Beta Receptor Antagonists

  • Michael Levine
  • Jeffrey Brent
Living reference work entry

Latest version View entry history


Beta receptor antagonists, or β-blockers, are used therapeutically for numerous conditions, including the long-term management of congestive heart failure, hypertension, migraine prophylaxis, and glaucoma. They can also be used for treatment of various movement disorders, social phobias, hyperthyroidism, and acute management of tachydysrhythmias. Toxicity from β-receptor antagonists is one of the most commonly encountered cardiac medications toxicologists encounter [1].


  1. 1.
    Rhyee SH, Farrugia L, Weigand T, et al. The toxicology investigators consortium case registry – the 2013 experience. J Med Toxicol. 2014;10:342–59.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Korte JM, Kaila T, Saari KM. Systemic bioavailability and cardiopulmonary effects of 0.5% timolol eyedrops. Graefes Arch Clin Exp Opthalmol. 2002;240:430–5.CrossRefGoogle Scholar
  3. 3.
    Fraunfelder FT, Meyer SM. Systemic reactions to ophthalmic drug preparations. Med Toxicol Adverse Drug Exp. 1987;2:287–93.PubMedGoogle Scholar
  4. 4.
    Fraunfelder FT. Ocular beta-blockers and systemic effects. Arch Intern Med. 1986;146:1073–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Meyer UA. The molecular basis of genetic polymorphisms of drug metabolism. J Pharm Pharmacol. 1994;46 Suppl 1:409–15.PubMedGoogle Scholar
  6. 6.
    Gonzalez FJ, Idle JR. Pharmacogenetic phenotyping and genotyping. Present status and future potential. Clin Pharmacokinet. 1994;26:59–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Schnabel P, Maack C, Mies F, et al. Binding properties of beta-blockers at recombinant beta1-, beta2-, and beta3 adrenoreceptors. J Cardiovasc Pharmacol. 2000;36:466–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Wallukat G. The beta-adrenergic receptors. Herz. 2002;27:683–90.CrossRefPubMedGoogle Scholar
  9. 9.
    Gong H, Sun H, Koch WJ, et al. Specific beta(2)AR blocker ICI 118,551 actively decreases contraction through a G(i)-coupled form of the beta(2)AR in myocytes from failing human heart. Circulation. 2002;105:2497–503.CrossRefPubMedGoogle Scholar
  10. 10.
    Zaugg M, Schaub MC, Pasch T, et al. Modulation of beta-adrenergic receptor subtype activities in perioperative medicine: mechanisms and sites of action. Br J Anaesth. 2002;88:101–23.CrossRefPubMedGoogle Scholar
  11. 11.
    Varghese P, Harrison RW, Lofthouse RA, et al. beta(3)-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J Clin Invest. 2000;106:697–703.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    White M, Roden R, Minobe W, et al. Age-related changes in beta-adrenergic neuroeffector systems in the human heart. Circulation. 1994;90:1225–38.CrossRefPubMedGoogle Scholar
  13. 13.
    Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982;307:205–11.CrossRefPubMedGoogle Scholar
  14. 14.
    Kearns II W, Ransom M, Tomaszewski C, et al. The effects of extracellular ions on beta-blocker cardiotoxicity. Toxicol Appl Pharmacol. 1996;137:1–7.CrossRefGoogle Scholar
  15. 15.
    Baliga BG. Beta blocker poisoning: prolongation of Q-T interval and inversion of T wave. J Indian Med Assoc. 1985;83:165.PubMedGoogle Scholar
  16. 16.
    Beattie JM. Sotalol induced torsade de pointes. Scott Med J. 1984;29:240–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Totterman KJ, Turto H, Pellinen T. Overdrive pacing as treatment of sotalol-induced ventricular tachyarrhythmias (torsades de pointes). Acta Med Scand. 1982;668(Suppl):28–33.Google Scholar
  18. 18.
    Hasjhimoto K, Satoh H, Imai S. Effects of rotenone and antiarrhythmic drugs on Na and Ca channels of guinea pig atrial muscle. J Cardiovasc Pharmacol. 1979;1:561–70.CrossRefGoogle Scholar
  19. 19.
    Nies AS, Shand DG. Clinical pharmacology of propranolol. Circulation. 1975;52:6–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Hantson P, Beauloye C. Myocardial metabolism in toxin-induced heart failure and therapeutic implications. Clin Toxicol. 2012;50:166–71.CrossRefGoogle Scholar
  21. 21.
    Bravo EL. Metabolic factors and sympathetic nervous system. Am J Hypertens. 1989;2(12 Pt 2):339S–44.CrossRefPubMedGoogle Scholar
  22. 22.
    Masters TN, Glaviano VV. Effects of D-L-propranolol on myocardial free fatty acid and carbohydrate metabolism. J Pharmacol Exp Ther. 1969;167:187–93.PubMedGoogle Scholar
  23. 23.
    Mowry JB, Spyker DA, Cantilena JRLR, et al. 2012 Annual report of the American Association of Poison Control Centers’ national Poison Data System (NPDS): 30th annual report. Clin Toxicol. 2013;51:949–1229.CrossRefGoogle Scholar
  24. 24.
    Assimes TL, Malcolm I. Torsade de pointes with sotalol overdose treated successfully with lidocaine. Can J Cardiol. 1998;14:753–6.PubMedGoogle Scholar
  25. 25.
    Reith DM, Dawson AH, Epid D, et al. Relative toxicity of beta blockers in overdose. J Toxicol Clin Toxicol. 1996;34:273–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Critchley JA, Ungar A. the management of acute poisoning due to beta-adrenoceptor antagonists. Med Toxicol Adverse Drug Exp. 1989;4:32–45.PubMedGoogle Scholar
  27. 27.
    Love JN, Elshami J. Cardiovascular depression resulting from atenolol intoxication. Eur J Emerg Med. 2002;107:1139–43.Google Scholar
  28. 28.
    Kulling P, Eleborg L, Persson H. β-adrenoceptor blocker intoxication: epidemiological data: prenalterol as an alternative in the treatment of cardiac dysfunction. Hum Toxicol. 1983;2:175–81.CrossRefPubMedGoogle Scholar
  29. 29.
    Van Buskirk EM. Adverse reactions from timolol administration. Ophthalmology. 1980;87:447–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Linkewich JA, Herling IM. Bradycardia and congestive heart failure associated with ocular timolol maleate. Am J Hosp Pharm. 1981;38:699–701.PubMedGoogle Scholar
  31. 31.
    Kiryazov K, Stefova M, Lotova V. Can ophthalmic drops cause central nervous system depression and cardiogenic shock in infants? Pediatr Emerg Care. 2013;29:1207–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Nieminen T, Lehtimaki T, Maenpaa J, et al. Ophthalmic timolol: plasma concentration and systemic cardiopulmonary effects. Scand J Clin Lab Invest. 2007;67:237–45.CrossRefPubMedGoogle Scholar
  33. 33.
    Epperla N, Brilliant MH, Vidaillet H. Topical timolol for treatment of epistaxis in hereditary haemorrhagic telangiectasia associated with bradycardia: a new look at CYP2D6 metabolizing variants. BMJ Case Rep. 2014;2014Google Scholar
  34. 34.
    Jang DH, Spyres MB, Fox L, et al. Toxin-induced cardiovascular failure. Emerg Med Clin North Am. 2014;32:79–102.CrossRefPubMedGoogle Scholar
  35. 35.
    Du Souich P, Caille G, Larochelle P. Enhancement of nadolol elimination by activated charcoal and antibiotics. Clin Pharmacol Ther. 1983;33:585–90.CrossRefPubMedGoogle Scholar
  36. 36.
    Thanacoody R, Caravati EM, Troutman B, et al. Position paper update: whole bowel irrigation for gastrointestinal decontamination of overdose patients. Clin Toxicol. 2015;53:5–12.CrossRefGoogle Scholar
  37. 37.
    Boyd R, Ghosh A. Towards evidence based emergency medicine: best BETs from the Manchester Royal Infirmary. Glucagon for the treatment of symptomatic beta blocker overdose. Emerg Med J. 2003;20:266–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bailey B. Glucagon in beta-blocker and calcium channel blocker overdose: a systematic review. J Toxicol Clin Toxicol. 2003;41:595–602.CrossRefPubMedGoogle Scholar
  39. 39.
    Brooks DE, Levine M, O’Connor AD, et al. Toxicology in the ICU: part 2: specific toxins. Chest. 2011;140:1072–85.CrossRefPubMedGoogle Scholar
  40. 40.
    Kearns 2nd W. Management of beta adrenergic blocker and calcium channel antagonist toxicity. Emerg Med Clin North Am. 2007;25:309–31.CrossRefGoogle Scholar
  41. 41.
    Newton CR, Delgado JH, Gomez HF. Calcium and beta receptor antagonist overdose: a review and update of pharmacological principles and management. Semin Respir Crit Care Med. 2002;23:19–25.CrossRefPubMedGoogle Scholar
  42. 42.
    DeWitt CR, Waksman JC. Pharmacology, pathophysiology and management of calcium channel blocker and beta-blocker toxicity. Toxicol Rev. 2004;23:223–38.CrossRefPubMedGoogle Scholar
  43. 43.
    Shepherd G. Treatment of poisoning caused by beta adrenergic and calcium channel blockers. Am J Health Syst Pharm. 2006;63:1828–35.CrossRefPubMedGoogle Scholar
  44. 44.
    Lane AS, Woodward AC, Goldman MR, et al. Massive propranolol overdose poorly responsive to pharmacologic therapy: use of the intra-aortic balloon pump. Ann Emerg Med. 1987;16:1381–3.CrossRefPubMedGoogle Scholar
  45. 45.
    McVey FK, Corke CF. Extacorporeal circulation in the management of massive propranolol overdose. Anaesthesia. 1991;46:744–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Rooney M, Massey KL, Jamali F, et al. Acebutolol overdose treated with hemodialysis and extracorporeal membrane oxygenation. J Clin Pharmacol. 1996;36:760–3.CrossRefPubMedGoogle Scholar
  47. 47.
    Sato S, Tsuji MH, Okubo H, et al. Milrinone versus glucagon: comparative hemodynamic effects in canine propranolol poisoning. J Toxicol Clin Toxicol. 1994;32:277–89.CrossRefPubMedGoogle Scholar
  48. 48.
    Love JN, Leasure JA, Mundt DJ, et al. A comparison of amrinone and glucagon therapy for cardiovascular depression associated with propranolol toxicity in a canine model. J Toxicol Clin Toxicol. 1992;30:399–412.CrossRefPubMedGoogle Scholar
  49. 49.
    Love JN, Leasure JA, Mundt DJ. A comparison of combined amrinone and glucagon therapy to glucagon alone for cardiovascular depression associated with propranolol toxicity in a canine model. Am J Emerg Med. 1993;11:360–3.CrossRefPubMedGoogle Scholar
  50. 50.
    Sato S, Tsuji MH, Okubo N, et al. Combined use of glucagon and milrinone may not be preferable for severe propranolol poisoning in the canine model. J Toxicol Clin Toxicol. 1995;33:337–42.CrossRefPubMedGoogle Scholar
  51. 51.
    Weinberg GL, Ripper R, Murphy P, et al. Lipid infusion accelerates removal of bupivacaine and recovery from bupivacaine toxicity in the isolated rat heart. Reg Anesth Pain Med. 2006;31:296–303.CrossRefPubMedGoogle Scholar
  52. 52.
    Kuo I, Akpa BS. Validity of the lipid sink as a mechanism for the reversal of local anesthetic systemic toxicity: a physiologically based pharmacokinetic model study. Anesthesiology. 2013;118:1350–61.CrossRefPubMedGoogle Scholar
  53. 53.
    Harvey MG, Cave GR. Intralipid infusion ameliorates propranolol-induced hypotension in rabbits. J Med Toxicol. 2008;4(2):71–6.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Macala K, Tabrizchi R. The effect of fat emulsion on hemodynamics following treatment with propranolol and clonidine in anesthetized rats. Acad Emerg Med. 2014;21(11):1220–5.CrossRefPubMedGoogle Scholar
  55. 55.
    Cave G, Harvey M. Lipid emulsion may augment early blood pressure recovery in a rabbit model of atenolol toxicity. J Med Toxicol. 2009;5(1):50–1.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Harvey M, Cave G, Lahner D, Desmet J, Prince G, Hopgood G. Insulin versus lipid emulsion in a rabbit model of severe propranolol toxicity: a pilot study. Crit Care Res Pract. 2011;2011:361737.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Harchelroad FP, Palma A. Efficacy and safety of intravenous lipid therapy in a B-blocker overdose. Clin Toxicol. 2008;46(7):620.Google Scholar
  58. 58.
    Meehan TJ, Gummin DD, Kostic MA, Cattapan SE, Waghray R, Bryant SM. Beta blocker toxicity successfully treated with intravenous fat emulsion: a case series. Clin Toxicol. 2009;47(7):735.Google Scholar
  59. 59.
    Orthober R, Huecker M, Sandlin D, Severy J, Tilney PVR. Polypharmacy overdose in a 36-year-old man. Air Med J. 2013;32(1):10–3.CrossRefPubMedGoogle Scholar
  60. 60.
    Escajeda JT, Katz KD, Rittenberger JC (2015) Successful treatment of metoprolol-induced cardiac arrest with high-dose insulin, lipid emulsion, and extracorporeal membrane oxygenation. Am J Emerg Med. 2015; 33:1111. e1–4Google Scholar
  61. 61.
    Cole JB, Stellpflug SJ, Engebretsen KM. Asystole immediately following intravenous fat emulsion for overdose. J Med Toxicol. 2014;10(3):307–10.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Jovic-Stosic J, Gligic B, Putic V, Brajkovic G, Spasic R. Severe propranolol and ethanol overdose with wide complex tachycardia treated with intravenous lipid emulsion: a case report. Clin Toxicol. 2011;49(5):426–30.CrossRefGoogle Scholar
  63. 63.
    American College of Medical T. ACMT position statement: interim guidance for the use of lipid resuscitation therapy. J Med Toxicol. 2011;7(1):81–2.CrossRefGoogle Scholar
  64. 64.
    Holger JS, Engebretsen KM, Obetz CL, et al. A comparison of vasopressin and glucagon in beta-blocker induced toxicity. Clin Toxicol. 2006;44:45–51.CrossRefGoogle Scholar
  65. 65.
    Woodward C, Pourmand A, Mazer-Amirshahi M. High dose insulin therapy, an evidence based approach to beta blocker/calcium channel blocker toxicity. Daru. 2014;22:36.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Reikeras O, Gunnes P, Sorlie D, et al. Haemodynamic effects of low and high doses of insulin during beta receptor blockade in dogs. Clin Physiol. 1985;5:455–67.CrossRefPubMedGoogle Scholar
  67. 67.
    Holger JS, Stellpflug SJ, Cole JBB, et al. High-dose insulin: a consecutive case series in toxin-induced cardiogenic shock. Clin Toxicol. 2011;49:653–8.CrossRefGoogle Scholar
  68. 68.
    Engebretsen KM, Kaczmarek KM, Morgan J, et al. High-dose insulin therapy in beta-blocker and calcium channel blocker poisoning. Clin Toxicol. 2011;49:277–83.CrossRefGoogle Scholar
  69. 69.
    Stellpflug SJ, Harris CR, Engebretsen KM, et al. Intentional overdose with cardiac arrest treated with intravenous fat emulsion and high-dose insulin. Clin Toxicol. 2010;48:227–9.CrossRefGoogle Scholar
  70. 70.
    Page C, Hacket LP, Isbister GK. The use of high-dose insulin-glucose euglycemia in beta-blocker overdose: a case report. J Med Toxicol. 2009;5:139–43.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Love JN, Howell JM, Klein-Schwartz W, et al. Lack of toxicity from pediatric beta-blocker exposures. Hum Exp Toxicol. 2006;25:341–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Wax PM, Erdman AR, Chyka PA, et al. β-blocker ingestion: an evidence-based consensus guideline for out-of-hospital management. Clin Toxicol. 2005;43:131–46.CrossRefGoogle Scholar
  73. 73.
    Truitt CA, Brooks DE, Dommer P. Outcomes of unintentional beta-Blocker or calcium channel blocker overdoses: a retrospective review of poison center data. J Med Toxicol. 2012;8:135–9.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Cottrill CM, McAllister RG, Gettes L, et al. Propranolol therapy during pregnancy, labor and delivery: evidence for transplacentral drug transfer in impaired neonatal drug disposition. J Pediatr. 1977;91:812–4.CrossRefPubMedGoogle Scholar
  75. 75.
    Haraldsson A, Geven W. Severe adverse effects of maternal labetalol in a premature infant. Acta Paediatr Scand. 1989;78:956–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Habib A, McCarthy JS. Effects on the neonate of propranolol administered during pregnancy. J Pediatr. 1977;91:808–11.CrossRefPubMedGoogle Scholar
  77. 77.
    Tai YT, Lo CW, Chow WH, et al. Successful resuscitation and survival following massive overdose of metoprolol. Br J Clin Pract. 1990;44:746–7.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Emergency Medicine, Division of Medical ToxicologyUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Clinical Pharmacology and ToxicologyUniversity of ColoradoDenverUSA

Personalised recommendations