Skip to main content

The Use of Electrochemical Techniques for the Characterization of the Corrosion Behavior of Sol–Gel-Coated Metals

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Deposition of sol–gel coatings is a promising method for corrosion protection of metal substrates. As an example, sol–gel coatings represent an alternative to the use of chromate conversion coatings for protection of aluminum alloys in the aerospace industry. In order to expand the use of sol–gel coatings, it is important to assess their corrosion behavior. The sol–gel coating should provide an efficient barrier against aggressive species limiting corrosion of the metal substrate. Moreover, the coating should offer the possibility to incorporate corrosion inhibitors in order to provide active behavior to the coating. The sol–gel coating should be well adherent to the base metal and should also promote the adhesion of organic primer and topcoat when the sol–gel coating is employed as a pretreatment of the substrate.

This chapter focuses on the use of electrochemical methods for the characterization of corrosion properties of thin sol–gel coatings. Barrier properties, effect of corrosion inhibitors incorporated in the sol–gel coatings, and adhesion promotion are targeted in this chapter providing selected examples taken from our scientific work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andreatta F, Aldighieri P, Paussa L, Di Maggio R, Rossi S, Fedrizzi L. Electrochemical behaviour of ZrO2 sol–gel pre-treatments on AA6060 aluminium alloy. Electrochim Acta. 2007;52(27 Special Issue):7545–55.

    Article  Google Scholar 

  • Andreatta F, Paussa L, Aldighieri P, Lanzutti A, Fedrizzi L. ZrO2 pre-treatments deposited with sol–gel technique on aluminium alloys. 17th International Corrosion Congress 2008: Corrosion Control in the Service of Society; 2008.

    Google Scholar 

  • Andreatta F, Paussa L, Aldighieri P, Lanzutti A, Raps D, Fedrizzi L. Corrosion behaviour of sol–gel treated and painted AA2024 aluminium alloy. Prog Org Coat. 2010a;69(2):133–42.

    Article  Google Scholar 

  • Andreatta F, Paussa L, Aldighieri P, Lanzutti A, Ondratschek D, Fedrizzi L. Water-based ZrO2 pretreatment for AA2024 aluminum alloy. Surf Interface Anal. 2010b;42(4):293–8.

    Article  Google Scholar 

  • Andreatta F, Paussa L, Lanzutti A, Rosero Navarro NC, Aparicio M, Castro Y, et al. Development and industrial scale-up of ZrO2 coatings and hybrid organic-inorganic coatings used as pre-treatments before painting aluminium alloys. Prog Org Coat. 2011;72(1–2):3–14.

    Article  Google Scholar 

  • Arnott DR, Hinton BRW, Ryan NE. Cationic film-forming inhibitors for the corrosion protection of AA7075 aluminum alloy in chloride solutions. Mater Perform. 1987;26(8):42–7.

    Google Scholar 

  • Ballard RL, Williams JP, Njus JM, Kiland BR, Soucek MD. Inorganic-organic hybrid coatings with mixed metal oxides. Eur Polym J. 2001;37(2):381–98.

    Article  Google Scholar 

  • Bard J, Faulkner LR. Electrochemical methods: fundamentals and applications. 2nd ed. New York: Wiley; 2001.

    Google Scholar 

  • Beccaria AM, Chiaruttini L. The inhibitive action of metacryloxypropylmethoxysilane (MAOS) on aluminium corrosion in NaCl solutions. Corros Sci. 1999;41(5):885–99.

    Article  Google Scholar 

  • Beccaria AM, Padeletti G, Montesperelli G, Chiaruttini L. The effect of pretreatments with siloxanes on the corrosion resistance of aluminium in NaCl solution. Surf Coat Technol. 1999;111(2–3):240–6.

    Article  Google Scholar 

  • Bethencourt M, Botana FJ, Calvino JJ, Marcos M, Rodríguez-Chacón MA. Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: a review. Corros Sci. 1998;40(11):1803–19.

    Article  Google Scholar 

  • Campestrini P, Terryn H, Vereecken J, De Wit JHW. Chromate conversion coating on aluminum alloys III. Corrosion protection. J. Electrochem Soc. 2004;151(6):B370–B377.

    Google Scholar 

  • Di Maggio R, Fedrizzi L, Rossi S. Effect of the chemical modification of the precursor of ZrO2 films on the adhesion of organic coatings. J Adhes Sci Technol. 2001;15(7):793–808.

    Article  Google Scholar 

  • Fedrizzi L, Rodriguez FJ, Rossi S, Deflorian F, Di Maggio R. Initial and later stages of anodic oxide formation on Cu, chemical aspects, structure and electronic properties. Electrochim Acta. 2001;46(24–25):3755–66.

    Google Scholar 

  • Fedrizzi L, Bergo A, Fanicchia M. Evaluation of accelerated aging procedures of painted galvanised steels by EIS. Electrochim Acta. 2006;51(8–9):1864–72.

    Article  Google Scholar 

  • Fontana MG. Corrosion engineering. 3rd ed. New York: McGraw-Hill; 1986.

    Google Scholar 

  • Galio AF, Lamaka SV, Zheludkevich ML, Dick LFP, Müller IL, Ferreira MGS. Inhibitor-doped sol–gel coatings for corrosion protection of magnesium alloy AZ31. Surf Coat Technol. 2010;204(9–10):1479–86.

    Article  Google Scholar 

  • Goeminne G, Terryn H, Vereecken J. Characterisation of conversion layers on aluminium by means of electrochemical impedance spectroscopy. Electrochim Acta. 1995;40(4):479–486.

    Google Scholar 

  • Guglielmi M. Sol–Gel coatings on metals. J Sol Gel Sci Technol. 1997;8(1–3):443–9.

    Google Scholar 

  • Hughes AE, Taylor RJ, Hinton BRW, Wilson L. XPS and SEM characterization of hydrated cerium oxide conversion coatings. Surf Interface Anal. 1995;23(7–8):540–50.

    Article  Google Scholar 

  • Iannuzzi M, Kovac J, Frankel GS. A study of the mechanisms of corrosion inhibition of AA2024-T3 by vanadates using the split cell technique. Electrochim Acta. 2007;52(12):4032–42.

    Article  Google Scholar 

  • Ilevbare GO, Scully JR. Oxygen reduction reaction kinetics on chromate conversion coated Al-Cu, Al-Cu-Mg, and Al-Cu-Mn-Fe intermetallic compounds. J Electrochem Soc. 2001;148(5):B196–207.

    Article  Google Scholar 

  • Kelly RG, Scully JR, Shoesmith DW, Buchheit RG. Electrochemical techniques in corrosion science and engineering. New York: Marcel Dekker; 2002.

    Book  Google Scholar 

  • Kendig MW, Buchheit RG. Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings. Corrosion. 2003;59(5):379–400.

    Article  Google Scholar 

  • Khramov AN, Voevodin NN, Balbyshev VN, Donley MS. Hybrid organo-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors. Thin Solid Films. 2004;447–448:549–57.

    Article  Google Scholar 

  • Magalhães AAO, Margarit ICP, Mattos OR. Molybdate conversion coatings on zinc surfaces. J Electroanal Chem. 2004;572(2):433–40.

    Article  Google Scholar 

  • Mansfeld F, Lin S, Kim S, Shih H. Pitting and passivation of Al alloys and Al-based metal matrix composites. J Electrochem Soc. 1990;137(1):78–82.

    Article  Google Scholar 

  • Metroke TL, Apblett A. Effect of solvent dilution on corrosion protective properties of Ormosil coatings on 2024-T3 aluminum alloy. Prog Org Coat. 2004;51(1):36–46.

    Article  Google Scholar 

  • Metroke TL, Parkhill RL, Knobbe ET. Passivation of metal alloys using sol–gel-derived materials – a review. Prog Org Coat. 2001;41(4):233–8.

    Article  Google Scholar 

  • Osborne JH. Observations on chromate conversion coatings from a sol–gel perspective. Prog Org Coat. 2001;41(4):280–6.

    Article  Google Scholar 

  • Osborne JH, Blohowiak KY, Taylor SR, Hunter C, Bierwagon G, Carlson B, et al. Testing and evaluation of nonchromated coating systems for aerospace applications. Prog Org Coat. 2001;41(4):217–25.

    Article  Google Scholar 

  • Paussa L, Andreatta F, Aldighieri P, Fedrizzi L. Critical aspects in the electrochemical study of unstable coated metallic substrates. Prog Org Coat. 2010a;69(2):225–34.

    Article  Google Scholar 

  • Paussa L, Rosero-Navarro NC, Andreatta F, Castro Y, Duran A, Aparicio M, et al. Inhibition effect of cerium in hybrid sol–gel films on aluminium alloy AA2024. Surf Interface Anal. 2010b;42(4):299–305.

    Article  Google Scholar 

  • Paussa L, Rosero Navarro NC, Bravin D, Andreatta F, Lanzutti A, Aparicio M, et al. ZrO2 sol–gel pre-treatments doped with cerium nitrate for the corrosion protection of AA6060. Prog Org Coat. 2012;74(2):311–9.

    Article  Google Scholar 

  • Ramsey JD, McCreery RL. In situ Raman microscopy of chromate effects on corrosion pits in aluminum alloy. J Electrochem Soc. 1999;146(11):4076–81.

    Article  Google Scholar 

  • Rosero-Navarro NC, Pellice SA, Durán A, Aparicio M. Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024. Corros Sci. 2008;50(5):1283–91.

    Article  Google Scholar 

  • Rosero-Navarro NC, Paussa L, Andreatta F, Castro Y, Durán A, Aparicio M, et al. Optimization of hybrid sol–gel coatings by combination of layers with complementary properties for corrosion protection of AA2024. Prog Org Coat. 2010;69(2):167–74.

    Article  Google Scholar 

  • Sheir LL, Jarman RA, Burstein GT. Corrosion, vol. 1–2. 3rd ed. Oxford: Butterworth-Heinemann; 1994.

    Google Scholar 

  • Tang L, Li X, Si Y, Mu G, Liu G. The synergistic inhibition between 8-hydroxyquinoline and chloride ion for the corrosion of cold rolled steel in 0.5 M sulfuric acid. Mater Chem Phys. 2006;95(1):29–38.

    Article  Google Scholar 

  • Twite RL, Bierwagen GP. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog Org Coat. 1998;33(2):91–100.

    Article  Google Scholar 

  • Voevodin NN, Grebasch NT, Soto WS, Arnold FE, Donley MS. Potentiodynamic evaluation of sol–gel coatings with inorganic inhibitors. Surf Coat Technol. 2001;140(1):24–8.

    Article  Google Scholar 

  • Voevodin NN, Balbyshev VN, Donley MS. Investigation of corrosion protection performance of sol–gel coatings on AA2024-T3. Prog Org Coat. 2005;52(1 Special Issue):28–33.

    Article  Google Scholar 

  • Wang H, Akid R. A room temperature cured sol–gel anticorrosion pre-treatment for Al 2024-T3 alloys. Corros Sci. 2007;49(12):4491–503.

    Article  Google Scholar 

  • Xia L, Akiyama E, Frankel G, McCreery R. Storage and release of soluble hexavalent chromium from chromate conversion coatings. Equilibrium aspects of CrVI concentration. J Electrochem Soc. 2000;147(7):2556–62.

    Article  Google Scholar 

  • Yang H, Van Ooij WJ. Plasma-treated triazole as a novel organic slow-release paint pigment for corrosion control of AA2024-T3. Prog Org Coat. 2004;50(3):149–61.

    Article  Google Scholar 

  • Yang XF, Tallman DE, Gelling VJ, Bierwagen GP, Kasten LS, Berg J. Use of a sol–gel conversion coating for aluminum corrosion protection. Surf Coat Technol. 2001;140(1):44–50.

    Article  Google Scholar 

  • Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS. Mechanism of corrosion inhibition of AA2024 by rare-earth compounds. J Phys Chem B. 2006;110(11):5515–28.

    Article  Google Scholar 

  • Yasakau KA, Zheludkevich ML, Karavai OV, Ferreira MGS. Influence of inhibitor addition on the corrosion protection performance of sol–gel coatings on AA2024. Prog Org Coat. 2008;63(3):352–61.

    Article  Google Scholar 

  • Zhao J, Frankel G, McCreery RL. Corrosion protection of untreated AA-2024-T3 in chloride solution by a chromate conversion coating monitored with Raman spectroscopy. J Electrochem Soc. 1998;145(7):2258–64.

    Article  Google Scholar 

  • Zheludkevich ML, Serra R, Montemor MF, Yasakau KA, Salvado IMM, Ferreira MGS. Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3 Corrosion protection performance. Electrochim Acta. 2005a;51(2):208–17.

    Article  Google Scholar 

  • Zheludkevich ML, Yasakau KA, Poznyak SK, Ferreira MGS. Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy. Corros Sci. 2005b;47(12):3368–83.

    Article  Google Scholar 

  • Zheludkevich ML, Serra R, Montemor MF, Miranda Salvado IM, Ferreira MGS. Corrosion protective properties of nanostructured sol–gel hybrid coatings to AA2024-T3. Surf Coat Technol. 2006;200(9):3084–94.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to kindly acknowledge all coauthors of the papers discussed in this chapter. A special mention goes to P. Aldighieri, L. Paussa, and A. Lanzutti, who strongly contributed to the acquisition and discussion of the experimental data presented in this work. Part of the results in this paper and the work it concerns were generated in the context of the MULTIPROTECT project, funded by the European Community as Contract No. NMP3-CT-2005-011783 under the 6th Framework Programme for Research and Technological Development. The project partners that contributed to the results presented in this chapter are kindly acknowledged. In particular, the authors would like to thank A. Duran, M. Aparicio, and their coworkers for the collaboration in the framework of the MULTIPROTECT project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Andreatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Andreatta, F., Fedrizzi, L. (2016). The Use of Electrochemical Techniques for the Characterization of the Corrosion Behavior of Sol–Gel-Coated Metals. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_144-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_144-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics