Endocrine Pancreas

  • Emilia Pauline LiaoEmail author
  • Barry Brass
  • Zinoviy Abelev
  • Leonid Poretsky
Reference work entry


The endocrine pancreas is comprised of the islets of Langerhans which contain beta cells that secrete insulin and amylin, alpha cells that secrete glucagon, delta cells that secrete somatostatin, pancreatic polypeptide cells that secrete pancreatic polypeptide, and epsilon cells that secrete ghrelin. The islets have a complex innervation and capillary network that enables communication and coordination of hormone secretion to regulate glucose and nutrient homeostasis.


Islets beta cell insulin alpha cell glucagon amylin ghrelin 


  1. 1.
    Rhodes CJ, Halban PA. Newly synthesized proinsulin/insulin and stored insulin are released from pancreatic B cells predominantly via a regulated, rather than a constitutive pathway. J Cell Biol. 1987;105:145–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Wallerath T, Kunt T, Forst T, et al. Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide. 2003;9:95–102.CrossRefPubMedGoogle Scholar
  3. 3.
    Forst T, De La Tour DD, Kunt T, et al. Effects of proinsulin C-peptide on nitric oxide microvascular blood flow and erythrocyte Na, K-ATPase activity in diabetes mellitus type 1. Clin Sci. 2000;98:283–90.CrossRefPubMedGoogle Scholar
  4. 4.
    John W, Larsson C. C-peptide: new findings and therapeutic possibilities. Diabetes Res Clin Pract. 2015;107:309–19.CrossRefGoogle Scholar
  5. 5.
    Lim YC, Bhatt MP, Kwon MH, et al. Prevention of VEGF-mediated mircorvascular permability by C-peptide in diabetic mice. Cardiovasc Res. 2014;101:155–64.CrossRefPubMedGoogle Scholar
  6. 6.
    Hills CE, Willars GB, Brunskill NJ. Proinsulin C-peptide antagonizes the profibrotic effects of TGF-beta1 via upregulation of retinoic acid and HGF-related signaling pathways. Mol Endocrinol. 2010;24:822–31.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lindenblatt N, Braun B, Menger MD, et al. C-peptide exerts antithrombotic effects that are repressed by insulin in normal and diabetic mice. Diabetologia. 2006;49:792–800.CrossRefPubMedGoogle Scholar
  8. 8.
    Luppi P, Cifarelli V, Tse H, et al. Human C-peptide antagonizes high glucose-induced endothelial dysfunction through the nuclear factor-kappa β pathway. Diabetologia. 2008;51:1534–43.Google Scholar
  9. 9.
    Ekberg K, Brismar T, Johansson B-L, et al. Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes. 2003;52(2):536–41.CrossRefPubMedGoogle Scholar
  10. 10.
    Ekberg K, Brismar T, Johansson B-L, et al. C-peptide replacement therapy and sensory nerve function in type 1 diabetic neuropathy. Diabetes Care. 2007;30(1):71–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Johansson BI, Borg K, Fernqvist-Forbes E, et al. Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type 1 diabetes mellitus. Diabet Med. 2000;17:181–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Ido Y, Vindigni A, Chang K, et al. Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science. 1997;277:563–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Newgard C, McGary J. Metabolic coupling factors in pancreatic ß-cell signal transduction. Ann Rev Biochem. 1995;64:689–719.CrossRefPubMedGoogle Scholar
  14. 14.
    Koster JC, Marshall BA, Ensor N, et al. Targeted overactivity of beta call K(ATP) channels induces profound neonatal diabetes. Cell. 2000;100:645.CrossRefPubMedGoogle Scholar
  15. 15.
    Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes. 2005;54:2503–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Pearson ER, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir 6.2 mutations. N Engl J Med. 2006;355:507–10. Look into ABCC8 gene?.CrossRefGoogle Scholar
  17. 17.
    Froguel P, Zouali H, Vionnet N, et al. Familial hyperglycemia due to mutation in glucokinase. N Engl J Med. 1993;328(10):697–702.CrossRefPubMedGoogle Scholar
  18. 18.
    Nolan C, Madiraju MSR, Delghingaro-Augusto V, et al. Fatty acid signaling in the beta cell and insulin secretion. Diabetes. 2006;55:S16–23.CrossRefPubMedGoogle Scholar
  19. 19.
    Ahrén B, Holst J. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes. 2001;50(5):1030–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Ahrén B, Wierup N, Sundler F. Neuropeptides and the regulation of islet function. Diabetes. 2006;55:S98–107.CrossRefGoogle Scholar
  21. 21.
    Cheng H, Straub S, Sharp G. Protein acylation in the inhibition of insulin secretion by norepinephrine, somatostatin, galanin, and PGE2. Am J Physiol Endocrinol Metab. 2003;285:E287–94.CrossRefPubMedGoogle Scholar
  22. 22.
    Liang Y, et al. Mechanisms of action of non glucose insulin secretagogues. Ann Rev Nutr. 1994;14:59–81.CrossRefGoogle Scholar
  23. 23.
    Hay DL, Chen S, Lutz TA, et al. Amylin: pharmacology, physiology and clinical potential. Pharmacol Rev. 2015;67:564–600.CrossRefPubMedGoogle Scholar
  24. 24.
    Osto M, Wielenga PY, Alder B, et al. Modulation of the satiating effect of amylin by central ghrelin, leptin and insulin. Physiol Behav. 2007;91:566–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Adler BL, Yarchoan M, Hwang HM, et al. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer’s disease pathogenesis and cognition. Neurobiol Aging. 2014;35:793–801.CrossRefPubMedGoogle Scholar
  26. 26.
    Murlin JR, Clough HD, Gibbs CBF, et al. Aqueous extracts of pancreas: influence on the carbohydrate metabolism of depancreatized animals. J Biol Chem. 1923;56:253–96.Google Scholar
  27. 27.
    Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab. 2003;284:E671–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Vuguin PM, Charron MJ. Novel insight into glucagon receptor action: lessons from knockout and transgenic mouse models. Diabetes Obes Metab. 2011;13 Suppl 1:144–50.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Brereton M, Vergari E, Zhang Q, et al. Alpha-, delta-, and PP- cells: are they architectural cornerstones of islet structure and coordination? J Histochem Cytochem. 2015;63(8):575–91.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides. 2012;46:261–74.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Andralojc KM, Mercali A, Nowak KW, et al. Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia. 2009;52(3):486–93.CrossRefPubMedGoogle Scholar
  32. 32.
    Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing actylated peptide from stomach. Nature. 1999;402:656–60.CrossRefPubMedGoogle Scholar
  33. 33.
    Muller TD, Nogueiras R, Andermann ML, et al. Ghrelin. Mol Metab. 2015;4:437–60.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cummings D, Weigle D, Scott Frayo R, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in 7 patients with type 1 diabetes using glucocorticoid-free immunosuppressant regimen. N Engl J Med. 2000;343:230.CrossRefPubMedGoogle Scholar
  36. 36.
    Brennan DC, Kopetskie HA, Sayre PH et al. Long term follow-up of the Edmonton protocol of islet transplantation in the United States. Am J Transplant. 2016; Feb 16(2):509-17.Google Scholar
  37. 37.
    Robertson RP. Islet transplantation for type 1 diabetes, 2015: what have we learned from alloislet and autoislet successes? Diabetes Care. 2015;38:1030–5.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Emilia Pauline Liao
    • 1
    Email author
  • Barry Brass
    • 2
  • Zinoviy Abelev
    • 2
  • Leonid Poretsky
    • 3
    • 4
  1. 1.Division Endocrinology and MetabolismHofstra Northwell School of Medicine, Northwell HealthNew YorkUSA
  2. 2.Division Endocrinology and MetabolismBeth Israel Medical Center, Albert Einstein College of MedicineNew YorkUSA
  3. 3.Division of Endocrinology, Diabetes and MetabolismGerald J. Friedman Diabetes Institute, Lenox Hill Hospital, Hofstra Northwell School of Medicine, Northwell HealthNew YorkUSA
  4. 4.Division of Endocrinology and MetabolismMount Sinai Beth Israel, Icahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations