• Lisel Hope
  • Judith Giunta
  • Nathaniel Winer
  • Ho Won Lee
  • Sara Choudhry
  • Samy I. McFarlaneEmail author
Reference work entry


Hypertension is a major risk factor for cardiovascular disease (CVD). Hypertension increases the risk of coronary artery disease, stroke, peripheral vascular disease, and congestive heart failure. Hypertension is twice as frequent in patients with diabetes compared to those without the disease and accounts for up to 75% of CVD risk. When hypertension coexists with diabetes, the risk of stroke or CVD is doubled and the risk for developing end-stage renal disease increases to five to six times, compared to hypertensive patients without diabetes. In this chapter we will discuss the unique aspects of hypertension in patients with diabetes along with disease mechanism and treatment. Therapy for hypertension will be discussed in the light of the new JNC 8 Guidelines published in 2014.


Hypertension Cardiovascular disease Diabetes Antihypertensive treatment Proteinuria Angiotensin-converting enzyme inhibitors Angiotensin receptor blockers Nephropathy Microalbuminuria JNC-8 Beta Blockers Calcium channel blockers Diuretics 


  1. 1.
    McFarlane SI, Banerji M, Sowers JR. Insulin resistance and cardiovascular disease. J Clin Endocrinol Metab. 2001;86(2):713–8.PubMedGoogle Scholar
  2. 2.
    American Diabetes Association. Data from the National Diabetes Statistic Report (2014)
  3. 3.
    Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study. N Engl J Med. 2000;342(13):905–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Lima NK, Abbasi F, Lamendola C, Reaven GM. Prevalence of insulin resistance and related risk factors for cardiovascular disease in patients with essential hypertension. Am J Hypertens. 2009;22(1):106–11.CrossRefPubMedGoogle Scholar
  5. 5.
    de Boer IH, Kestenbaum B, Rue TC, Steffes MW, Cleary PA, Molitch ME, et al. Insulin therapy, hyperglycemia, and hypertension in type 1 diabetes mellitus. Arch Intern Med. 2008;168(17):1867–73.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Graziadei L, et al. Insulin resistance in essential hypertension. N Engl J Med. 1987;317(6):350–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Reaven GM. Relationships among insulin resistance, type 2 diabetes, essential hypertension, and cardiovascular disease: similarities and differences. J Clin Hypertens (Greenwich). 2011;13(4):238–43.CrossRefGoogle Scholar
  8. 8.
    Fujita T. Insulin resistance and salt-sensitive hypertension in metabolic syndrome. Nephrol Dial Transplant. 2007;22(11):3102–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Beatty OL, Harper R, Sheridan B, Atkinson AB, Bell PM. Insulin resistance in offspring of hypertensive parents. BMJ. 1993;307(6896):92–6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Grunfeld B, Balzareti M, Romo M, Gimenez M, Gutman R. Hyperinsulinemia in normotensive offspring of hypertensive parents. Hypertension. 1994;23(1 Suppl):I12–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Lee CJ, Lim NK, Kim HC, Ihm SH, Lee HY, Park HY, et al. Impaired fasting glucose and impaired glucose tolerance do not predict hypertension: a community cohort study. Am J Hypertens. 2015;28(4):493–500.CrossRefPubMedGoogle Scholar
  12. 12.
    Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension. 2001;37(4):1053–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Draman MS, Dolan E, van der Poel L, Tun TK, McDermott JH, Sreenan S, et al. The importance of night-time systolic blood pressure in diabetic patients: Dublin Outcome Study. J Hypertens. 2015;33(7):1373–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Fagard RH, Celis H, Thijs L, Staessen JA, Clement DL, De Buyzere ML, et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008;51(1):55–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Eboh C, Chowdhury TA. Management of diabetic renal disease. Ann Transl Med. 2015;3(11):154.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee HO, Bak HJ, Shin JY, Song YM. Association between metabolic syndrome and microalbuminuria in Korean adults. Korean J Fam Med. 2015;36(2):60–71.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zain M, Awan FR. Renin Angiotensin Aldosterone System (RAAS): its biology and drug targets for treating diabetic nephropathy. Pak J Pharm Sci. 2014;27(5):1379–91.PubMedGoogle Scholar
  18. 18.
    Streeten DH, Auchincloss Jr JH, Anderson Jr GH, Richardson RL, Thomas FD, Miller JW. Orthostatic hypertension. Pathogenetic studies. Hypertension. 1985;7(2):196–203.CrossRefPubMedGoogle Scholar
  19. 19.
    Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115(3):387–97.CrossRefPubMedGoogle Scholar
  20. 20.
    Balcioglu AS, Muderrisoglu H. Diabetes and cardiac autonomic neuropathy: clinical manifestations, cardiovascular consequences, diagnosis and treatment. World J Diabetes. 2015;6(1):80–91.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.CrossRefPubMedGoogle Scholar
  22. 22.
    James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Guidelines IoMUCoSfDTCP. Clinical practice guidelines we can trust. National Academy of Sciences: The national academies of sciences engineering medicine; 2011.
  24. 24.
    SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA. 1991;265(24):3255–64.Google Scholar
  25. 25.
    Staessen JA, Fagard R, Thijs L, Celis H, Arabidze GG, Birkenhager WH, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Lancet. 1997;350(9080):757–64.CrossRefPubMedGoogle Scholar
  26. 26.
    UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317(7160):703–13.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Group AS, Cushman WC, Evans GW, Byington RP, Goff Jr DC, Grimm Jr RH, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85.CrossRefGoogle Scholar
  28. 28.
    Group SR, Wright Jr JT, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16.CrossRefGoogle Scholar
  29. 29.
    Cushman WC, Whelton PK, Fine LJ, et al. SPRINT TRIAL Results. Latest news in hypertension management. Hypertension. 2015;67(2):263–5.Google Scholar
  30. 30.
    American Diabetes Association. Standards of medical care for patients with diabetes mellitus. Diabetes Care. 2003;26 Suppl 1:S33–50.Google Scholar
  31. 31.
    Conlin PR, Chow D, Miller 3rd ER, Svetkey LP, Lin PH, Harsha DW, et al. The effect of dietary patterns on blood pressure control in hypertensive patients: results from the Dietary Approaches to Stop Hypertension (DASH) trial. Am J Hypertens. 2000;13(9):949–55.CrossRefPubMedGoogle Scholar
  32. 32.
    Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3–10.CrossRefPubMedGoogle Scholar
  33. 33.
  34. 34.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329(20):1456–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355(9200):253–9.CrossRefGoogle Scholar
  36. 36.
    Investigators DT, Bosch J, Yusuf S, Gerstein HC, Pogue J, Sheridan P, et al. Effect of Ramipril on the incidence of diabetes. N Engl J Med. 2006;355(15):1551–62.CrossRefGoogle Scholar
  37. 37.
    Dicpinigaitis PV. Angiotensin-converting enzyme inhibitor-induced cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1 Suppl):169S–73.CrossRefPubMedGoogle Scholar
  38. 38.
    Sato A, Fukuda S. A prospective study of frequency and characteristics of cough during ACE inhibitor treatment. Clin Exp Hypertens. 2015;37(7):563–8.Google Scholar
  39. 39.
    Brugts JJ, Arima H, Remme W, Bertrand M, Ferrari R, Fox K, et al. The incidence and clinical predictors of ACE-inhibitor induced dry cough by perindopril in 27,492 patients with vascular disease. Int J Cardiol. 2014;176(3):718–23.CrossRefPubMedGoogle Scholar
  40. 40.
    Cugno M, Nussberger J, Cicardi M, Agostoni A. Bradykinin and the pathophysiology of angioedema. Int Immunopharmacol. 2003;3(3):311–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Loftus PA, Tan M, Patel G, Lin J, Helman S, Badhey A, et al. Risk factors associated with severe and recurrent angioedema: an epidemic linked to ACE-inhibitors. Laryngoscope. 2014;124(11):2502–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Johnson ES, Weinstein JR, Thorp ML, Platt RW, Petrik AF, Yang X, et al. Predicting the risk of hyperkalemia in patients with chronic kidney disease starting lisinopril. Pharmacoepidemiol Drug Saf. 2010;19(3):266–72.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bakris GL, Weir MR. Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: is this a cause for concern? Arch Intern Med. 2000;160(5):685–93.CrossRefPubMedGoogle Scholar
  44. 44.
    Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109(11):1417–27.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Oh BH, Mitchell J, Herron JR, Chung J, Khan M, Keefe DL. Aliskiren, an oral renin inhibitor, provides dose-dependent efficacy and sustained 24-hour blood pressure control in patients with hypertension. J Am Coll Cardiol. 2007;49(11):1157–63.CrossRefPubMedGoogle Scholar
  46. 46.
    Birkenhager WH, Staessen JA. Dual inhibition of the renin system by aliskiren and valsartan. Lancet. 2007;370(9583):195–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Villamil A, Chrysant SG, Calhoun D, Schober B, Hsu H, Matrisciano-Dimichino L, et al. Renin inhibition with aliskiren provides additive antihypertensive efficacy when used in combination with hydrochlorothiazide. J Hypertens. 2007;25(1):217–26.CrossRefPubMedGoogle Scholar
  48. 48.
    Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367(23):2204–13.CrossRefPubMedGoogle Scholar
  49. 49.
    Kaplan NM. Management of hypertension in patients with type 2 diabetes mellitus: guidelines based on current evidence. Ann Intern Med. 2001;135(12):1079–83.CrossRefPubMedGoogle Scholar
  50. 50.
    Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345(12):870–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359(9311):995–1003.CrossRefPubMedGoogle Scholar
  53. 53.
    Whelton PK, Barzilay J, Cushman WC, Davis BR, Iiamathi E, Kostis JB, et al. Clinical outcomes in antihypertensive treatment of type 2 diabetes, impaired fasting glucose concentration, and normoglycemia: Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2005;165(12):1401–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Barzilay JI, Davis BR, Cutler JA, Pressel SL, Whelton PK, Basile J, et al. Fasting glucose levels and incident diabetes mellitus in older nondiabetic adults randomized to receive 3 different classes of antihypertensive treatment: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2006;166(20):2191–201.CrossRefPubMedGoogle Scholar
  55. 55.
    de la Sierra A. Mitigation of calcium channel blocker-related oedema in hypertension by antagonists of the renin-angiotensin system. J Hum Hypertens. 2009;23(8):503–11.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lisel Hope
    • 1
  • Judith Giunta
    • 1
  • Nathaniel Winer
    • 1
  • Ho Won Lee
    • 2
  • Sara Choudhry
    • 3
  • Samy I. McFarlane
    • 1
    Email author
  1. 1.Division of Endocrinology, Diabetes and HypertensionState University of New York, Downstate Medical Center and Kings County Hospital CenterBrooklynUSA
  2. 2.EndocrinologyPacific Nephrology AssociatesTacomaUSA
  3. 3.EndocrinologySUNY Downstate Medical CenterCenter ValleyUSA

Personalised recommendations