African Snakes

  • Jean-Philippe ChippauxEmail author
  • Julian WhiteEmail author
  • Abdulrazaq G. HabibEmail author
Living reference work entry


In Africa, snakebites are neglected medical and surgical emergencies despite their high incidence and severity. Lacking mandatory reporting, in contrast to most Latin America and Asian countries, there is no official and consolidated epidemiological data. The main consequence is the lack of accurate assessment of therapeutic needs.


African snakes Snakebites Duvernoy’s gland Colubridae Elapidae Naja Cobra Dendroaspis Mamba Viperidae Python Puff adder Gaboon viper Horned desert vipers Adders Bush vipers Neurotoxin-α Sarafotoxins Fasciculins β-Neurotoxins Whole blood clotting test Antivenom 


  1. 1.
    Chippaux JP. Snake bites: appraisal of the global situation. Bull World Health Organ. 1998;76:515–24.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5:e218.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chippaux JP. Estimate of the burden of snakebites in sub-Saharan Africa: a meta-analytic approach. Toxicon. 2011;57(4):586–99.CrossRefPubMedGoogle Scholar
  4. 4.
    Warrell DA. Snake bite. Lancet. 2010;375:77–88.CrossRefPubMedGoogle Scholar
  5. 5.
    Chippaux JP. Les erpents d’Afrique occidentale et centrale, Collection Faune et flore Tropicales, vol. 35. 3rd ed. Paris: IRD Editions; 2006.Google Scholar
  6. 6.
    Fry BG, Casewell NR, Wüster W, Vidal N, Young B, Jackson TN. The structural and functional diversification of the Toxicofera reptile venom system. Toxicon. 2012;60(4):434–48.CrossRefPubMedGoogle Scholar
  7. 7.
    Weinstein SA, White J, Keyler DE, Warrell DA. Non-front-fanged colubroid snakes: a current evidence-based analysis of medical significance. Toxicon. 2013;69:103–13.CrossRefPubMedGoogle Scholar
  8. 8.
    Saint Girons H. Reproductive cycles of male snakes and their relationships with climate and female reproductive cycles. Herpetologica. 1982;38:5–16.Google Scholar
  9. 9.
    Chippaux J-P. Les serpents de la Guyane française, Collection Faune et flore Tropicales, vol. XXVII. Paris: IRD Editions; 1986.Google Scholar
  10. 10.
    Akani GC, Eyo E, Odegbune E, Eniang EA, Luiselli L. Ecological patterns of anthropogenic mortality of suburban snakes in an African tropical region. Isr J Zool. 2002;48:1–11.CrossRefGoogle Scholar
  11. 11.
    Bonnet X, Naulleau G, Shine R. The dangers of leaving home: dispersal and mortality in snakes. Biol Conserv. 1999;99:39–50.CrossRefGoogle Scholar
  12. 12.
    Revault P. Serpents, savoirs et santé chez les Mossi. Prise en charge des envenimations par Echis ocellatus en Afrique soudano-sahélienne, à travers l’exemple du plateau ouagalais. Thesis Med Doc, Univ Paris Nord, 1994 [Abstract in Toxicon. 1996;34:144].Google Scholar
  13. 13.
    Chippaux JP, Bressy C. L’endémie ophidienne des plantations de Côte d’Ivoire. Bull Soc Pathol Exot. 1981;74:458–67.Google Scholar
  14. 14.
    Oyebaru KA, Shokpeka CJ. Identification of plantation snakes of Nigeria: an approach to solve occupational hazards. Nig Med Pract. 1984;7:151–5.Google Scholar
  15. 15.
    Stock RP, Massougbodji A, Alagón A, Chippaux JP. Bringing antivenom to Sub-Saharan Africa. Nat Biotechnol. 2007;25:173–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Akani GC, Luiselli L, Eniang EA, Ebere N. Community structure and ecology of snakes in fields of oil palm trees (Elaeis guineensis) in the Niger Delta, Southern Nigeria. Afr J Ecol. 2008;46:500–6.CrossRefGoogle Scholar
  17. 17.
    Akani GC, Ebere N, Franco D, Eniang EA, Petrozzi F, Politano E, Luiselli L. Correlation between annual activity patterns of venomous snakes and rural people in the Niger Delta, Southern Nigeria. J Venom Anim Toxins Incl Trop Dis. 2013;19:2.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Stahel E. Epidemiological aspects of snake bites on a Liberian rubber plantation. Acta Trop. 1980;37:367–74.PubMedGoogle Scholar
  19. 19.
    Van Rensburg A, Kyriakakis C. A tale of a cobra and an octopus: Takotsubo cardiomyopathy following a snake bite. Am J Med. 2015;128:5–6.CrossRefGoogle Scholar
  20. 20.
    Amri K, Chippaux JP. Envenimation bénigne par morsure de Toxicodryas blandingii (Hallowell, 1844) en Suisse. Bull Soc Herp Fr. 2012;142-143:145–8.Google Scholar
  21. 21.
    Utkin YN. Three-finger toxins, a deadly weapon of elapid venom–milestones of discovery. Toxicon. 2013;62:50–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Ducancel F. The sarafotoxins. Toxicon. 2002;40:1541–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Calvete JJ. The continuing saga of snake venom disintegrins. Toxicon. 2013;62:40–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Serrano SM. The long road of research on snake venom serine proteinases. Toxicon. 2013;62:19–26.CrossRefPubMedGoogle Scholar
  25. 25.
    Castro HC, Zingali RB, Albuquerque MG, Pujol-Luz M, Rodrigues CR. Snake venom thrombin-like enzymes: from reptilase to now. Cell Mol Life Sci. 2004;61(7-8):843–56.CrossRefPubMedGoogle Scholar
  26. 26.
    Markland Jr FS, Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3–18.CrossRefPubMedGoogle Scholar
  27. 27.
    Teixeira C de F, Fernandes CM, Zuliani JP, Zamuner SF. Inflammatory effects of snake venom metalloproteinases. Mem Inst Oswaldo Cruz. 2005;100 Suppl 1:181–4.CrossRefGoogle Scholar
  28. 28.
    Petricevich VL. Cytokine and nitric oxide production following severe envenomation. Curr Drug Targets Inflamm Allergy. 2004;3(3):325–32.CrossRefPubMedGoogle Scholar
  29. 29.
    Gutierrez JM, Rucavado A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie. 2000;82:841–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Barber CM, Isbister GK, Hodgson WC. Alpha neurotoxins. Toxicon. 2013;66:47–58.CrossRefPubMedGoogle Scholar
  31. 31.
    Servent D, Blanchet G, Mourier G, Marquer C, Marcon E, Fruchart-Gaillard C. Muscarinic toxins. Toxicon. 2011;58(6-7):455–63.CrossRefPubMedGoogle Scholar
  32. 32.
    Markland FS. Snake venoms and the haemostatic system. Toxicon. 1998;36(12):1749–800.CrossRefPubMedGoogle Scholar
  33. 33.
    Kornalík F, Dyr JE, Vodrázka Z, Fortová H. Fibrinogenolytic effect of ecarin a prothrombin converting enzyme. Thromb Res. 1979;15(1-2):27–36.CrossRefPubMedGoogle Scholar
  34. 34.
    Kini RM, Evans HJ. Effects of snake venom proteins on blood platelets. Toxicon. 1990;28(12):1387–422.CrossRefPubMedGoogle Scholar
  35. 35.
    McDowell RS, Dennis MS, Louie A, Shuster M, Mulkerrin MG, Lazarus RA. Mambin, a potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor structurally related to the short neurotoxins. Biochemistry. 1992;31(20):4766–72.CrossRefPubMedGoogle Scholar
  36. 36.
    Williams JA, Lu X, Rahman S, Keating C, Kakkar V. Dendroaspin: a potent integrin receptor inhibitor from the venoms of Dendroaspis viridis and D. jamesoni. Biochem Soc Trans. 1993;21(1):73S.CrossRefPubMedGoogle Scholar
  37. 37.
    Karaye KM, Mijinyawa MS, Yakasai AM, Kwaghe V, Joseph GA, Iliyasu G, Yola IM, Abubakar SB, Habib AG. Cardiac and hemodynamic features following snakebite in Nigeria. Int J Cardiol. 2012;156(3):326–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Hsaini Y, Satte A, Balkhi H, Karouache A, Bourezza A. Infarctus cérébral secondaire à une morsure de vipère. Ann Fr Anesth Reanim. 2010;29(4):315–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Chani M, Abouzahir A, Haimeur C, Kamili ND, Mion G. Accident vasculaire cérébral ischémique à la suite d’une envenimation vipérine grave au Maroc, traitée par un antivenin inadapté. Ann Fr Anesth Reanim. 2012;31(1):82–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Rebahi H, Nejmi H, Abouelhassan T, Hasni K, Samkaoui MA. Severe envenomation by Cerastes cerastes viper: an unusual mechanism of acute ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23(1):169–72.CrossRefPubMedGoogle Scholar
  41. 41.
    Kurnik D, Haviv Y, Kochva E. A snake bite by the burrowing asp, Atractaspis engaddensis. Toxicon. 1999;37(1):223–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Laing GD, Clissa PB, Theakston RD, Moura-da-Silva AM, Taylor MJ. Inflammatory pathogenesis of snake venom metalloproteinase-induced skin necrosis. Eur J Immunol. 2003;33:3458–63.CrossRefPubMedGoogle Scholar
  43. 43.
    Chippaux JP. Snake venoms, envenomations. Malabar: Krieger Publishing; 2006.Google Scholar
  44. 44.
    Abubakar SB, Habib AG, Mathew J. Amputation and disability following snakebite in Nigeria. Trop Doct. 2010;40:114–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Snow RW, Bronzan R, Roques T, Nyamawi C, Murphy S, Marsh K. The prevalence and morbidity of snake bite and treatment-seeking behaviour among a rural Kenyan population. Ann Trop Med Parasitol. 1994;88:665–761.PubMedGoogle Scholar
  46. 46.
    Chippaux JP, Diallo A. Evaluation de l’incidence des morsures de serpent en zone de sahel sénégalais, l’exemple de Niakhar. Bull Soc Pathol Exot. 2002;95:151–3.PubMedGoogle Scholar
  47. 47.
    Somé N, Poda JN, Guissou IP. Epidémiologie et prise en charge des envenimations ophidiennes dans le district sanitaire de Dano, province du Ioba (Burkina Faso) de 1980 à 2000. Bull Soc Pathol Exot. 2002;95:163–6.PubMedGoogle Scholar
  48. 48.
    Baldé MC, Camara AMB, Bah H, Barry AO, Camara SK. Incidence des morsures de serpent: enquête communautaire dans la collectivité rurale de développement (CRD) de Frilguiagbé (République de Guinée). Bull Soc Pathol Exot. 2005;98:283.PubMedGoogle Scholar
  49. 49.
    Chippaux JP. The development and use of immunotherapy in Africa. Toxicon. 1998;36:1503–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Chippaux JP. The treatment of snake bites: Analysis of requirements and assessment of therapeutic efficacy in tropical Africa. In: Ménez A, editor. Perspectives in molecular toxinology. Chichester: Wiley; 2002. p. 457–72.Google Scholar
  51. 51.
    Chippaux JP. Estimating the global burden of snakebite can help to improve management. PLoS Med. 2008;5:e221.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chippaux JP. Epidemiological investigation on envenomation: from theory to practice. J Venom Anim Toxins Incl Trop Dis. 2012;18:446–50.CrossRefGoogle Scholar
  53. 53.
    Gras S, Plantefève G, Baud F, Chippaux JP. Snakebite on the hand: lessons from two clinical cases illustrating difficulties of surgical indication. J Venom Anim Toxins Incl Trop Dis. 2012;18:467–77.CrossRefGoogle Scholar
  54. 54.
    Habib AG, Abubakar SB. Factors affecting snakebite mortality in north-eastern Nigeria. Int Health. 2011;3(1):50–5.CrossRefPubMedGoogle Scholar
  55. 55.
    Baldé MC, Dieng B, Inapogui A, Barry AO, Bah H, Kondé K. Problématique des envenimations en Guinée. Bull Soc Pathol Exot. 2002;95:157–9.PubMedGoogle Scholar
  56. 56.
    Le Dantec P, Herve Y, Niang B, Chippaux JP, Boulesteix G, Diatta B. Morsure par vipère Bitis arietans au Sénégal, intérêt de la mesure de pression intracompartimentale. Med Trop. 2004;64:187–91.Google Scholar
  57. 57.
    Chippaux JP, Lang J, Amadi Eddine S, Fagot P, Rage V, Le Mener V. Clinical safety and efficacy of a polyvalent F(ab’)2 equine antivenom in 223 African snake envenomations: a field trial in Cameroon. Trans R Soc Trop Med Hyg. 1998;92:657–62.CrossRefPubMedGoogle Scholar
  58. 58.
    Habib AG. Tetanus complicating snakebite in northern Nigeria: clinical presentation and public health implications. Acta Trop. 2003;85(1):87–91.CrossRefPubMedGoogle Scholar
  59. 59.
    Chippaux JP, Goyffon M. Venoms, antivenoms and immunotherapy. Toxicon. 1998;36:823–46.CrossRefPubMedGoogle Scholar
  60. 60.
    WHO. Guidelines for the production, control and regulation of snake antivenom immunoglobulins. World Health Organization; 2010. Accessed 17 Jul 2015.
  61. 61.
    Hill RE, Bogdan GM, Dart RC. Time to reconstitution: purified Fab antivenom vs unpurified IgG antivenom. Toxicon. 2001;39:729–31.CrossRefPubMedGoogle Scholar
  62. 62.
    Quan AN, Quan D, Curry SC. Improving Crotalidae polyvalent immune Fab reconstitution times. Am J Emerg Med. 2010;28:593–5.CrossRefPubMedGoogle Scholar
  63. 63.
    Habib AG, Lamorde M, Dalhat MM, Habib ZG, Kuznik A. Cost-effectiveness of antivenoms for snakebite envenoming in Nigeria. PLoS Negl Trop Dis. 2015;9:e3381.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Rivière G, Choumet V, Audebert F, Sabouraud A, Debray M, Scherrmann JM, Bon C. Effect of antivenom on venom pharmacokinetics in experimentally envenomed rabbits: towards an optimization of antivenom therapy. J Pharmacol Exp Ther. 1997;281:1–8.PubMedGoogle Scholar
  65. 65.
    Rivière G, Choumet V, Saliou B, Debray M, Bon C. Absorption and elimination of viper venom after antivenom administration. J Pharmacol Exp Ther. 1998;285:490–5.PubMedGoogle Scholar
  66. 66.
    Larréché S, Mion G, Mayet A, Verret C, Puidupin M, Benois A, Petitjeans F, Libert N, Goyffon M. Antivenin remains effective against African Viperidae bites despite a delayed treatment. Am J Emerg Med. 2011;29(2):155–61.CrossRefPubMedGoogle Scholar
  67. 67.
    Warrell DA. Unscrupulous marketing of snake bite antivenoms in Africa and Papua New Guinea: choosing the right product-‘What’s in a name?’. Trans R Soc Trop Med Hyg. 2008;102:397–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Jelinek GA, Smith A, Lynch D, Celenza A, Irving I, Michalopoulos N, Erber W, Joske DJ. The effect of adjunctive fresh frozen plasma administration on coagulation parameters and survival in a canine model of antivenom-treated brown snake envenoming. Anaesth Intensive Care. 2005;33:36–40.PubMedGoogle Scholar
  69. 69.
    Chippaux JP. Surgery should not be used as a first line treatment. J Venom Anim Toxins Incl Trop Dis. 2010;16:3–4.CrossRefGoogle Scholar
  70. 70.
    Chatterjee SC, Dass B. An experimental study on hydrocortisone in cobra envenomation. J Indian Med Assoc. 1969;52(11):493–5.PubMedGoogle Scholar
  71. 71.
    Nuchprayoon I, Pongpan C, Sripaiboonkij N. The role of prednisolone in reducing limb oedema in children bitten by green pit vipers: a randomized, controlled trial. Ann Trop Med Parasitol. 2008;102(7):643–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Habib AG. Effect of pre-medication on early adverse reactions following antivenom use in snakebite: a systematic review and meta-analysis. Drug Saf. 2011;34(10):869–80.CrossRefPubMedGoogle Scholar
  73. 73.
    Kerrigan KR, Mertz BL, Nelson SJ, Dye JD. Antibiotic prophylaxis for pit viper envenomation: prospective, controlled trial. World J Surg. 1997;21(4):369–72.CrossRefPubMedGoogle Scholar
  74. 74.
    Habib AG, Abubakar SB, Abubakar IS, Larnyang S, Durfa N, Nasidi A, Yusuf PO, Garnvwa J, Theakston RD, Salako L, Warrell DA, EchiTab Study Group (Nigeria & UK). Envenoming after carpet viper (Echis ocellatus) bite during pregnancy: timely use of effective antivenom improves maternal and foetal outcomes. Trop Med Int Health. 2008;13(9):1172–5.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Langley RL. Snakebite during pregnancy: a literature review. Wilderness Environ Med. 2010;21(1):54–60.CrossRefPubMedGoogle Scholar
  76. 76.
    Chippaux JP, Stock RP, Massougbodji A. Antivenom safety and tolerance for the strategy of snake envenomation management. In: Gopalakrishnakone P, Inagaki H, Mukherjee AK, Rahmy TR, Vogel CW, editors. Snake venom toxinology. Dordrecht: Springer; 2015. p. 1–16.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.UMR MERIT, Institut de Recherche pour le DéveloppementCotonouBenin
  2. 2.Sorbonne Paris Cité, Faculté de PharmacieUniversité Paris DescartesParisFrance
  3. 3.Toxinology DepartmentWomen’s and Children’s HospitalNorth AdelaideAustralia
  4. 4.Infectious and Tropical Diseases Unit, College of Health SciencesBayero UniversityKanoNigeria

Personalised recommendations