Skip to main content

High-Energy Gamma Rays from Supernova Remnants

  • Living reference work entry
  • First Online:
  • 456 Accesses

Abstract

Over the past decade, gamma-ray observations of supernova remnants with space-based instruments, such as Astro-rivelatore Gamma a Immagini LEggero (AGILE) and the Fermi-Large Area Telescope (LAT), and ground-based instruments such as the High Energy Stereoscopic System (H.E.S.S.), the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescopes, and the Very Energetic Radiation Imaging Telescope Array System (VERITAS) have significantly advanced our understanding of particle acceleration in the shocks of these highly energetic objects. The number of supernova remnants (SNRs) that are detected in high-energy light has steadily increased - a clear demonstration that shocks are capable of accelerating particles to multi-TeV energies. While the ultimate proof of SNRs as the dominant source of cosmic rays in our Galaxy is still elusive, uncontroversial evidence points to the acceleration of protons in supernova remnant shells. This chapter aims to review the most important results in the gamma-ray study of supernova remnants.

This is a preview of subscription content, log in via an institution.

References

  • Abdo AA et al (2010) Fermi-lat discovery of GeV gamma-ray emission from the young supernova remnant cassiopeia A. ApJL 710:L92-L97. doi:10.1088/2041-8205/710/1/L92

    Article  ADS  Google Scholar 

  • Abdo AA et al (2011) Observations of the young supernova remnant RX J1713.7-3946 with the fermi large area telescope. ApJ 734:28. doi:10.1088/0004-637X/734/1/28

    Google Scholar 

  • Abdo AA et al (2010) Fermi large area telescope observations of the supernova remnant w28 (g6.4-0.1). Astrophys J 718(1):348. arXiv:http://stacks.iop.org/0004-637X/718/i=1/a=348

  • Abdo AA et al (2009) Fermi LAT discovery of extended gamma-ray emission in the direction of supernova remnant W51C. ApJL 706:L1-L6. doi:10.1088/0004-637X/706/1/L1

    Article  ADS  Google Scholar 

  • Abeysekara AU et al (2013) Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays. Astropart Phys 50:26-32. doi:10.1016/j.astropartphys.2013.08.002

    Article  ADS  Google Scholar 

  • Acciari VA et al (2009) Observation of extended very high energy emission from the supernova remnant IC 443 with VERITAS. ApJL 698:L133-L137. doi:10.1088/0004-637X/698/2/L133

    Article  ADS  Google Scholar 

  • Acciari VA et al (2011) Discovery of TeV gamma-ray emission from Tycho’s supernova remnant. ApJL 730:L20. doi:10.1088/2041-8205/730/2/L20

    Article  ADS  Google Scholar 

  • Acero F et al (2015) The 1st fermi lat supernova remnant catalog. ArXiv e-prints

    Google Scholar 

  • Acero F et al (2010) H.E.S.S. Collaboration: First detection of VHE γ-rays from SN 1006 by HESS. AAP 516:A62. doi:10.1051/0004-6361/200913916

    Google Scholar 

  • Acero F et al (2009) A joint spectro-imaging analysis of the XMM-Newton and HESS observations of the supernova remnant RX J1713.7-3946. AAP 505:157-167

    Article  ADS  Google Scholar 

  • Acharya BS et al (2015) The Cherenkov Telescope Array potential for the study of young supernova remnants. Astropart Phys 62:152-164. doi:10.1016/j.astropartphys.2014.08.005

    Article  ADS  Google Scholar 

  • Ackermann M et al (2013) Detection of the characteristic pion-decay signature in supernova remnants. Science 339:807-811. doi:10.1126/science.1231160

    Article  ADS  Google Scholar 

  • Aharonian F et al (2001) Evidence for TeV gamma ray emission from Cassiopeia A. Astron Astrophys 370:112-120

    Article  ADS  Google Scholar 

  • Aharonian F et al (2008) Discovery of very high energy gamma-ray emission coincident with molecular clouds in the W 28 (G6.4-0.1) field. AAP 481:401-410. doi:10.1051/0004-6361:20077765

    Article  ADS  Google Scholar 

  • Aharonian F et al (2006) The H.E.S.S. survey of the inner galaxy in very high energy gamma rays. Astrophys J 636:777-797

    Article  ADS  Google Scholar 

  • Aharonian F et al (2007) Primary particle acceleration above 100 TeV in the shell-type supernova remnant ¡ASTROBJ¿RX J1713.7-3946¡/ASTROBJ¿ with deep HESS observations. Astron Astrophys 464:235-243

    Article  ADS  Google Scholar 

  • Aharonian F et al (2007) H.E.S.S. Observations of the Supernova Remnant RX J0852.0-4622: Shell-type morphology and spectrum of a widely extended very high energy gamma-ray source. Astrophys J 661:236-249

    Article  ADS  Google Scholar 

  • Aharonian F et al (2009) Discovery of gamma-ray emission from the shell-type supernova remnant RCW 86 With Hess. ApJ 692:1500-1505

    Article  ADS  Google Scholar 

  • Aharonian FA (2004)Very High Energy Cosmic Gamma Radiation: A crucial window on the extreme universe. EBSCO ebook academic collection. World Scientific, River Edge

    Book  Google Scholar 

  • Aharonian FA (2013) Gamma rays from supernova remnants. Astropart Phys 43, 71-80. doi:10.1016/j.astropartphys.2012.08.007

    Article  ADS  Google Scholar 

  • Albert J et al (2007) Observation of VHE γ-rays from Cassiopeia A with the MAGIC telescope. Astron Astrophys 474:937-940

    Article  ADS  Google Scholar 

  • Albert J et al (2007) Discovery of very high energy gamma radiation from IC 443 with the MAGIC telescope. Astrophys J Lett 664:L87-L90 (2007)

    Article  ADS  Google Scholar 

  • Araya M, Frutos F (2012) On the nature of the TeV emission from the supernova remnant SN 1006. MNRAS 425:2810-2816. doi:10.1111/j.1365-2966.2012.21580.x

    Article  ADS  Google Scholar 

  • Bell AR (2004) Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS 353:550-558. doi:10.1111/j.1365-2966.2004.08097.x

    Article  ADS  Google Scholar 

  • Berezhko EG, Ksenofontov LT, Völk HJ (2013) The nature of gamma-ray emission of Tycho’s supernova remnant. ApJ 763:14. doi:10.1088/0004-637X/763/1/14

    Article  ADS  Google Scholar 

  • Blasi P (2013) The origin of galactic cosmic rays. AAPr 21:70. doi:10.1007/s00159-013-0070-7

    ADS  Google Scholar 

  • Blasi P (2014) Recent results in cosmic ray physics and their interpretation. Braz J Phys 44:426-440. doi:10.1007/s13538-014-0223-9

    Article  ADS  Google Scholar 

  • Caprioli D (2012) Cosmic-ray acceleration in supernova remnants: non-linear theory revised. JCAP 7:038. doi:10.1088/1475-7516/2012/07/038

    Article  ADS  Google Scholar 

  • Caragiulo M, Di Venere L (2014) Evidence of hadronic interaction in Tycho supernova remnant using fermi-LAT data. Nucl Phys B Proc Suppl 256:89-93. doi:10.1016/j.nuclphysbps.2014.10.010

    Article  ADS  Google Scholar 

  • Castro D, Slane P (2010) Fermi large area telescope observations of supernova remnants interacting with molecular clouds. ApJ 717:372-378. doi:10.1088/0004-637X/717/1/372

    Article  ADS  Google Scholar 

  • Ellison DC, Vladimirov A (2008) Magnetic field amplification and rapid time variations in SNR RX J1713.7-3946. ApJL 673:L47-L50

    Article  ADS  Google Scholar 

  • Esposito JA, Hunter SD, Kanbach G, Sreekumar, P (1996) EGRET observations of radio-bright supernova remnants. ApJ 461:820-+

    Google Scholar 

  • Funk, S (2015) Ground- and space-based gamma-ray astronomy. Annu Rev Nucl Part Sci 65(1):245-277. doi 10.1146/annurev-nucl-102014-022036. arXiv:http://dx.doi.org/10.1146/annurev-nucl-102014-022036

  • Gabici S, Aharonian FA (2014) Hadronic gamma-rays from RX J1713.7-3946? MNRAS 445:L70-L73. doi:10.1093/mnrasl/slu132

    Article  ADS  Google Scholar 

  • Gabici S, Aharonian FA, Casanova S (2009) Broad-band non-thermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants. MNRAS 396:1629-1639. doi:10.1111/j.1365-2966.2009.14832.x

    Article  ADS  Google Scholar 

  • Ginzburg VL, Syrovatskii SI (1964) The origin of cosmic rays. The Origin of Cosmic Rays, Macmillan, New York

    Google Scholar 

  • Giordano F et al (2012) Fermi large area telescope detection of the young supernova remnant Tycho. ApJL 744:L2. doi:10.1088/2041-8205/744/1/L2

    Article  ADS  Google Scholar 

  • Giuliani A et al (2011) Neutral pion emission from accelerated protons in the supernova remnant W44. ApJL 742:L30. doi:10.1088/2041-8205/742/2/L30

    Article  ADS  Google Scholar 

  • H.E.S.S. Collaboration et al (2015) H.E.S.S. reveals a lack of TeV emission from the supernova remnant Puppis A. AAP 575:A81. doi:10.1051/0004-6361/201424805

    Google Scholar 

  • H.E.S.S. Collaboration et al (2016) Detailed spectral and morphological analysis of the shell type SNR RCW 86. ArXiv e-prints

    Google Scholar 

  • Hanabata Y et al (2014) Detailed investigation of the gamma-ray emission in the vicinity of snr w28 with fermi-lat. Astrophys J 786(2):145. http://stacks.iop.org/0004-637X/786/i=2/a=145

    Article  ADS  Google Scholar 

  • Hartman RC et al (1999) The third EGRET catalog of high-energy gamma-ray sources. ApJs 123:79-202

    Article  ADS  Google Scholar 

  • H.E.S.S. Collaboration et al (2011) A new SNR with TeV shell-type morphology: HESS J1731-347. AAP 531:A81. doi:10.1051/0004-6361/201016425

    Article  Google Scholar 

  • Hewitt JW, Grondin MH, Lemoine-Goumard, M., Reposeur T, Ballet J, Tanaka T (2012) Fermi-LAT and WMAP observations of the puppis A supernova remnant. ApJ 759:89. doi:10.1088/0004-637X/759/2/89

    Article  ADS  Google Scholar 

  • Humensky B (2015) for the VERITAS Collaboration: The TeV morphology of the interacting supernova remnant IC 443. ArXiv e-prints

    Google Scholar 

  • Humensky TB (2008) VERITAS studies of the supernova remnants Cas A and IC 443. In: Aharonian FA, Hofmann W, Rieger F (ed) American Institute of Physics Conference Series, vol. 1085, pp. 357-360

    Google Scholar 

  • Indebetouw R et al (2014) Dust production and particle acceleration in supernova 1987A revealed with ALMA. ApJL 782:L2. doi:10.1088/2041-8205/782/1/L2

    Article  ADS  Google Scholar 

  • Jogler T, Funk S (2016) Revealing W51C as a cosmic ray source using fermi-LAT data. ApJ 816:100. doi:10.3847/0004-637X/816/2/100

    Article  ADS  Google Scholar 

  • Katsuda S et al (2015) Evidence for thermal X-ray line emission from the synchrotron-dominated supernova remnant RX J1713.7-3946. ApJ 814:29. doi:10.1088/0004-637X/814/1/29

    Google Scholar 

  • Malkov MA, Diamond PH, Sagdeev RZ (2011) Mechanism for spectral break in cosmic ray proton spectrum of supernova remnant W44. Nat Commun 2:94. doi:10.1038/ncomms1195

    Article  Google Scholar 

  • Morlino G, Caprioli D (2012) Strong evidence for hadron acceleration in Tycho’s supernova remnant. AAP 538:A81. doi:10.1051/0004-6361/201117855

    Article  Google Scholar 

  • Renaud M et al (2012) Fermi/LAT Collaboration: Constraints on cosmic-ray efficiency in the supernova remnant RCW 86. In: Aharonian FA, Hofmann W, Rieger FM (eds) American Institute of Physics Conference Series, vol. 1505, pp. 229-232. doi:10.1063/1.4772239

    Google Scholar 

  • Romero GE, Benaglia P, Torres, DF (1999) Unidentified 3EG gamma-ray sources at low galactic latitudes. AAP 348:868-876

    ADS  Google Scholar 

  • Tanaka T et al (2011) Gamma-ray observations of the supernova remnant RX J0852.0-4622 with the fermi large area telescope. ApJL 740:L51. doi:10.1088/2041-8205/740/2/L51

    Google Scholar 

  • Tanaka T et al (2008) Study of nonthermal emission from SNR RX J1713.7-3946 with Suzaku. ApJ 685:988-1004

    Article  ADS  Google Scholar 

  • Torres DF, Marrero AYR, de Cea Del Pozo E (2010) The GeV to TeV connection in the environment of SNR IC 443. MNRAS 408:1257-1266. doi:10.1111/j.1365-2966.2010.17205.x

    Article  ADS  Google Scholar 

  • Torres DF, Romero GE, Dame TM, Combi JA, Butt YM (2003) Supernova remnants and γ-ray sources. Phys Rep 382:303-380

    Article  ADS  Google Scholar 

  • Uchiyama Y, Aharonian FA (2008) Fast variability of nonthermal x-ray emission in cassiopeia a: Probing electron acceleration in reverse-shocked ejecta. Astrophys J 677:L105

    Article  ADS  Google Scholar 

  • Uchiyama Y, Aharonian FA, Takahashi T (2003) Fine-structure in the nonthermal X-ray emission of SNR RX J1713.7-3946 revealed by Chandra. Astron Astrophys 400:567-574

    Article  ADS  Google Scholar 

  • Uchiyama Y, Blandford RD, Funk S, Tajima H, Tanaka T (2010) Gamma-ray emission from crushed clouds in supernova remnants. ApJL 723:L122-L126. doi:10.1088/2041-8205/723/1/L122

    Article  ADS  Google Scholar 

  • Uchiyama Y et al (2012) Fermi large area telescope discovery of GeV gamma-ray emission from the vicinity of SNR W44. ApJL 749:L35. doi:10.1088/2041-8205/749/2/L35

    Article  ADS  Google Scholar 

  • Yuan Y, Funk S, Jóhannesson G, Lande J, Tibaldo L, Uchiyama Y (2013) Fermi large area telescope detection of a break in the gamma-ray spectrum of the supernova remnant Cassiopeia A. ApJ 779:117. doi:10.1088/0004-637X/779/2/117

    Article  ADS  Google Scholar 

  • Zirakashvili VN, Aharonian FA (2010)Nonthermal radiation of young supernova remnants: the case of RX J1713.7-3946. ApJ 708:965-980 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the support of everyone involved in preparing this review, in particular the Fermi-LAT, H.E.S.S., and CTA collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Funk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Funk, S. (2016). High-Energy Gamma Rays from Supernova Remnants. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics