Bioengineering of Value-Added Wood Using the White Rot Fungus Physisporinus vitreus

  • Francis Willis Mathew Robert Schwarze
  • Mark Schubert
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Over the past 10 years, we have intensively investigated the potential of the white-rot fungus Physisporinus vitreus for engineering value-added wood products. Because of its exceptional wood degradation pattern, i.e., selective lignification without significant wood strength losses and a preferential degradation of bordered pit membranes, it is possible to use this fungus under controlled conditions to improve the acoustic properties of resonance wood (i.e., “mycowood”) as well as to enhance the uptake of preservatives and wood modification substances in refractory wood species (e.g., Norway spruce), a process known as “bioincising.” This chapter summarizes the research that we have performed with P. vitreus and critically discusses the challenges encountered during the development of two distinct processes for engineering value-added wood products. Finally, we peep into the future potential of the bioincising and mycowood processes for additional applications in the forest and wood industry.


Bioincising Mycowood Wood permeability Acoustic properties Resonance wood Value-added wood products 



We wish to express our gratitude to the CTI (Swiss Innovation Promotion Agency, grant No. 8593.1) and Swiss National 675 Science Foundation (grant No. 205321-121701) for their sustained funding of this work. We would also like to acknowledge the financial support of the Walter Fischli Foundation.


  1. 1.
    Majcherczyk A, Hüttermann A (1988) Bioremediation of wood treated with preservative using white-rot fungi. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, LondonGoogle Scholar
  2. 2.
    Messner K, Fackler K, Lamaipis P, Gindl W, Srebotnik E, Watanabe T (2002) Biotechnological wood modification. In: Proceedings of the international symposium on wood-based materials, part 2. Vienna University, pp 45–49Google Scholar
  3. 3.
    Schwarze FWMR (2008) Diagnosis and prognosis of the development of wood decay in urban trees. ENSPEC, MelbourneGoogle Scholar
  4. 4.
    Mai C, Kües U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63:477–494CrossRefGoogle Scholar
  5. 5.
    Shuen SK, Buswell JA (1992) Effect of lignin derived phenols and their methylated derivatives on the growth of Lentinus spp. Lett Appl Microbiol 15:12–14CrossRefGoogle Scholar
  6. 6.
    Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333CrossRefGoogle Scholar
  7. 7.
    Samson J, Langlois É, Lei J, Piché Y, Chênevert R (1998) Removal of 2,4,6-trinitrotoluene and 2,4-dinitrotoluene by fungi (Ceratocystis coerulescens, Lentinus lepideus and Trichoderma harzianum). Biotechnol Lett 20:355–358CrossRefGoogle Scholar
  8. 8.
    Richter DL, Warner JI, Stephens AL (2003) A comparison of mycorrhizal and saprotrophic fungus tolerance to creocote. Int Biodeterior Biodegrad 51:195–202CrossRefGoogle Scholar
  9. 9.
    Deflorio G, Hein S, Fink S, Spiecker H, Schwarze FWMR (2005) The application of wood decay fungi to enhance annual ring detection in three diffuse-porous hardwoods. Dendrochronologia 22:123–130CrossRefGoogle Scholar
  10. 10.
    Schwarze FWMR (2007) Wood decay under the microscope. Fungal Biol Rev 21:133–170CrossRefGoogle Scholar
  11. 11.
    Unbehaun H, Dittler B, Kuhne G, Wagenfuhr A (2000) Investigation into the biotechnological modification of wood and its application in the wood-based material industry. Acta Biotechnol 20:305–312CrossRefGoogle Scholar
  12. 12.
    Hernandez R, Winandy JE (2005) Evaluation of a reduced section modulus model for determining the effects of incising on bending strength and stiffness of structural lumber. Forest Prod J 55:57–65Google Scholar
  13. 13.
    Lehringer C, Arnold M, Richter K, Schubert M, Schwarze FWMR, Militz H (2009) Bioincised wood as substrate for surface modifications. In: Englund F, Hill CAS, Militz H, Segerholm BK (eds) Proceedings of the European conference on wood modification, Stockholm, pp 197–200Google Scholar
  14. 14.
    Schwarze FWMR, Landmesser H (2000) Preferential degradation of pit membranes within tracheids by the basidiomycete Physisporinus vitreus. Holzforschung 54:461–462CrossRefGoogle Scholar
  15. 15.
    Schwarze FWMR, Landmesser H, Zgraggen B, Heeb M (2006) Permeability changes in heartwood of Picea abies and Abies alba induced by incubation with Physisporinus vitreus. Holzforschung 60:450–454CrossRefGoogle Scholar
  16. 16.
    Lehringer C, Koch G, Adusumalli R-B, Mook WM, Richter K, Militz H (2011) Effect of Physisporinus vitreus on wood properties of Norway spruce. Part 1: aspects of delignification and surface hardness. Holzforschung 65:711–719Google Scholar
  17. 17.
    Brändström J (2001) Micro- and ultrastructural aspects of Norway spruce tracheids: a review. Int Assoc Wood Anat 22:333–353Google Scholar
  18. 18.
    Harada H, Coté WA (1985) Structure of wood. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, OrlandoGoogle Scholar
  19. 19.
    Wardrop AB (1964) The structure and formation of the cell wall in xylem. Academic, New YorkCrossRefGoogle Scholar
  20. 20.
    Frey-Wyssling A (1968) The ultrastructure of wood. Wood Sci Technol 2:73–83CrossRefGoogle Scholar
  21. 21.
    Kollmann F (1968) Technologie des Holzes und der Holzwerkstoffe. Springer, BerlinGoogle Scholar
  22. 22.
    Fengel D (1970) The ultrastructure of cellulose from wood. Wood Sci Technol 4:15–35CrossRefGoogle Scholar
  23. 23.
    Green F, Kuster TA, Highley TL (1996) Pectin degradation during colonisation of wood by brown rot fungi. Res Devel Plant Pathol 1:83–93Google Scholar
  24. 24.
    Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. De Gruyter, BerlinGoogle Scholar
  25. 25.
    Grosser D (1977) Die Hölzer Mitteleuropas. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  26. 26.
    Bavendamm W (1928) Über das Vorkommen und den Nachweis von Oxydasen bei holzzerstörenden Pilzen. Zeitschrift für Pflanzen Krankheiten 38:257–276Google Scholar
  27. 27.
    Etheridge DG (1957) Differentiation of white- and brown rot fungi by an oxidase reaction. Nature 179:921–922CrossRefGoogle Scholar
  28. 28.
    Nobles MK (1958) A rapid test for extracelluar oxidase in cultures of wood-inhabiting hymenomycetes. Can J Bot 36:91–99CrossRefGoogle Scholar
  29. 29.
    Käärik A (1965) The identification of the mycelia of wood decay fungi by their oxidation reactions with phenolic compounds. Studia Forestalia Suecica, pp 31–80Google Scholar
  30. 30.
    Stalpers JA (1978) Identification of wood inhabiting Aphyllophorales in pure culture. Centraalbureau voor Schimmelcultures, Baarn. Stud Mycol 16:1–248Google Scholar
  31. 31.
    Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, ChichesterGoogle Scholar
  32. 32.
    Savory JG (1954) Breakdown of timber by ascomycetes and fungi imperfecti. Ann Appl Biol 41:336–347CrossRefGoogle Scholar
  33. 33.
    Bailey IW, Vestal MR (1937) The significance of certain wood destroying fungi in the study of the enzymatic hydrolysis of cellulose. J Arnold Arbor 18:196–205Google Scholar
  34. 34.
    Tamblyn N (1937) Decay of timber with special reference to Jarrah. Aust For 2:6–13CrossRefGoogle Scholar
  35. 35.
    Barghoon ES, Linder DH (1944) Marine fungi: their taxonomy and biology. Farlowia 1:395–467Google Scholar
  36. 36.
    Nilsson T, Daniel G, Kirk K, Obst JR (1989) Chemistry and microscopy of wood decay by some higher Ascomycetes. Holzforschung 43:11–18CrossRefGoogle Scholar
  37. 37.
    Blanchette RA, Nilsson T, Daniel G, Abad A (1990) Biological degradation of wood. In: Rowell RM, Barbour RJ (eds) Archaeological wood: properties, chemistry and preservation. American Chemical Society, Washington, pp 141–174Google Scholar
  38. 38.
    Anagnost SE (1998) Light microscopic diagnosis of wood decay. Int Assoc Wood Anat J 19:141–167Google Scholar
  39. 39.
    Schwarze FWMR, Engels J, Mattheck C (2004) Fungal strategies of wood decay in trees. Springer, HeidelbergGoogle Scholar
  40. 40.
    Eaton R (2000) A breakthrough for wood decay fungi. New Phytol 146:3–4CrossRefGoogle Scholar
  41. 41.
    Green F, Clausen CA (1999) Production of polygalacturonase and increase of longitudinal gas permeability in southern pine by brown-rot and white-rot fungi. Holzforschung 53:563–568CrossRefGoogle Scholar
  42. 42.
    Schwarze FWMR, Fink S (1998) Host and cell type affect the mode of degradation by Meripilus giganteus. New Phytol 139:721–731CrossRefGoogle Scholar
  43. 43.
    Nicholas DD, Thomas RJ (1968) The influence of enzymes on the structure and permeability of loblolly pine. Proc Am Wood Preserv Assoc 64:70–76Google Scholar
  44. 44.
    Bauch J, Liese W, Berndt H (1970) Biological investigations for the improvement of the permeability of softwoods. Holzforschung 24:199–205CrossRefGoogle Scholar
  45. 45.
    Johnson BR (1979) Permeability changes induced in three western conifers by selective bacterial inoculation. Wood Fiber 11:10–21Google Scholar
  46. 46.
    Sharma M, Kumar S (1979) Degradation of wood pectin by microorganisms. Int J Wood Preserv 1:87–90Google Scholar
  47. 47.
    Tschernitz JL (1973) Enzyme mixture improves creosote treatment of kiln-dried Rockey Mountain Douglas-fir. For Prod J 23:30–38Google Scholar
  48. 48.
    Militz H (1993) Der Einfluss enzymatischer Behandlungen auf die Tränkbarkeit kleiner Fichtenproben. Holz Roh Werkst 51:135–142CrossRefGoogle Scholar
  49. 49.
    Militz H (1993) Der Einfluss enzymatischer Behandlungen von Fichtenrund- und Schnittholz zur Verbesserung der Tränkbarkeit. Holz Roh Werkst 51:339–346CrossRefGoogle Scholar
  50. 50.
    Ihssen J, Schubert M, Schwarze FWMR, Thöny-Meyer L (2011) Efficient production of Al(OH)3-immobilized laccase with a Heterobasidion annosum strain selected by microplate screening. J Appl Microbiol 110:924–934CrossRefGoogle Scholar
  51. 51.
    Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226CrossRefGoogle Scholar
  52. 52.
    Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150Google Scholar
  53. 53.
    Baldrian P (2006) Fungal laccases: occurrence and properties. FEMS Microbiol Rev 30:215–242CrossRefGoogle Scholar
  54. 54.
    Kudanga T, Prasetyo EN, Sipila J, Eberl A, Nyanhongo GS, Guebitz GM (2009) Coupling of aromatic amines onto syringylglycerol betaguaiacylether using Bacillus SF spore laccase: a model for functionalization of lignin-based materials. J Mol Catal B: Enzym 61:143–149CrossRefGoogle Scholar
  55. 55.
    Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705CrossRefGoogle Scholar
  56. 56.
    Geng X, Li K (2002) Degradation of non-phenolic lignin by the white-rot fungus Pycnoporus cinnabarius. Appl Microbiol Biotechnol 60:342–346CrossRefGoogle Scholar
  57. 57.
    Bourbonnais R, Paice MG (1990) Oxidation of nonphenolic substrates – an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102CrossRefGoogle Scholar
  58. 58.
    Camarero S, Ibarra D, Martinez MJ, Martinez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784CrossRefGoogle Scholar
  59. 59.
    Meyer V (2008) Genetic engineering of filamentous fungi: progress, obstacles and future trends. Biotechnol Adv 26:177–185CrossRefGoogle Scholar
  60. 60.
    Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195CrossRefGoogle Scholar
  61. 61.
    Schubert M, Stührk C, Fuhr MJ, Schwarze FWMR (2013) Agrobacterium-mediated transformation of the white-rot fungus Physisporinus vitreus. J Microbiol Methods 95:251–252CrossRefGoogle Scholar
  62. 62.
    Fuhr MJ, Stührk C, Münch B, Schwarze F, Schubert M (2012) Automated quantification of the impact of the wood-decay fungus Physisporinus vitreus on the cell wall structure of Norway spruce by tomographic microscopy. Wood Sci Technol 46:769–779CrossRefGoogle Scholar
  63. 63.
    Fuhr MJ, Schubert M, Schwarze FWMR, Herrmann HJ (2011) Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biol 115:919–932CrossRefGoogle Scholar
  64. 64.
    Fuhr MJ, Stührk C, Schubert M, Schwarze FWMR, Herrmann HJ (2012) Modelling the effect of environmental factors on the hyphal growth of the basidiomycete Physisporinus vitreus. J Basic Microbiol 52:523–530CrossRefGoogle Scholar
  65. 65.
    Van Acker J, Stevens M, Rijckaert V (1995) Highly virulent woodrotting basidiomycetes in cooling towers. In: International Research Group on Wood Preservation, IRG/WP/95-10125, GhentGoogle Scholar
  66. 66.
    Schmidt O, Liese W, Moreth U (1996) Decay of timber in a water cooling tower by the basidiomycete Physisporinus vitreus. Mater Org 30:161–177Google Scholar
  67. 67.
    Schmidt O, Schmitt U, Moreth U, Potsch T (1997) Wood decay by the white-rotting basidiomycete Physisporinus vitreus from a cooling tower. Holzforschung 51:193–200CrossRefGoogle Scholar
  68. 68.
    Schmidt O (2007) Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control. Mycol Prog 6:261–279CrossRefGoogle Scholar
  69. 69.
    Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108CrossRefGoogle Scholar
  70. 70.
    Topham TJ, McCormick MD (2000) A dendrochronological investigation of stringed instruments of the Cremonese School (1666–1757) including “The Messiah” violin attributed to Antonio Stradivari. J Archaeol Sci 27:183–192CrossRefGoogle Scholar
  71. 71.
    Burckle L, Grissino-Mayer HD (2003) Stradivaris, violins, tree rings, and the Maunder Minimum: a hypothesis. Dendrochronologia 21:41–45CrossRefGoogle Scholar
  72. 72.
    Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2252CrossRefGoogle Scholar
  73. 73.
    Barlow CY, Edwards PP, Millward GR, Raphael RA, Rubio DJ (1988) Wood treatment used in Cremonese instruments. Nature 332:313CrossRefGoogle Scholar
  74. 74.
    Schleske M (1998) On the acoustical properties of violin varnish. Catgut Acoust Soc J 3:15–24Google Scholar
  75. 75.
    Schleske M (2002) Empirical tools in contemporary violin making: part I. Analysis of design, materials, varnish and normal modes. Catgut Acoust Soc J 4:50–64Google Scholar
  76. 76.
    Wegst UGK (2006) Wood for sound. Am J Bot 93:1439–1448CrossRefGoogle Scholar
  77. 77.
    Schleske M (2002) Empirical tools in contemporary violin making: part II: psychoacoustic analysis and use of acoustical tools. Catgut Acoust Soc J 4:83–92Google Scholar
  78. 78.
    Spycher M, Schwarze FWMR, Steiger R (2008) Assessment of resonance wood quality by comparing its physical and histological properties. Wood Sci Technol 42:325–342CrossRefGoogle Scholar
  79. 79.
    Ono T, Norimoto M (1984) On physical criteria for the selection of wood for soundboards of musical instruments. Rheol Acta 23:652–656CrossRefGoogle Scholar
  80. 80.
    Yano H, Kajita H, Minato K (1994) Chemical treatment of wood for musical instruments. J Acoust Soc Am 96:3380–3391CrossRefGoogle Scholar
  81. 81.
    Meyer HG (1995) A practical approach to the choice of tone wood for the instruments of the violin family. Catgut Acoust Soc J 2:9–13Google Scholar
  82. 82.
    Nagyvary J, DiVerdi JA, Owen NL, Tolley HD (2006) Wood used by Stradivari and Guarneri. Nature 444:565CrossRefGoogle Scholar
  83. 83.
    Gug R (1991) Choosing resonance wood. Strad 102:60–64Google Scholar
  84. 84.
    Nagyvary J (1988) Chemistry of Stradivarius. Chem Eng News 66:24–31CrossRefGoogle Scholar
  85. 85.
    Wagenführ A, Pfriem A, Eichelberger K (2005) Der Einfluss einer thermischen Modifikation von Holz auf im Musikinstrumentenbau relevante Eigenschaften. Teil I: Spezielle Anatomische und Physikalische Eigenschaften. Holztechnologie 46:36–42Google Scholar
  86. 86.
    Wagenführ A, Pfriem A, Eichelberger K (2005) Der Einfluss einer thermischen Modifikation von Holz auf im Musikinstrumentenbau relevante Eigenschaften. Teil 2: Technologische Eigenschaften, Herstellung und Prüfung von Musikinstrumentenbauteilen. Holztechnologie 47:39–43Google Scholar
  87. 87.
    Schwarze FWMR (1995) Entwicklung und biomechanische Auswirkungen von holzzersetzenden Pilzen in lebenden Bäumen und in vitro. PhD thesis, Albert-Ludwigs-Universität Freiburg, GermanyGoogle Scholar
  88. 88.
    Schwarze FWMR, Spycher M, Fink S (2008) Superior wood for violins-wood decay fungi as a substitute for cold climate. New Phytol 179:1095–1104CrossRefGoogle Scholar
  89. 89.
    Bucur V (2006) Acoustics of wood, Springer Series in Wood Science. Springer, BerlinGoogle Scholar
  90. 90.
    Stoel BC, Borman TM, de Jongh R (2012) Wood densitometry in 17th and 18th century Dutch, German, Austrian and French violins, compared to classical Cremonese and modern violins. PLoS One 7:e46629CrossRefGoogle Scholar
  91. 91.
    Schubert M, Mourad S, Schwarze FWMR (2010) Radial basis function neural networks for modeling growth rates of the basidiomycetes Physisporinus vitreus and Neolentinus lepideus. Appl Microbiol Biotechnol 85:703–712CrossRefGoogle Scholar
  92. 92.
    Schubert M, Dengler V, Mourad S, Schwarze FWMR (2009) Determination of optimal growth parameters for the bioincising fungus Physisporinus vitreus by means of response surface methodology. J Basic Microbiol 106:1734–1742Google Scholar
  93. 93.
    Griffin DM (1977) Water potential and wood-decay fungi. Annu Rev Phytopathol 15:319–329CrossRefGoogle Scholar
  94. 94.
    Anagnost SE (2007) Wood in the built environment: conditions for mold and decay. In: Yang CS, Heinsohn P (eds) Sampling and analysis of indoor microorganisms. Wiley, Hoboken, pp 155–178CrossRefGoogle Scholar
  95. 95.
    Schubert M, Schwarze FWMR (2011) Evaluation of the interspecific competitive ability of the bioincising fungus Physisporinus vitreus. J Basic Microbiol 51:80–88CrossRefGoogle Scholar
  96. 96.
    Bruce A, Highley TL (1991) Control of growth of wood decay basidiomycetes by Trichoderma spp. and other potentially antagonistic fungi. For Prod J 41:63–67Google Scholar
  97. 97.
    Highley TL (1997) Control of wood decay by Trichoderma (Gliocladium) virens. I. Antagonistic properties. Mater Org 31:79–89Google Scholar
  98. 98.
    Highley TL, Padmanabha HSA, Howell CR (1997) Control of wood decay by Trichoderma (Gliocladium) virens. II: antibiosis. Mater Org 31:157–166Google Scholar
  99. 99.
    Schubert M, Mourad S, Fink S, Schwarze FWMR (2009) Ecophysiological responses of the biocontrol agent Trichoderma atroviride (T-15603.1) to combined environmental parameters. Biol Control 49:84–90CrossRefGoogle Scholar
  100. 100.
    Schubert M, Mourad S, Schwarze FWMR (2010) Statistical approach to determine the effect of combined environmental parameters on conidial development of Trichoderma atroviride (T-15603.1). J Basic Microbiol 50:570–580CrossRefGoogle Scholar
  101. 101.
    Lehringer C, Hillebrand K, Richter K, Arnold M, Schwarze FMWR, Militz H (2010) Anatomy of bioincised Norway spruce wood. Int Biodeterior Biodegrad 64:346–355CrossRefGoogle Scholar
  102. 102.
    Lehringer C (2011) Permeability improvement of Norway spruce wood with the white rot fungus Physisporinus vitreus. PhD thesis, Georg-August-University, GöttingenGoogle Scholar
  103. 103.
    Schubert M, Volkmer T, Lehringer C, Schwarze FWMR (2011) Resistance of bioincised wood treated with wood preservatives to blue-stain and wood-decay fungi. Int Biodeterior Biodegrad 65:108–115CrossRefGoogle Scholar
  104. 104.
    Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285CrossRefGoogle Scholar
  105. 105.
    Levi MP, Cowling EB (1969) Role of nitrogen in wood deterioration. VII: physiological adaptation of wood-destroying and other fungi to substrates deficient in nitrogen. Phytopathology 59:460–468Google Scholar
  106. 106.
    Reid ID (1983) Effects of nitrogen supplements on degradation of aspen wood lignin and carbohydrate components by Phanerochaete chrysosporium. Appl Environ Microbiol 45:830–837Google Scholar
  107. 107.
    Dill I, Kraepelin G (1986) Palo podrido: model for extensive delignification of wood by Ganoderma applanatum. Appl Environ Microbiol 52:1305–1312Google Scholar
  108. 108.
    Graddy K, Margolis P (2010) Fiddling with value: violins as an investment? Econ Inq 49:1083–1097CrossRefGoogle Scholar
  109. 109.
    Stührk C, Fuhr M, Schubert M, Schwarze FWMR (2010) Analyzing hyphal growth of the bioincising fungus Physisporinus vitreus with light-, confocal laser scanning- and synchrotron X-ray tomographic microscopy. In: International Group on Wood Preservation, IRG 1020438, BiarritzGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Francis Willis Mathew Robert Schwarze
    • 1
  • Mark Schubert
    • 1
  1. 1.Laboratory of Applied Wood Materials, Bio-engineered WoodEmpa Swiss Federal Laboratories for Materials Testing and ResearchSt. GallenSwitzerland

Personalised recommendations