleic acids. Methylation of proteins occurs at a posttranslational level, and its main function is the effective control of the gene expression by histones and transcription factors. Other functions are protein labeling for cellular localization, RNA processing, ribosome assembly, or cell signaling. Methylations also occur at the N- and C-termini of proteins or on carboxyl and thiol groups of histidine, cysteine, proline, or glutamate side chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allers J, Shamoo Y (2001) Structure-based analysis of protein-RNA interactions using the program ENTANGLE. J Mol Biol 311(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Antommattei FM, Weis RM (2006) 12 reversible methylation of glutamate residues in the receptor proteins of bacterial sensory systems. Enzyme 24:325–382

    Google Scholar 

  • Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggar KK, Li SS (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 16(1):5–17

    Article  CAS  PubMed  Google Scholar 

  • Binda O (2013) On your histone mark, SET, methylate! Epigenetics 8(5):457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48(4):491–507

    Article  CAS  PubMed  Google Scholar 

  • Blanc RS, Richard S (2017) Arginine methylation: the coming of age. Mol Cell 65(1):8–24

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Collins RE, Zhang X (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct 34:267–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke SG (2013) Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci 38(5):243–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031

    Article  PubMed  Google Scholar 

  • Falnes PO, Jakobsson ME, Davydova E, Ho A, Malecki J (2016) Protein lysine methylation by seven-beta-strand methyltransferases. Biochem J 473(14):1995–2009

    Article  CAS  PubMed  Google Scholar 

  • Fisk JC, Read LK (2011) Protein arginine methylation in parasitic protozoa. Eukaryot Cell 10(8):1013–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci USA 96(17):9459–9464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Fontana C, Reyes-Darias JA, Munoz-Martinez F, Alfonso C, Morel B, Ramos JL, Krell T (2013) High specificity in CheR methyltransferase function: CheR2 of Pseudomonas putida is essential for chemotaxis, whereas CheR1 is involved in biofilm formation. J Biol Chem 288(26):18987–18999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Fontana C, Corral Lugo A, Krell T (2014) Specificity of the CheR2 methyltransferase in Pseudomonas aeruginosa is directed by a C-terminal pentapeptide in the McpB chemoreceptor. Sci Signal 7(320):ra34

    Article  PubMed  Google Scholar 

  • Gary JD, Clarke S (1998) RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol 61:65–131

    Article  CAS  PubMed  Google Scholar 

  • Gowri Shankar BA, Sarani R, Michael D, Mridula P, Ranjani CV, Sowmiya G, Vasundhar B, Sudha P, Jeyakanthan J, Velmurugan D, Sekar K (2007) Ion pairs in non-redundant protein structures. J Biosci 32(4):693–704

    Article  CAS  PubMed  Google Scholar 

  • Grillo MA, Colombatto S (2005) S-adenosylmethionine and protein methylation. Amino Acids 28(4):357–362

    Article  CAS  PubMed  Google Scholar 

  • Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Berger SL (2008) The emerging field of dynamic lysine methylation of non-histone proteins. Curr Opin Genet Dev 18(2):152–158

    Article  CAS  PubMed  Google Scholar 

  • Jurica MS, Stoddard BL (1998) Mind your B’s and R’s: bacterial chemotaxis, signal transduction and protein recognition. Structure 6(7):809–813

    Article  CAS  PubMed  Google Scholar 

  • Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1:pii: srep00090

    Article  Google Scholar 

  • Krause CD, Yang ZH, Kim YS, Lee JH, Cook JR, Pestka S (2007) Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther 113(1):50–87

    Article  CAS  PubMed  Google Scholar 

  • Lake AN, Bedford MT (2007) Protein methylation and DNA repair. Mutat Res 618(1–2):91–101

    Article  CAS  PubMed  Google Scholar 

  • Lanouette S, Mongeon V, Figeys D, Couture JF (2014) The functional diversity of protein lysine methylation. Mol Syst Biol 10:724

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YH, Stallcup MR (2009) Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol 23(4):425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Stock J (1993) Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J Biol Chem 268(26):19192–19195

    CAS  PubMed  Google Scholar 

  • Lee SW, Berger SJ, Martinovic S, Pasa-Tolic L, Anderson GA, Shen Y, Zhao R, Smith RD (2002) Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR. Proc Natl Acad Sci USA 99(9):5942–5947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Weis RM (2000) Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100(3):357–365

    Article  CAS  PubMed  Google Scholar 

  • Low JK, Wilkins MR (2012) Protein arginine methylation in Saccharomyces cerevisiae. FEBS J 279(24):4423–4443

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Wang GG (2013) Tudor: a versatile family of histone methylation ‘readers’. Trends Biochem Sci 38(11):546–555

    Article  CAS  PubMed  Google Scholar 

  • Molina-Serrano D, Schiza V, Kirmizis A (2013) Cross-talk among epigenetic modifications: lessons from histone arginine methylation. Biochem Soc Trans 41(3):751–759

    Article  CAS  PubMed  Google Scholar 

  • Moore KE, Gozani O (2014) An unexpected journey: lysine methylation across the proteome. Biochim Biophys Acta 1839(12):1395–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15

    Article  CAS  PubMed  Google Scholar 

  • Nyman T, Schuler H, Korenbaum E, Schutt CE, Karlsson R, Lindberg U (2002) The role of MeH73 in actin polymerization and ATP hydrolysis. J Mol Biol 317(4):577–589

    Article  CAS  PubMed  Google Scholar 

  • Paik WK, Paik DC, Kim S (2007) Historical review: the field of protein methylation. Trends Biochem Sci 32(3):146–152

    Article  CAS  PubMed  Google Scholar 

  • Polevoda B, Sherman F (2007) Methylation of proteins involved in translation. Mol Microbiol 65(3):590–606

    Article  CAS  PubMed  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599

    Article  CAS  PubMed  Google Scholar 

  • Schubert HL, Blumenthal RM, Cheng X (2006) 1 Protein methyltransferases: their distribution among the five structural classes of AdoMet-dependent methyltransferases. Enzyme 24:3–28

    Google Scholar 

  • Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953

    Article  CAS  PubMed  Google Scholar 

  • Siddique AN, Jurkowska RZ, Jurkowski TP, Jeltsch A (2011) Auto-methylation of the mouse DNA-(cytosine C5)-methyltransferase Dnmt3a at its active site cysteine residue. FEBS J 278(12):2055–2063

    Article  CAS  PubMed  Google Scholar 

  • Sprung R, Chen Y, Zhang K, Cheng D, Zhang T, Peng J, Zhao Y (2008) Identification and validation of eukaryotic aspartate and glutamate methylation in proteins. J Proteome Res 7(3):1001–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stock A, Clarke S, Clarke C, Stock J (1987) N-terminal methylation of proteins: structure, function and specificity. FEBS Lett 220(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Tripsianes K, Madl T, Machyna M, Fessas D, Englbrecht C, Fischer U, Neugebauer KM, Sattler M (2011) Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 18(12):1414–1420

    Article  CAS  PubMed  Google Scholar 

  • Walsh CT (2006) Posttranslational modification of proteins: expanding Nature’s invention. Roberst Publishers, Greenwood Village

    Google Scholar 

  • Webb KJ, Zurita-Lopez CI, Al-Hadid Q, Laganowsky A, Young BD, Lipson RS, Souda P, Faull KF, Whitelegge JP, Clarke SG (2010) A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase. J Biol Chem 285(48):37598–37606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Mundade R, Lange KC, Lu T (2014) Protein arginine methylation of non-histone proteins and its role in diseases. Cell Cycle 13(1):32–41

    Article  PubMed  Google Scholar 

  • Weiss VH, McBride AE, Soriano MA, Filman DJ, Silver PA, Hogle JM (2000) The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nat Struct Biol 7(12):1165–1171

    Article  CAS  PubMed  Google Scholar 

  • Wozniak GG, Strahl BD (2014) Hitting the ‘mark’: interpreting lysine methylation in the context of active transcription. Biochim Biophys Acta 1839(12):1353–1361

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Tolstykh T, Lee J, Boyd K, Stock JB, Broach JR (2000) Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. EMBO J 19(21):5672–5681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young BD, Weiss DI, Zurita-Lopez CI, Webb KJ, Clarke SG, McBride AE (2012) Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation. Biochemistry 51(25):5091–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Ortega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Ortega, Á. (2017). Methylation of Proteins: Biochemistry and Functional Consequences. In: Krell, T. (eds) Cellular Ecophysiology of Microbe. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-20796-4_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20796-4_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20796-4

  • Online ISBN: 978-3-319-20796-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics