Advertisement

Neutrinos and Their Impact on Core-Collapse Supernova Nucleosynthesis

  • Gabriel Martínez-Pinedo
  • Tobias Fischer
  • Karlheinz Langanke
  • Andreas Lohs
  • Andre Sieverding
  • Meng-Ru Wu
Living reference work entry

Abstract

Core-collapse supernovae liberate an energy equivalent to the binding energy of the newly formed neutron star by emitting ∼ 1058 neutrinos of all flavors with typical energies of ∼ 10 MeV. These neutrinos are responsible for a matter outflow from the proto-neutron star known as the neutrino-driven wind. The nucleosynthesis in the wind is very sensitive to the proton-to-nucleon ratio that is determined by spectral differences between ν e and \(\bar{\nu }_{e}\). Current simulations taking into account recent progress in the description of high-density neutrino- matter interactions predict very similar spectra for all neutrino flavors. Hence, the ejecta are mainly proton-rich during the whole deleptonization phase and allow for the operation of the ν p-process. As neutrinos travel through the stellar mantle, they can induce spallation reactions with abundant nuclei. This leads to the ν-process that synthesizes11B,19F,138La, and180Ta and enhances the yields of several long-lived radioactive nuclei. During their propagation, neutrinos can suffer flavor oscillations that can also potentially affect the nucleosynthesis in the ejecta.

Keywords

Neutron Star Sterile Neutrino Symmetry Energy Neutrino Spectrum Neutrino Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partly supported by the Deutsche Forschungsgemeinschaft through contract SFB 1245, and the Helmholtz Association through the Nuclear Astrophysics Virtual Institute (VH-VI-417). TF acknowledges support by the Polish National Science Center (NCN) under grant number UMO-2013/11/D/ST2/02645.

References

  1. Anderson BD, Tamimi N, Baldwin AR, Elaasar M, Madey R, Manley DM, Mostajabodda’vati M, Watson JW, Zhang WM, Foster CC (1991) Gamow-Teller strength in the (p, n) reaction at 136 MeV on20Ne,24Mg, and28Si. Phys Rev C 43:50–58. DOI10.1103/PhysRevC.43.50Google Scholar
  2. Arcones A, Thielemann FK (2013) Neutrino-driven wind simulations and nucleosynthesis of heavy elements. J Phys G Nucl Part Phys 40:013,201. DOI10.1088/0954-3899/40/1/013201Google Scholar
  3. Arcones A, Janka HT, Scheck L (2007) Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric hydrodynamic simulations. Astron Astrophys 467:1227–1248. DOI10.1051/0004-6361:20066983Google Scholar
  4. Arcones A, Martínez-Pinedo G, O’Connor E, Schwenk A, Janka H, Horowitz CJ, Langanke K (2008) Influence of light nuclei on neutrino-driven supernova outflows. Phys Rev C 78:015806. DOI10.1103/PhysRevC.78.015806Google Scholar
  5. Arcones A, Fröhlich C, Martínez-Pinedo G (2012) Impact of supernova dynamics on the νp-process. Astrophys J 750:18. DOI10.1088/0004-637X/750/1/18Google Scholar
  6. Arnould M, Goriely S (2003) The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status. Phys Rep 384:1–84. DOI10.1016/S0370-1573(03)00242-4Google Scholar
  7. Audi G, Wapstra AH, Thibault C (2003) The AME2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl Phys A 729:337–676. DOI10.1016/j.nuclphysa.2003.11.003Google Scholar
  8. Auerbach LB, Burman RL, Caldwell DO, Church ED, Donahue JB, Fazely A, Garvey GT, Gunasingha RM, Imlay R, Louis WC, Majkic R, Malik A, Metcalf W, Mills GB, Sandberg V, Smith D, Stancu I, Sung M, Tayloe R, VanDalen GJ, Vernon W, Wadia N, White DH, Yellin S, Collaboration TL (2001) Measurements of charged current reactions of ν e on12C. Phys Rev C 64:065501. DOI10.1103/PhysRevC.64.065501Google Scholar
  9. Austin SM, Heger A, Tur C (2011)11B and constraints on neutrino oscillations and spectra from neutrino nucleosynthesis. Phys Rev Lett 106:152501. DOI10.1103/PhysRevLett.106.152501Google Scholar
  10. Austin SM, West C, Heger A (2014) Effective Helium burning rates and the production of the neutrino nuclei. Phys Rev Lett 112:111101. DOI10.1103/PhysRevLett.112.111101Google Scholar
  11. Balasi K, Langanke K, Martínez-Pinedo G (2015) Neutrino-nucleus reactions and their role for supernova dynamics and nucleosynthesis. Prog Part Nucl Phys 85:33–81. DOI10.1016/j.ppnp.2015.08.001Google Scholar
  12. Banerjee P, Haxton WC, Qian YZ (2011) Long, cold, early r process? Neutrino-induced nucleosynthesis in He shells revisited. Phys Rev Lett 106:201,104. DOI10.1103/PhysRevLett.106.201104Google Scholar
  13. Banerjee P, Qian YZ, Haxton WC, Heger A (2013) New primary mechanisms for the synthesis of rare9Be in early supernovae. Phys Rev Lett 110:141101. DOI10.1103/PhysRevLett.110.141101Google Scholar
  14. Bartl A, Pethick CJ, Schwenk A (2014) Supernova matter at subnuclear densities as a resonant Fermi gas: enhancement of neutrino rates. Phys Rev Lett 113:081101. DOI10.1103/PhysRevLett.113.081101Google Scholar
  15. Belic D, Arlandini C, Besserer J, de Boer J, Carroll JJ, Enders J, Hartmann T, Käppeler F, Kaiser H, Kneissl U, Kolbe E, Langanke K, Loewe M, Maier HJ, Maser H, Mohr P, von Neumann-Cosel P, Nord A, Pitz HH, Richter A, Schumann M, Thielemann FK, Volz S, Zilges A (2002) Photo-induced depopulation of the180Tam isomer via low-lying intermediate states: structure and astrophysical implications. Phys Rev C 65:035,801. DOI10.1103/PhysRevC.65.035801Google Scholar
  16. Bethe HA (1990) Supernova mechanisms. Rev Mod Phys 62:801–866. DOI10.1103/RevModPhys.62.801Google Scholar
  17. Blondin JM, Mezzacappa A, DeMarino C (2003) Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophys J 584:971–980. DOI10.1086/345812Google Scholar
  18. Bodmann B, Booth N, Drexlin G, Eberhard V, Edgington J, Eitel K, Ferstl M, Finckh E, Gemmeke H, Grandegger W, Hößl J, Kleifges M, Kleinfeller J, Kretschmer W, Maschuw R, Plischke P, Rapp J, Schilling F, Seligmann B, Stumm O, Wolf J, Wölfle S, Zeitnitz B (1994) Neutrino interactions with carbon: recent measurements and a new test of ν e, ν μ universality. Phys Lett B 332(3):251–257. DOI10.1016/0370-2693(94)91250-5Google Scholar
  19. Bruenn SW (1985) Stellar core collapse: numerical model and infall epoch. Astrophys J Suppl 58:771–841. DOI10.1086/191056Google Scholar
  20. Buras R, Rampp M, Janka HT, Kifonidis K (2006) Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 M star. Astron Astrophys 447:1049–1092. DOI10.1051/0004-6361:20053783Google Scholar
  21. Burrows A (1990) Neutrinos from supernova explosions. Ann Rev Nucl Part Sci 40:181–212. DOI10.1146/annurev.nucl.40.1.181Google Scholar
  22. Burrows A, Reddy S, Thompson TA (2006) Neutrino opacities in nuclear matter. Nucl Phys A 777:356–394. DOI10.1016/j.nuclphysa.2004.06.012Google Scholar
  23. Byelikov A, Adachi T, Fujita H, Fujita K, Fujita Y, Hatanaka K, Heger A, Kalmykov Y, Kawase K, Langanke K, Martínez-Pinedo G, Nakanishi K, von Neumann-Cosel P, Neveling R, Richter A, Sakamoto N, Sakemi Y, Shevchenko A, Shimbara Y, Shimizu Y, Smit FD, Tameshige Y, Tamii A, Woosley SE, Yosoi M (2007) Gamow-Teller strength in the exotic odd-odd nuclei138La and180Ta and its relevance for neutrino nucleosynthesis. Phys Rev Lett 98:082501. DOI10.1103/PhysRevLett.98.082501Google Scholar
  24. Cayrel R, Depagne E, Spite M, Hill V, Spite F, François P, Plez B, Beers T, Primas F, Andersen J, Barbuy B, Bonifacio P, Molaro P, Nordström B (2004) First stars V – abundance patterns from C to Zn and supernova yields in the early Galaxy. Astron Astrophys 416:1117–1138ADSCrossRefGoogle Scholar
  25. Chakraborty S, Hansen R, Izaguirre I, Raffelt G (2016) Collective neutrino flavor conversion: recent developments. Nucl Phys B 908:366–381. DOI10.1016/j.nuclphysb.2016.02.012Google Scholar
  26. Diehl R (2013) Cosmic gamma-ray spectroscopy. Astron Rev 8(3):19–65ADSCrossRefGoogle Scholar
  27. Domogatsky GV, Nadyozhin DK (1980) Neutrino-induced production of radioactive26Al. Sov Astron Lett 6:127–130ADSGoogle Scholar
  28. Domogatsky GV, Eramzhyan RA, Nadyozhin DK (1978) Production of the light elements due to neutrinos emitted by collapsing stellar cores. Astrophys Space Sci 58:273–299. DOI10.1007/BF00644517Google Scholar
  29. Drischler C, Somà V, Schwenk A (2014) Microscopic calculations and energy expansions for neutron-rich matter. Phys Rev C 89:025806. DOI10.1103/PhysRevC.89.025806Google Scholar
  30. Duan H, Kneller JP (2009) Neutrino flavour transformation in supernovae. J Phys G Nucl Part Phys 36(11):113,201. DOI10.1088/0954-3899/36/11/113201Google Scholar
  31. Duan H, Fuller GM, Carlson J, Qian YZ (2006) Simulation of coherent nonlinear neutrino flavor transformation in the supernova environment: correlated neutrino trajectories. Phys Rev D 74:105014. DOI10.1103/PhysRevD.74.105014Google Scholar
  32. Duan H, Fuller GM, Qian Y (2010) Collective neutrino oscillations. Ann Rev Nucl Part Sci 60:569–594. DOI10.1146/annurev.nucl.012809.104524Google Scholar
  33. Duan H, Friedland A, McLaughlin GC, Surman R (2011) The influence of collective neutrino oscillations on a supernova r process. J Phys G Nucl Part Phys 38:035,201. DOI10.1088/0954-3899/38/3/035201Google Scholar
  34. Duncan RC, Shapiro SL, Wasserman I (1986) Neutrino-driven winds from young, hot neutron stars. Astrophys J 309:141–160. DOI10.1086/164587Google Scholar
  35. Fallis J, Clark JA, Sharma KS, Savard G, Buchinger F, Caldwell S, Chaudhuri A, Crawford JE, Deibel CM, Gulick S, Hecht AA, Lascar D, Lee JKP, Levand AF, Li G, Lundgren BF, Parikh A, Russell S, Scholte-van de Vorst M, Scielzo ND, Segel RE, Sharma H, Sinha S, Sternberg MG, Sun T, Tanihata I, Van Schelt J, Wang JC, Wang Y, Wrede C, Zhou Z (2011) Mass measurements of isotopes of Nb, Mo, Tc, Ru, and Rh along the ν p- and rp-process paths using the Canadian Penning trap mass spectrometer. Phys Rev C 84:045,807. DOI10.1103/PhysRevC.84.045807Google Scholar
  36. Fischer T, Whitehouse SC, Mezzacappa A, Thielemann FK, Liebendörfer M (2010) Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations. Astron Astrophys 517:A80. DOI10.1051/0004-6361/200913106Google Scholar
  37. Fischer T, Martínez-Pinedo G, Hempel M, Liebendörfer M (2012) Neutrino spectra evolution during proto-neutron star deleptonization. Phys Rev D 85:083003. DOI10.1103/PhysRevD.85.083003Google Scholar
  38. Fischer T, Langanke K, Martínez-Pinedo G (2013) Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations. Phys Rev C 88:065,804. DOI10.1103/PhysRevC.88.065804Google Scholar
  39. Fischer T, Martínez-Pinedo G, Hempel M, Huther L, Röpke G, Typel S, Lohs A (2016) Expected impact from weak reactions with light nuclei in corecollapse supernova simulations. Eur Phys J Web Conf 109:06002. DOI10.1051/epjconf/201610906002Google Scholar
  40. Fröhlich C, Rauscher T (2012) Reaction rate uncertainties and the ν p-process. In: Kubono S, Hayakawa T, Kajino T, Miyatake H, Motobayashi T, Nomoto K (eds) American Institute of Physics Conference Series, vol 1484, pp 232–239. DOI10.1063/1.4763400Google Scholar
  41. Fröhlich C, Hauser P, Liebendörfer M, Martínez-Pinedo G, Thielemann FK, Bravo E, Zinner NT, Hix WR, Langanke K, Mezzacappa A, Nomoto K (2006a) Composition of the innermost supernova ejecta. Astrophys J 637:415–426. DOI10.1086/498224Google Scholar
  42. Fröhlich C, Martínez-Pinedo G, Liebendörfer M, Thielemann FK, Bravo E, Hix WR, Langanke K, Zinner NT (2006b) Neutrino-induced nucleosynthesis of A > 64 nuclei: the ν p-process. Phys Rev Lett 96:142502. DOI10.1103/PhysRevLett.96.142502Google Scholar
  43. Fujita Y, Shimbara Y, Lisetskiy AF, Adachi T, Berg GPA, von Brentano P, Fujimura H, Fujita H, Hatanaka K, Kamiya J, Kawabata T, Nakada H, Nakanishi K, Shimizu Y, Uchida M, Yosoi M (2003) Analogous Gamow-Teller and M1 transitions in26Mg,26Al, and26Si. Phys Rev C 67:064,312. DOI10.1103/PhysRevC.67.064312Google Scholar
  44. Gazit D, Barnea N (2007) Low-energy inelastic neutrino reactions on [sup 4]he. Phys Rev Lett 98(19):192501. DOI10.1103/PhysRevLett.98.192501Google Scholar
  45. Giunti C (2016) Light sterile neutrinos: status and perspectives. Nucl Phys B 908:336–353. DOI10.1016/j.nuclphysb.2016.01.013Google Scholar
  46. Goriely S, Arnould M, Borzov I, Rayet M (2001) The puzzle of the synthesis of the rare nuclide138La. Astron Astrophys 375:L35–L38. DOI10.1051/0004-6361:20010956Google Scholar
  47. Gratton RG, Sneden C (1991) Abundances of elements of the Fe-group in metal-poor stars. Astron Astrophys 241:501–525ADSGoogle Scholar
  48. Haensel P, Potekhin AY, Yakovlev DG (2007) Neutron stars 1: equation of state and structure, astrophysics and space science library, vol 326. Springer, New York. DOI10.1007/978-0-387-47301-7Google Scholar
  49. Haettner E, Ackermann D, Audi G, Blaum K, Block M, Eliseev S, Fleckenstein T, Herfurth F, Heßberger FP, Hofmann S, Ketelaer J, Ketter J, Kluge HJ, Marx G, Mazzocco M, Novikov YN, Plaß WR, Rahaman S, Rauscher T, Rodríguez D, Schatz H, Scheidenberger C, Schweikhard L, Sun B, Thirolf PG, Vorobjev G, Wang M, Weber C (2011) Mass measurements of very neutron-deficient Mo and Tc isotopes and their impact on rp process nucleosynthesis. Phys Rev Lett 106:122,501. DOI10.1103/PhysRevLett.106.122501Google Scholar
  50. Hannestad S, Raffelt G (1998) Supernova neutrino opacity from nucleon-nucleon bremsstrahlung and related processes. Astrophys J 507:339–352. DOI10.1086/306303Google Scholar
  51. Hayakawa T, Mohr P, Kajino T, Chiba S, Mathews GJ (2010) Reanalysis of the (J = 5) state at 592 keV in180Ta and its role in the ν-process nucleosynthesis of180Ta in supernovae. Phys Rev C 82:058,801. DOI10.1103/PhysRevC.82.058801Google Scholar
  52. Heger A, Woosley SE (2010) Nucleosynthesis and evolution of massive metal-free stars. Astrophys J 724:341–373. DOI10.1088/0004-637X/724/1/341Google Scholar
  53. Heger A, Kolbe E, Haxton W, Langanke K, Martínez-Pinedo G, Woosley SE (2005) Neutrino nucleosynthesis. Phys Lett B 606:258–264. DOI10.1016/j.physletb.2004.12.017Google Scholar
  54. Hempel M, Schaffner-Bielich J (2010) A statistical model for a complete supernova equation of state. Nucl Phys A 837:210–254. DOI10.1016/j.nuclphysa.2010.02.010Google Scholar
  55. Hirata K, Kajita T, Koshiba M, Nakahata M, Oyama Y (1987) Observation of a neutrino burst from the supernova SN1987A. Phys Rev Lett 58:1490–1493. DOI10.1103/PhysRevLett.58.1490Google Scholar
  56. Hoffman RD, Woosley SE, Fuller GM, Meyer BS (1996) Production of the light p-process nuclei in neutrino-driven winds. Astrophys J 460:478–488. DOI10.1086/176986Google Scholar
  57. Hoffman RD, Woosley SE, Qian YZ (1997) Nucleosynthesis in neutrino-driven winds. II. Implications for heavy element synthesis. Astrophys J 482:951–962. DOI10.1086/304181Google Scholar
  58. Honda S, Aoki W, Ishimaru Y, Wanajo S, Ryan SG (2006) Neutron-capture elements in the very metal poor star HD 122563. Astrophys J 643:1180–1189. DOI10.1086/503195Google Scholar
  59. Horowitz CJ (2002) Weak magnetism for antineutrinos in supernovae. Phys Rev D 65:043,001. DOI10.1103/PhysRevD.65.043001Google Scholar
  60. Hüdepohl L, Müller B, Janka H, Marek A, Raffelt GG (2010) Neutrino signal of electron-capture supernovae from core collapse to cooling. Phys Rev Lett 104(25):251101. DOI10.1103/PhysRevLett.104.251101Google Scholar
  61. Janka HT (2012) Explosion mechanisms of core-collapse supernovae. Ann Rev Nucl Part Sci 62:407–451. DOI10.1146/annurev-nucl-102711-094901Google Scholar
  62. Janka HT, Langanke K, Marek A, Martínez-Pinedo G, Müller B (2007) Theory of core-collapse supernovae. Phys Rep 442:38–74. DOI10.1016/j.physrep.2007.02.002Google Scholar
  63. Janka HT, Melson T, Summa A (2016) Physics of core-collapse supernovae in three dimensions: a sneak preview. ArXiv e-prints 1602.05576Google Scholar
  64. Keil MT, Raffelt GG, Janka HT (2003) Monte carlo study of supernova neutrino spectra formation. Astrophys J 590:971–991. DOI10.1086/375130Google Scholar
  65. Kienle P, Faestermann T, Friese J, Körner HJ, Münch M, Schneider R, Stolz A, Wefers E, Geissel H, Münzenberg G, Schlegel C, Sümmerer K, Weick H, Hellström M, Thirolf P (2001) Synthesis and halflives of heavy nuclei relevant for the rp-process. Prog Part Nucl Phys 46:73–78. DOI10.1016/S0146-6410(01)00109-0Google Scholar
  66. Koshiba M (1992) Observational neutrino astrophysics. Phys Rep 220:229–381. DOI10.1016/0370-1573(92)90083-CGoogle Scholar
  67. Krüger T, Tews I, Hebeler K, Schwenk A (2013) Neutron matter from chiral effective field theory interactions. Phys Rev C 88:025802. DOI10.1103/PhysRevC.88.025802Google Scholar
  68. Langanke K, Martínez-Pinedo G (2003) Nuclear weak-interaction processes in stars. Rev Mod Phys 75:819–862. DOI10.1103/RevModPhys.75.819Google Scholar
  69. Langanke K, Martínez-Pinedo G, Müller B, Janka HT, Marek A, Hix WR, Juodagalvis A, Sampaio JM (2008) Effects of inelastic neutrino-nucleus scattering on supernova dynamics and radiated neutrino spectra. Phys Rev Lett 100:011,101. DOI10.1103/PhysRevLett.100.011101Google Scholar
  70. Lattimer JM, Lim Y (2013) Constraining the symmetry parameters of the nuclear interaction. Astrophys J 771:51. DOI10.1088/0004-637X/771/1/51Google Scholar
  71. Lattimer JM, Swesty FD (1991) A generalized equation of state for hot, dense matter. Nucl Phys A 535:331–376ADSCrossRefGoogle Scholar
  72. Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247ADSCrossRefGoogle Scholar
  73. Martínez-Pinedo G, Ziebarth B, Fischer T, Langanke K (2011) Effect of collective neutrino flavor oscillations on vp-process nucleosynthesis. Eur Phys J A 47(8):1–5. DOI10.1140/epja/i2011-11098-yGoogle Scholar
  74. Martínez-Pinedo G, Fischer T, Lohs A, Huther L (2012) Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling. Phys Rev Lett 109:251,104. DOI10.1103/PhysRevLett.109.251104Google Scholar
  75. Martínez-Pinedo G, Fischer T, Huther L (2014) Supernova neutrinos and nucleosynthesis. J Phys G Nucl Part Phys 41(4):044,008. DOI10.1088/0954-3899/41/4/044008Google Scholar
  76. McLaughlin GC, Fetter JM, Balantekin AB, Fuller GM (1999) Active-sterile neutrino transformation solution for r-process nucleosynthesis. Phys Rev C 59:2873–2887. DOI10.1103/PhysRevC.59.2873Google Scholar
  77. Meyer BS, McLaughlin GC, Fuller GM (1998) Neutrino capture and r-process nucleosynthesis. Phys Rev C 58:3696–3710. DOI10.1103/PhysRevC.58.3696Google Scholar
  78. Mikheyev SP, Smirnov AY (1985) Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Yadernaya Fizika 42:1441–1448ADSGoogle Scholar
  79. Nunokawa H, Peltoniemi JT, Rossi A, Valle JWF (1997) Supernova bounds on resonant active-sterile neutrino conversions. Phys Rev D 56:1704–1713. DOI10.1103/PhysRevD.56.1704Google Scholar
  80. Olive KA, Agashe K, Amsler C, Antonelli M, Arguin JF, Asner DM et al (2014) Review of Particle Physics. Chin Phys C 38:090001. DOI 10.1088/1674-1137/38/9/090001. http://pdg.lbl.gov
  81. Pllumbi E, Tamborra I, Wanajo S, Janka HT, Hüdepohl L (2015) Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova. Astrophys J 808:188. DOI10.1088/0004-637X/808/2/188Google Scholar
  82. Pruet J, Woosley SE, Buras R, Janka HT, Hoffman RD (2005) Nucleosynthesis in the hot convective bubble in core-collapse supernovae. Astrophys J 623:325–336. DOI 10.1086/428281Google Scholar
  83. Pruet J, Hoffman RD, Woosley SE, Janka HT, Buras R (2006) Nucleosynthesis in early supernova winds II: The role of neutrinos. Astrophys J 644:1028–1039. DOI 10.1086/503891Google Scholar
  84. Qian YZ (2003) The origin of the heavy elements: recent progress in the understanding of the r-process. Prog Part Nucl Phys 50:153–199. DOI 10.1016/S0146-6410(02)00178-3Google Scholar
  85. Qian YZ, Woosley SE (1996) Nucleosynthesis in neutrino-driven winds. I. The physical conditions. Astrophys J 471:331–351. DOI 10.1086/177973Google Scholar
  86. Raffelt GG (2001) Mu- and tau-neutrino spectra formation in supernovae. Astrophys J 561:890–914. DOI 10.1086/323379Google Scholar
  87. Reddy S, Prakash M, Lattimer JM (1998) Neutrino interactions in hot and dense matter. Phys Rev D 58:013,009. DOI 10.1103/PhysRevD.58.013009Google Scholar
  88. Roberts LF, Reddy S, Shen G (2012) Medium modification of the charged-current neutrino opacity and its implications. Phys Rev C 86(6):065803. DOI 10.1103/PhysRevC.86.065803Google Scholar
  89. Roberts LF, Shen G, Cirigliano V, Pons JA, Reddy S, Woosley SE (2012) Protoneutron star cooling with convection: the effect of the symmetry energy. Phys Rev Lett 108:061,103. DOI 10.1103/PhysRevLett.108.061103Google Scholar
  90. Roederer IU, Lawler JE, Sobeck JS, Beers TC, Cowan JJ, Frebel A, Ivans II, Schatz H, Sneden C, Thompson IB (2012) New hubble space telescope observations of heavy elements in four metal-poor stars. Astrophys J Suppl 203:27. DOI 10.1088/0067-0049/203/2/27Google Scholar
  91. Rrapaj E, Holt JW, Bartl A, Reddy S, Schwenk A (2015) Charged-current reactions in the supernova neutrino-sphere. Phys Rev C 91:035806. DOI 10.1103/PhysRevC.91.035806Google Scholar
  92. Schatz H, Aprahamian A, Görres J, Wiescher M, Rauscher T, Rembges JF, Thielemann FK, Pfeiffer B, Möller P, Kratz KL, Herndl H, Brown BA, Rebel H (1998) rp-process nucleosynthesis at extreme temperature and density conditions. Phys Rep 294:167–263ADSCrossRefGoogle Scholar
  93. Seitenzahl IR, Timmes FX, Marin-Laflèche A, Brown E, Magkotsios G, Truran J (2008) Proton-rich nuclear statistical equilibrium. Astrophys J 685:L129–L132. DOI 10.1086/592501Google Scholar
  94. Seitenzahl IR, Timmes FX, Magkotsios G (2014) The light curve of SN 1987A revisited: constraining production masses of radioactive nuclides. Astrophys J 792:10. DOI 10.1088/0004-637X/792/1/10Google Scholar
  95. Shen H, Toki H, Oyamatsu K, Sumiyoshi K (1998) Relativistic equation of state of nuclear matter for supernova and neutron star. Nucl Phys A 637:435–450ADSCrossRefGoogle Scholar
  96. Sieverding A, Huther L, Langanke K, Martínez-Pinedo G, Heger A (2015) Neutrino nucleosynthesis of radioactive nuclei in supernovae. ArXiv e-prints 1505.01082Google Scholar
  97. Simon A, Spyrou A, Rauscher T, Fröhlich C, Quinn SJ, Battaglia A, Best A, Bucher B, Couder M, DeYoung PA, Fang X, Görres J, Kontos A, Li Q, Lin LY, Long A, Lyons S, Roberts A, Robertson D, Smith K, Smith MK, Stech E, Stefanek B, Tan WP, Tang XD, Wiescher M (2013) Systematic study of (p, γ) reactions on Ni isotopes. Phys Rev C 87:055,802. DOI 10.1103/PhysRevC.87.055802Google Scholar
  98. Sneden C, Cowan JJ, Gallino R (2008) Neutron-capture elements in the early galaxy. Annu Rev Astron Astrophys 46:241–288. DOI 10.1146/annurev.astro.46.060407.145207Google Scholar
  99. Strumia A, Vissani F (2003) Precise quasielastic neutrino/nucleon cross-section. Phys Lett B 564:42–54. DOI 10.1016/S0370-2693(03)00616-6Google Scholar
  100. Suzuki T, Kajino T (2013) Element synthesis in the supernova environment and neutrino oscillations. J Phys G: Nucl Part Phys 40(8):083101. DOI 10.1088/0954-3899/40/8/083101Google Scholar
  101. Suzuki T, Chiba S, Yoshida T, Kajino T, Otsuka T (2006) Neutrino-nucleus reactions based on new shell model Hamiltonians. Phys Rev C 74:034307. DOI 10.1103/PhysRevC.74.034307Google Scholar
  102. Takahashi K, Witti J, Janka HT (1994) Nucleosynthesis in neutrino-driven winds from protoneutron stars II. The r-process. Astron Astrophys 286:857–869ADSGoogle Scholar
  103. Tamborra I, Hanke F, Müller B, Janka HT, Raffelt G (2013) Neutrino signature of supernova hydrodynamical instabilities in three dimensions. Phys Rev Lett 111:121,104. DOI 10.1103/PhysRevLett.111.121104Google Scholar
  104. Thielemann FK, Nomoto K, Hashimoto M (1996) Core-collapse supernovae and their ejecta. Astrophys J 460:408–436. DOI 10.1086/176980Google Scholar
  105. Thompson TA, Burrows A, Meyer BS (2001) The physics of Proto-neutron star winds: implications for r-process nucleosynthesis. Astrophys J 562:887–908. DOI 10.1086/323861Google Scholar
  106. Timmes FX, Woosley SE, Hartmann DH, Hoffman RD, Weaver TA, Matteucci F (1995) 26al and 60fe from supernova explosions. Astrophys J 449:204. DOI 10.1086/176046Google Scholar
  107. Tu XL, Xu HS, Wang M, Zhang YH, Litvinov YA, Sun Y, Schatz H, Zhou XH, Yuan YJ, Xia JW, Audi G, Blaum K, Du CM, Geng P, Hu ZG, Huang WX, Jin SL, Liu LX, Liu Y, Ma X, Mao RS, Mei B, Shuai P, Sun ZY, Suzuki H, Tang SW, Wang JS, Wang ST, Xiao GQ, Xu X, Yamaguchi T, Yamaguchi Y, Yan XL, Yang JC, Ye RP, Zang YD, Zhao HW, Zhao TC, Zhang XY, Zhan WL (2011) Direct mass measurements of short-lived \(A = 2Z - 1\) Nuclides63Ge,65As,67Se, and71Kr and their impact on nucleosynthesis in the rp process. Phys Rev Lett 106:112,501. DOI 10.1103/PhysRevLett.106.112501Google Scholar
  108. Typel S, Röpke G, Klähn T, Blaschke D, Wolter HH (2010) Composition and thermodynamics of nuclear matter with light clusters. Phys Rev C 81:015,803. DOI 10.1103/PhysRevC.81.015803Google Scholar
  109. Wanajo S (2006) The rp-process in neutrino-driven winds. Astrophys J 647:1323–1340. DOI 10.1086/505483Google Scholar
  110. Wanajo S, Janka HT, Kubono S (2011) Uncertainties in the νp-process: supernova dynamics versus nuclear physics. Astrophys J 729:46. DOI 10.1088/0004-637X/729/1/46Google Scholar
  111. Wanajo S, Janka HT, Müller B (2011) Electron-capture supernovae as the origin of elements beyond iron. Astrophys J 726(2):L15. DOI 10.1088/2041-8205/726/2/L15Google Scholar
  112. Weber C, Elomaa VV, Ferrer R, Fröhlich C, Ackermann D, Äystö J, Audi G, Batist L, Blaum K, Block M, Chaudhuri A, Dworschak M, Eliseev S, Eronen T, Hager U, Hakala J, Herfurth F, Heßberger FP, Hofmann S, Jokinen A, Kankainen A, Kluge HJ, Langanke K, Martín A, Martínez-Pinedo G, Mazzocco M, Moore ID, Neumayr JB, Novikov YN, Penttilä H, Plaß WR, Popov AV, Rahaman S, Rauscher T, Rauth C, Rissanen J, Rodríguez D, Saastamoinen A, Scheidenberger C, Schweikhard L, Seliverstov DM, Sonoda T, Thielemann FK, Thirolf PG, Vorobjev GK (2008) Mass measurements in the vicinity of the rp-process and the ν p-process paths with the Penning trap facilities JYFLTRAP and SHIPTRAP. Phys Rev C 78:054310. DOI 10.1103/PhysRevC.78.054310Google Scholar
  113. Wilson HS, Kavanagh RW, Mann FM (1980) Gamow-Teller transitions in some intermediate-mass nuclei. Phys Rev C 22:1696–1722. DOI 10.1103/PhysRevC.22.1696Google Scholar
  114. Wisshak K, Voss F, Arlandini C, Bec̆vár̆ F, Straniero O, Gallino R, Heil M, Käppeler F, Krtic̆ka M, Masera S, Reifarth R, Travaglio C (2001) Neutron capture on180Tam: clue for an s-process origin of nature’s rarest isotope. Phys Rev Lett 87:251,102. DOI 10.1103/PhysRevLett.87.251102Google Scholar
  115. Witti J, Janka HT, Takahashi K (1994) Nucleosynthesis in neutrino-driven winds from protoneutron stars I. The α-process. Astron Astrophys 286:841–856ADSGoogle Scholar
  116. Wolfenstein L (1978) Neutrino oscillations in matter. Phys Rev D 17:2369–2374. DOI 10.1103/PhysRevD.17.2369Google Scholar
  117. Woosley SE, Hoffman RD (1992) The α-process and the r-process. Astrophys J 395:202–239. DOI 10.1086/171644Google Scholar
  118. Woosley SE, Hartmann DH, Hoffman RD, Haxton WC (1990) The ν-process. Astrophys J 356:272–301. DOI 10.1086/168839Google Scholar
  119. Woosley SE, Wilson JR, Mathews GJ, Hoffman RD, Meyer BS (1994) The r-process and neutrino-heated supernova ejecta. Astrophys J 433:229–246. DOI 10.1086/174638Google Scholar
  120. Woosley SE, Heger A, Weaver TA (2002) The evolution and explosion of massive stars. Rev Mod Phys 74:1015–1071. DOI 10.1103/RevModPhys.74.1015Google Scholar
  121. Wu MR, Fischer T, Huther L, Martínez-Pinedo G, Qian YZ (2014) Impact of active-sterile neutrino mixing on supernova explosion and nucleosynthesis. Phys Rev D 89:061,303(R). DOI 10.1103/PhysRevD.89.061303Google Scholar
  122. Wu MR, Qian YZ, Martínez-Pinedo G, Fischer T, Huther L (2015) Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M supernova model. Phys Rev D 91:065016. DOI 10.1103/PhysRevD.91.065016Google Scholar
  123. Yoshida T, Kajino T, Yokomakura H, Kimura K, Takamura A, Hartmann DH (2006) Supernova neutrino nucleosynthesis of light elements with neutrino oscillations. Phys Rev Lett 96:091101. DOI 10.1103/PhysRevLett.96.091101Google Scholar
  124. Zegers RGT, Akimune H, Austin SM, Bazin D, Berg AMd, Berg GPA, Brown BA, Brown J, Cole AL, Daito I, Fujita Y, Fujiwara M, Galès S, Harakeh MN, Hashimoto H, Hayami R, Hitt GW, Howard ME, Itoh M, Jänecke J, Kawabata T, Kawase K, Kinoshita M, Nakamura T, Nakanishi K, Nakayama S, Okumura S, Richter WA, Roberts DA, Sherrill BM, Shimbara Y, Steiner M, Uchida M, Ueno H, Yamagata T, Yosoi M (2006) The (t,3He) and (3He, t) reactions as probes of Gamow-Teller strength. Phys Rev C 74:024309. DOI 10.1103/PhysRevC.74.024309Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Gabriel Martínez-Pinedo
    • 1
    • 2
  • Tobias Fischer
    • 3
  • Karlheinz Langanke
    • 4
    • 5
  • Andreas Lohs
    • 6
  • Andre Sieverding
    • 7
  • Meng-Ru Wu
    • 8
    • 9
  1. 1.Institute for Nuclear Physics (Theory Center)Technische Universität DarmstadtDarmstadtGermany
  2. 2.GSI Helmholtz Center for Heavy Ion ResearchDarmstadtGermany
  3. 3.Institute for Theoretical PhysicsUniversity of WrocławWrocławPoland
  4. 4.Institute for Nuclear Physics (Theory Center)Technische Universität DarmstadtDarmstadtGermany
  5. 5.GSI Helmholtz Center for Heavy Ion ResearchDarmstadtGermany
  6. 6.Department of PhysicsUniversity of BaselBaselSwitzerland
  7. 7.Institute for Nuclear Physics (Theory Center)Technische Universität DarmstadtDarmstadtGermany
  8. 8.Institute for Nuclear Physics (Theory Center)Technische Universität DarmstadtDarmstadtGermany
  9. 9.Niels Bohr International AcademyNiels Bohr InstituteCopenhagenDenmark

Personalised recommendations