Abstract
The mushroom species Gyromitra (formerly Helvella) esculenta grows throughout the northern hemisphere including North America, Europe, and Asia. It is commonly found in coniferous and hardwood forests. The species fruits in early spring (later at higher elevations), often where snow has recently melted. Gyromitra. is a member of the fungus class Ascomycetes, meaning that it has no gills, tubes, or spines but develops its spores in saclike structures called asci. The mushrooms are moderately sized measuring 3–10 cm across, are brown to reddish brown, and have wrinkled caps, with a brainlike or saddle shape (Fig. 1). The stalk is white to brown in color, thick, and hollow, usually with a single chamber.
Keywords
- Gyromitra
- False morel
- Gyromitrin
- Monomethylhydrazine
- Gyromitra esculenta
- N-methyl-N-formylhydrazine
- Pyridoxine
- Gamma-aminobutyric acid
- GABA
- Pyridoxal phosphate
- Vitamin B6
- Glutamic acid decarboxylase
- Glutamate
- Seizures
- Rapid acetylators
- Oxidative stress
- Methemoglobin
- Diamine oxidase
- Histaminase
- Folate
- Dihydrofolate reductase
- Folinic acid
- Leucovorin
- Methylene blue
- Thioctic acid
- α-lipoic acid
- N-acetylcysteine
- Benzodiazepines
- Phenobarbital
- Propofol
- Phenytoin
- Vitamin K
- Glucose-6-phosphate dehydrogenase deficiency
This is a preview of subscription content, access via your institution.
References
Graeme KA. Mycetism: a review of the recent literature. J Med Toxicol. 2014;10:173–89.
Benjamin DR. Mushrooms, poisons and panaceas. New York: WH Freeman; 1995.
Koppel C. Clinical symptomatology and management of mushroom poisoning. Toxicon. 1993;31:1513–40.
Spoerke DG, Rumack BH, editors. Handbook of mushroom poisoning, diagnosis and treatment. Ann Arbor: CRC Press; 1994.
McKnight KH, McKnight VB. Peterson field guide: mushrooms. Boston: Houghton Mifflin; 1987.
Toth B. Carcinogenic fungal hydrazines. In Vivo. 1991;5:95–100.
Læssøe T, Lincoff G. Mushrooms. New York: DK Publishing; 1998.
Mowry JB, Spyker DA, Cantilena LR, et al. 2013 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 31st annual report. Clin Tox. 2014;52:1032–283.
Buck RW. Acute encephalopathy in children after eating wild mushrooms. In: Rumack B, Salzman E, editors. Mushrooms poisoning: diagnosis and treatment. West Palm Beach: CRC Press; 1978. p. 191–7.
Franke S, Freimuth U, List PH. Uber die giftigkeit der fruhjahrslorchel, Gyromitra (Helvella) esculenta. Arch Toxikol. 1967;22:293–332.
Pyaysalo H, Niskanen A. On the occurrence of N-methyl-N-formylhydrazones in fresh and processed false morel Gyromitra esculenta. J Agric Food Chem. 1977;25:644–7.
Schmidon-Meszaros J. Gyromitrin in trockenloercheln (Gyromitra esculenta sicc.). Mitt Gebiete Lebensm Hyg. 1974;65:453–65.
Bohm RV, Kulz E. Uber den giftigen bestandtheil der essbaren morchel (Helvella esculenta), naunyn-schmeidebergs. Arch Exp Pathol Pharmakol. 1885;19:403–14.
List PH, Luft P. Gyromitrin, das gift des fruhjashrslorchel. Arch Pharm. 1968;301:294–305.
Nagel D, Wallcave L, Toth B, Kupper R. Formation of methylhydrazine from acetaldehyde N-methyl-N-formylhydrazone, a component of Gyromitra esculenta. Cancer Res. 1997;37(9):3459–60.
Braun R, Greeff U, Netter KJ. Indications for nitrosamide formation from the mushroom poison gyromitrin by rat liver microsomes. Xenobiotica. 1980;10:557–64.
Toth B, Gannett P. Gyromitra esculenta mushroom: a comparative assessment of its carcinogenic potency. In Vivo. 1992;8:999–1002.
Biehl JP, Vilter RW. Effects of isoniazid on pyridoxine metabolism. JAMA. 1954;165:1549–52.
Evans DAP, Manley KA, McKusick VA. Genetic control of isoniazid metabolism in man. Br Med J. 1960;2:485–91.
Hein DW, Weber WW. Relationship between N-acetylator phenotype and susceptibility towards hydrazine-induced lethal central nervous system toxicity in the rabbit. J Pharmacol Exp Ther. 1984;228:588–92.
Coulet M, Guillot J. Poisoning by Gyromitra: a possible mechanism. Med Hypothesis. 1982;8:325–34.
Mitchell JR, Thorgeirsson UP, Black M, et al. Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydrazine metabolites. Clin Pharmacol Ther. 1975;18:70–9.
Mitchell JR, Jollow DJ. Biochemical basis for drug-induced hepatotoxicity. Isr J Med Sci. 1974;10:312–8.
Peters JH, Miller KS, Brown P. Studies on the metabolic basis for the genetically determined capacities for isoniazid inactivation in man. J Pharmacol Exp Ther. 1965;150:298–304.
Bieganski T, Braun R, Kuschel J. N-methyl-N-formylhydrazine: a toxic and mutagenic inhibitor of the intestinal diamine oxidase. Agents Actions. 1984;14:351–5.
Toth B. Hydrazine, methylhydrazine and methylhydrazine sulfate carcinogenesis in Swiss mice: failure of ammonium hydroxide to interfere in the development of tumors. Int J Cancer. 1972;9:109–18.
Toth B, Nagel D. Tumors induced in mice by N-methyl-N-formylhydrazine of the false morel Gyromitra esculenta. J Natl Cancer Inst. 1978;60:201–4.
Toth B, Patil K, Erickson J, Kupper R. False morel mushroom Gyromitra esculenta toxin: N-methyl-N-formylhydrazine carcinogenesis in mice. Mycopathologia. 1979;68:121–8.
Toth B, Patil K. The tumorigenic effect of low dose levels of N-methyl-N-formylhydrazine in mice. Neoplasma. 1980;27:25–31.
Toth B, Smith J, Patil K. Cancer induction in mice with acetaldehyde methylformylhydrazone of the false morel mushroom. J Natl Cancer Inst. 1981;67:881–7.
Toth B, Patil K. Tumorigenicity of minute dose levels of N-methyl-N-formylhydrazine of Gyromitra esculenta. Mycopathologia. 1982;78:11–6.
Toth B, Raha CR. Carcinogenesis by pentanal methylformylhydrazone of Gyromitra esculenta. Mycopathologia. 1987;98:83–9.
Toth B, Gannett P. Carcinogenesis study in mice by 3-methylbutanal methylformylhydrazone of Gyromitra esculenta. In Vivo. 1990;4:283–8.
Toth B, Taylor J, Gannett P. Tumor induction with hexanal methylformylhydrazone of Gyromitra esculenta. Mycopathologia. 1991;115:65–71.
Toth B, Patil K, Pyysalo H, et al. Cancer induction in mice by feeding the raw false morel mushroom Gyromitra esculenta. Cancer Res. 1992;52:2279–84.
Hawks A, Magee PN. The alcylation of nucleic acids of rats and mouse in vivo by the carcinogen 1,2-dimethylhydrazine. Br J Cancer. 1974;30:440–7.
Wright VA, Niskanen A, Pyysalo H. The toxicities and mutagenic properties of ethylidene gyromitrin and N-methylhydrazine using Escherichia coli as a test organism. Mutat Res. 1977;56:105–10.
Toth B, Shimizu H. Methylhydrazine tumorigenesis in Syrian golden hamsters and the morphology of malignant histiocytomas. Cancer Res. 1973;33:2744–53.
Toth B, Patil K. Carcinogenic effects in the Syrian golden hamster of N-methyl-N-formylhydrazine of the false morel mushroom Gyromitra esculenta. J Cancer Res Clin Oncol. 1979;93:109–21.
Toth B. Hepatocarcinogenesis by hydrazine mycotoxins of edible mushrooms. J Toxicol Environ Health. 1979;5:193–202.
Greenhouse G. Evaluation of the teratogenic effects of hydrazine, methylhydrazine, and dimethylhydrazine on embryos of Xenopus laevis, the South American clawed toad. Teratology. 1976;13:167–78.
Slanina P, Cekan E, Halen B, et al. Toxicological studies of the false morel (Gyromitra esculenta): embryotoxicity of monomethylhydrazine in the rat. Food Addit Contam. 1993;10:391–8.
Giusti GV, Carnevale A. A case of fatal poisoning by Gyromitra esculenta. Arch Toxicol. 1974;33:49–54.
Hendericks HC. Poisoning by false morels (Gyromitra esculenta). JAMA. 1940;114:1625.
Andary C, Privat G, Bourrier M-J. Variations of monomethylhydrazine content in Gyromitra esculenta. Mycologia. 1985;77:259–64.
Leathem AM, Dorran TJ. Poisoning due to raw gyromitra esculenta (false morels) west of the rockies. Can J Emerg Med. 2007;9(2):127–30.
von Wright AV, Niskanen A, Pyysalo H, Korpela H. The toxicity of some N-methyl-N-formylhydrazones from Gyromitra esculenta and related compounds in mouse and microbial tests. Toxicol Appl Pharmacol. 1978;45:428–34.
Braun R, Kremer J, Rau H. Renal functional response to the mushroom poison gyromitrin. Toxicology. 1979;13:187–96.
Arshadi M, Nilsson, Magnusson B. Gas-chromatography-mass spectrometry determination of the pentafluorobenzoyl derivative of methylhydrazine in false morel (gyromitra esculenta) as a monitor for the content of the toxin gyromitrin. J Chromatogr. 2006;1125:229–33.
Kirsh IR, Cohen HJ. Heinz body hemolytic anemia from the use of methylene blue in neonates. J Pediatr. 1980;96:276–8.
Mittman W. Zur klinik und therapie der lorchelvergiftungen (Gyromitra esculenta). Z Aerztl Forbild. 1968;67:710–1.
Dotsch J, Demirakca S, Kratz M, et al. Comparison of methylene blue, riboflavin, and n-acetylcysteine for the reduction of nitric-oxide induced methemoglobinemia. Crit Care Med. 2000;28(4):958–61.
Tanen DA, LoVecchio F, Curry SC. Failure of intravenous N-acetylcysteine to reduce methemoglobin produced by sodium nitrite in human volunteers: a randomized controlled trial. Ann Emerg Med. 2000;35:369–73.
von Wright A, Niskanen A, Pyysalo H. Amelioration of toxic effects of ethylidene gyromitrin (false morel poison) with pyridoxine chloride. J Food Safety. 1981;3:199–203.
Toth B, Erickson J. Reversal of the toxicity of hydrazine analogues by pyridoxine hydrochloride. Toxicology. 1977;7:31–6.
Biehl JP, Vilter RW. Effects of isoniazid on pyridoxine metabolism. JAMA. 1954;156:1549–52.
Wason S, Lacouture PG, Lovejoy Jr FH. Single high-dose pyridoxine treatment for isoniazid overdose. JAMA. 1981;246:1102–4.
Cohen M, Bendich A. Safety of pyridoxine-a review of human and animal studies. Toxicol Lett. 1986;34:129–39.
Schaumburg H, Kaplan J, Windebank A, et al. Sensory neuropathy from pyridoxine abuse. N Engl J Med. 1983;309:445–8.
Visweswaran P, Guntupalli J. Rhabdomyolysis. Crit Care Clin. 1999;15:415–28.
Saad SF, el Masry AM, Scott PM. Influence of certain anticonvulsants on the concentration of GABA in the cerebral hemispheres of mice. Eur J Pharmacol. 1972;76:386–92.
Hung A, Singh S, Tait RC. A prospective randomized study to determine the optimal dose of intravenous vitamin K in reversal of over-warfarinization. Br J Haematol. 2000;109:537–9.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition
Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition
-
I
Evidence obtained from at least one properly randomized controlled trial.
-
II-1
Evidence obtained from well-designed controlled trials without randomization.
-
II-2
Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.
-
II-3
Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.
-
III
Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this entry
Cite this entry
Brooks, D.E., Graeme, K.A. (2016). Gyromitra Mushrooms. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_49-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-20790-2_49-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Online ISBN: 978-3-319-20790-2
eBook Packages: Springer Reference Biomedicine & Life SciencesReference Module Biomedical and Life Sciences