Secondary Causes of Diabetes Mellitus

  • Ashutosh S. PareekEmail author
  • Yana B. Garger
  • Prajesh M. Joshi
  • Carla M. Romero
  • Amit K. Seth
Reference work entry


The diabetic syndromes include type 1 diabetes with immune destruction of the pancreatic islets, type 2 diabetes with a complex pathophysiology of insulin resistance combined with insulin secretory failure, distinct monogenetic abnormalities (maturity onset diabetes of the young – MODY), and extreme insulin resistance of several different etiologies. In addition, secondary causes of diabetes mellitus refer to a category in which diabetes is associated with other diseases or conditions related to both the endocrine and exocrine pancreas and other secretory organs of the body. In some instances, diabetes is due to genetic syndrome or use of medicines. Presumably, the diabetes is caused by those conditions or medicines and could be reversed if those conditions were cured.


Secondary diabetes Causes of diabetes 



We hereby acknowledge and sincerely thank Dr. Adrienne M. Fleckman without whose guidance, leadership, and support this chapter would not have been written.


  1. 1.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2008;31 Suppl 1:S55–60.CrossRefGoogle Scholar
  2. 2.
    Pitchumoni CS, Patel NM, Shah P. Factors influencing mortality in acute pancreatitis. J Clin Gastroenterol. 2005;39:798–814.PubMedCrossRefGoogle Scholar
  3. 3.
    Thow J, Semad A, Alberti KGMM. Epidemiology and general aspects of diabetes secondary to pancreatopathy. In: Tiengo A, Alberti KGMM, Del Prato S, Vranic M, editors. Diabetes secondary to pancreatopathy. Amsterdam: Excerpta Medica; 1988. p. 7–20.Google Scholar
  4. 4.
    Del Prato S, Tiengo A. Diabetes secondary to acquired disease of the pancreas. In: Alberti KGMM, DeFronzo RA, Keen H, Zimmet P, editors. International textbook of diabetes mellitus. New York: Wiley; 1992. p. 199.Google Scholar
  5. 5.
    Ueda T, Takeyama Y, Yasuda T, et al. Simple scoring system for the prediction of the prognosis of severe acute pancreatitis. Surgery. 2007;141:51–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Drew SI, Joffe B, Vinik AI, et al. The first 24 hours of acute pancreatitis. Changes in biochemical and endocrine homeostasis inpatients with pancreatitis compared to those in control subjects undergoing stress for reasons other than pancreatitis. Am J Med. 1978;64:795–803.PubMedCrossRefGoogle Scholar
  7. 7.
    Donowitz M, Hendeler R, Spiro HM, et al. Glucagon secretion in acute and chronic pancreatitis. J Intern Med. 1975;83:778–81.Google Scholar
  8. 8.
    Kaya E, Dervisoglu A, Polat C. Evaluation of diagnostic findings and scoring systems in outcome prediction in acute pancreatitis. World J Gastroenterol. 2007;13(22):3090–4.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Andersen DK. Mechanisms and emerging treatments of the metabolic complications of chronic pancreatitis. Pancreas. 2007;35(1):1–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Mlka D, Hammel P, Sauvanet A, et al. Risk factors for diabetes mellitus in chronic pancreatitis. Gastroenterology. 2000;119:1324–32.CrossRefGoogle Scholar
  11. 11.
    Angelopoulos N, Dervenis C, Goula A, et al. Endocrine pancreatic insufficiency in chronic pancreatitis. Pancreatology. 2005;5:122–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Larsen S. Diabetes mellitus secondary to chronic pancreatitis. Dan Med Bull. 1993;40(2):153–62.PubMedGoogle Scholar
  13. 13.
    Hedetoft C, Sheikh SP, Larsen S, Holst JJ. Effect of glucagons-like peptide 1(7–36)amide in insulin-treated patients with diabetes mellitus secondary to chronic pancreatitis. Pancreas. 2000;20(1):25–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Mergener K, Baillie J. Chronic pancreatitis. Lancet. 1997;350:1379–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Chari ST, Leibson CL, Rabe KG, et al. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology. 2008;134:95–101.PubMedCrossRefGoogle Scholar
  16. 16.
    Murat S, Parviz PM. Diabetes and its relationship to pancreatic carcinoma. Pancreas. 2003;26(4):381–7.CrossRefGoogle Scholar
  17. 17.
    Hull RL, Westermark GT, Westermark P, Kahn SE. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab. 2004;89:3629–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Casas S, Gomis R, Gribble FM, et al. Impairment of the ubiquitin–proteasome pathway is a downstream endoplasmic reticulum stress response induced by extracellular human islet amyloid polypeptide and contributes to pancreatic β-cell apoptosis. Diabetes. 2007;56:2284–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Permert J, Larsson J, Fruin AB, et al. Islet hormone secretion in pancreatic cancer patients with diabetes. Pancreas. 1997;15:60–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Slezak LA, Andersen DK. Pancreatic resection: effects on glucose metabolism. World J Surg. 2001;25:452–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Brennan AL, Geddes DM, Gyi KM, Baker EH. Clinical importance of cystic fibrosis-related diabetes. J Cyst Fibros. 2004;3(4):209–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Dobson L, Stride A, Bingham C, et al. Microalbuminuria as a screening tool in cystic fibrosis-related diabetes. Pediatr Pulmonol. 2005;39(2):103–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Shwachman H, Kowalski M, Khaw KT. Cystic fibrosis: a new outlook, 70 patients above 25 years of age. Medicine. 1977;56:24–49.CrossRefGoogle Scholar
  24. 24.
    Alves Cde A, Aguiar RA, Alves AC, Santana MA. Diabetes mellitus in patients with cystic fibrosis. J Bras Pneumol. 2007;33(2):213–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Bizzarri C, Lucidi V, Ciampalini P, et al. Clinical effects of early treatment with insulin glargine in patients with cystic fibrosis and impaired glucose tolerance. J Endocrinol Invest. 2006;29(3):RC1–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Williams R, Williams HS, Scheuer PJ, et al. Iron absorption and siderosis in chronic liver disease. Quart J Med. 1967;35:151–66.Google Scholar
  27. 27.
    Powell LW, Yapp TR. Hemochromatosis. Clin Liver Dis. 2000;4(1):211–28.PubMedCrossRefGoogle Scholar
  28. 28.
    Wilson J, Lindquist J, Grambow S, et al. Potential role of increased iron stores in diabetes. Am J Med Sci. 2003;325(6):332–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Swaminathan S, Fonseca V, Alam M, Shah S. The role of iron in diabetes and its complications. Diabetes Care. 2007;30(7):1926–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Wermers RA, Fatourechi V, Wynne AG, et al. The glucagonoma syndrome. Medicine. 1996;75:53.PubMedCrossRefGoogle Scholar
  31. 31.
    Warner R. Enteroendocrine tumors other than carcinoid: a review of clinically significant advances. Gastroenterology. 2005;128:1668–84.PubMedCrossRefGoogle Scholar
  32. 32.
    Beek AP, de Haas ERM, van Vloten WA, et al. The glucagonoma syndrome and necrolytic migratory erythema: a clinical review. Eur J Endocrinol. 2004;151:531–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Lefgbvre PJ. Glucagon and its family revisited. Diabetes Care. 1995;18:715–30.CrossRefGoogle Scholar
  34. 34.
    Vinik AI, Strodel WE, Eckhauser FE, et al. Somatostatinomas, PPomas, neurotensinomas. Semin Oncol. 1987;14:263–81.PubMedGoogle Scholar
  35. 35.
    Sassolas G, Chayvialle JA. GRFomas, somatostatinomas: clinical presentation, diagnosis, and advances in management. In: Mignon M, Jensen RT, editors. Endocrine tumors of the pancreas: recent advances in research and management, Frontiers of Gastrointestinal Research, vol. 23. Basel: S. Karger; 1995. p. 194.Google Scholar
  36. 36.
    Matuchansky C, Rambuaud JC. VIPomas and endocrine cholera: clinical presentation, diagnosis, and advances in management. In: Mignon M, Jensen RT, editors. Endocrine tumors of the pancreas: recent advances in research and management, Frontiers of Gastrointestinal Research, vol. 23. Basel: S. Karger; 1995. p. 166.Google Scholar
  37. 37.
    McCallum RW, Parameswaran V, Burgess JR. Multiple endocrine neoplasia type 1 (MEN 1) is associated with an increased prevalence of diabetes mellitus and impaired fasting glucose. Clin Endocrinol. 2006;65:163–8.CrossRefGoogle Scholar
  38. 38.
    Feldman JM, Plonk JW, Bivens CH, Levobitz HE. Glucose intolerance in the carcinoid syndrome. Diabetes. 1975;24:664–71.PubMedCrossRefGoogle Scholar
  39. 39.
    Mitzner LD, Nohria A, Chacho M, Inzucchi SE. Sequential hypoglycemia, hyperglycemia, and the carcinoid syndrome arising from a plurihormonal neuroendocrine neoplasm. Endocr Pract. 2000;6:370–4.PubMedCrossRefGoogle Scholar
  40. 40.
    DeFronzo RA, Ferrannini E. Regulation of hepatic glucose metabolism in humans. Diabetes Metab Rev. 1987;3:415–59.PubMedCrossRefGoogle Scholar
  41. 41.
    Zein NN. Prevalence of diabetes mellitus in patients with end-stage liver cirrhosis due to hepatitis C, alcohol, or cholestatic disease. J Hepatol. 2000;32:209–17.PubMedCrossRefGoogle Scholar
  42. 42.
    Tolman KG, Fonseca V, Dalpiaz A, Tan MH. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care. 2007;30(3):734–43.PubMedCrossRefGoogle Scholar
  43. 43.
    Albright ES, Bell DSH. The liver, liver disease, and diabetes mellitus. Endocrinol. 2003;13(1):58–66.CrossRefGoogle Scholar
  44. 44.
    Cavallo-Perin P, Cassader M, Bozzo C, et al. Mechanism of insulin resistance in human liver cirrhosis: evidence of combined receptor and postreceptor defect. J Clin Invest. 1985;75:1659–65.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Harrison SA. Liver disease in patients with diabetes mellitus. J Clin Gastroenterol. 2006;40:68–76.PubMedCrossRefGoogle Scholar
  46. 46.
    Holstein A, Hinze S, Thiessen E, et al. Clinical implications of hepatogenous diabetes in liver cirrhosis. J Gastroenterol Hepatol. 2002;17(6):677–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–801.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Samuel VT, Liu ZX, Wang A, et al. Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest. 2007;117:739–45.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Fartoux L, Poujol-Robert A, Guéchot J, et al. Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C. Gut. 2005;54(7):1003–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hickman IJ, Macdonald GA. Impact of diabetes on the severity of liver disease. Am J Med. 2007;120(10):829–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Fraser GM, Harman I, Meller N, et al. Diabetes mellitus is associated with chronic hepatitis C but not chronic hepatitis B infection. Isr J Med Sci. 1996;32:526–30.PubMedGoogle Scholar
  52. 52.
    Knobler H, Schihmanter R, Zifroni A, et al. Increased risk of type 2 diabetes in noncirrhotic patients with chronic hepatitis C virus infection. Mayo Clin Proc. 2000;75:355–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Huang JF, Dai CY, Hwang SJ, et al. Hepatitis C viremia increases the association with type 2 diabetes mellitus in a hepatitis B and C endemic area: an epidemiological link with virological implication. Am J Gastroenterol. 2007;102(6):1237–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Mehta SH, Brancati FL, Strathdee SA, et al. Hepatitis C virus infection and incident type 2 diabetes. Hepatology. 2003;38(1):50–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Zein CO, Levy C, Basu A, Zein NN. Chronic hepatitis C and type II diabetes mellitus: a prospective cross-sectional study. Am J Gastroenterol. 2005;100(1):48–55.PubMedCrossRefGoogle Scholar
  56. 56.
    Lecube A, Hernández C, Genescà J, Simó R. Glucose abnormalities in patients with hepatitis C virus infection: epidemiology and pathogenesis. Diabetes Care. 2006;29(5):1140–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Mehta SH, Brancati FL, Sulkowski MS, et al. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Hepatology. 2001;33(6):1554.PubMedCrossRefGoogle Scholar
  58. 58.
    Hadziyannis SJ. The spectrum of extrahepatic manifestations in hepatitis C virus infection. J Vir Hepat. 1997;4:9–28.CrossRefGoogle Scholar
  59. 59.
    Oben JA, Paulon E. Fatty liver in chronic hepatitis C infection: unraveling the mechanisms. Gut. 2007;56:1186–8.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Knobler H, Schattner A. TNF-alpha, chronic hepatitis C and diabetes: a novel triad. QJM. 2005;98(1):1–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Chen LK, Chou YC, Tsai ST, et al. Hepatitis C virus infection-related type 1 diabetes mellitus. Diabet Med. 2005;22(3):340–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Kawaguchi T, Yoshida T, Harada M, et al. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol. 2004;165(5):1499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Aytug S, Reich D, Sapiro LE, et al. Impaired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes. Hepatology. 2003;38(6):1384–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Romero-Gómez M, Del Mar VM, Andrade RJ, et al. Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology. 2005;128(3):636–41.PubMedCrossRefGoogle Scholar
  65. 65.
    Hickman IJ, Powell EE, Prins JB, et al. In overweight patients with chronic hepatitis C, circulating insulin is associated with hepatic fibrosis: implications for therapy. J Hepatol. 2003;39(6):1042–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Taura N, Ichikawa T, Hamasaki K, et al. Association between liver fibrosis and insulin sensitivity in chronic hepatitis C patients. Am J Gastroenterol. 2006;101(12):2752–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Trombetta M, Spiazzi G, Zoppini G, Muggeo M. Review article: type 2 diabetes and chronic liver disease in the Verona diabetes study. Aliment Pharmacol Ther. 2005;22 Suppl 2:24–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Negro F, Alaei M. Hepatitis C virus and type 2 diabetes. World J Gastroenterol. 2009;15(13):1537–47.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Doyle MA, Cooper C. Successful Hepatitis C Antiviral Therapy Induces Remission of Type 2 Diabetes: A Case Report. Am J Case Rep. 2015;16:745–50.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Harrison SA, Hamzeh FM, Han J, Pandya PK, Sheikh MY, Vierling JM. Chronic hepatitis C genotype 1 patients with insulin resistance treated with pioglitazone and peginterferon alpha-2a plus ribavirin. Hepatology. 2012;56:464–73.PubMedCrossRefGoogle Scholar
  71. 71.
    Premji R, et al. New-onset diabetes mellitus with exposure to Ledipasvir and Sofosbuvir. J Invest Med High Impact Case Rep. 2015;1–2.Google Scholar
  72. 72.
    Record CO, Alberti KG, Williamson DH, Wright R. Glucose tolerance and metabolic changes in human viral hepatitis. Clin Sci Mol Med. 1973;45:677–90.PubMedGoogle Scholar
  73. 73.
    Bianchi G, Marchesini G, Zoli M, et al. Prognostic significance of diabetes in patients with cirrhosis. Hepatology. 1994;20:119–25.PubMedGoogle Scholar
  74. 74.
    Vesely DL, Dilley RW, Duckworth WC, Paustian FF. Hepatitis A-induced diabetes mellitus, acute renal failure, and liver failure. Am J Med Sci. 1999;317(6):419–25.PubMedCrossRefGoogle Scholar
  75. 75.
    Masuda H, Atsumi T, Fujisaku A, et al. Acute onset of type 1 diabetes accompanied by acute hepatitis C: the potential role of proinflammatory cytokine in the pathogenesis of autoimmune diabetes. Diabetes Res Clin Pract. 2007;75(3):357–61.PubMedCrossRefGoogle Scholar
  76. 76.
    Luna B, Feinglos MN. Drug-induced hyperglycemia. JAMA. 2001;286(16):1945–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Kao WH, Puddey IB, Boland LL, Watson RL, Brancati FL. Alcohol consumption and the risk of type 2 diabetes mellitus: Atherosclerosis Risk in Communities study. Am J Epidemiol. 2001;154:748–57.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim SH, et al. Effect of moderate alcohol beverage consumption insulin sensitivity in insulin resistant, nondiabetic individuals. Metabolism. 2009;58(3):387–92.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Wicklmayr M, Rett K, Dietze G, Mehnert H. Effects of beta-blocking agents on insulin secretion and glucose disposal. Horm Metab Res Suppl. 1990;22:29–33.PubMedCrossRefGoogle Scholar
  80. 80.
    Sarafidis PJ, Bakris GL. Antihypertensive treatment with beta-blockers and the spectrum of glycaemic control. QJM:An Int J Med. 2006;99(7):432–6.CrossRefGoogle Scholar
  81. 81.
    Lambertus MW, Murthy AR, Nagami P, et al. Diabetic ketoacidosis following pentamidine therapy in a patient with the acquired immunodeficiency syndrome. West J Med. 1988;149:602–4.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Bouchard P, Sai P, Reach G, et al. Diabetes mellitus following pentamidine-induced hypoglycemia in humans. Diabetes. 1982;31:40–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Assan R, Perronne C, Assan D, et al. Pentamidine-induced derangements of glucose homeostasis. Diabetes Care. 1995;18:47–55.PubMedCrossRefGoogle Scholar
  84. 84.
    Pandit MK, Burke J, Gustafson AB, et al. Drug-induced disorders of glucose tolerance. Ann Intern Med. 1993;118:529–40.PubMedCrossRefGoogle Scholar
  85. 85.
    O’Byrne S, Feely J. Effects of drugs on glucose tolerance in non-insulin-dependent diabetes (parts I and II). Drugs. 1990;40:203–19.PubMedCrossRefGoogle Scholar
  86. 86.
    Shiba T, Morino Y, Tagawa K, et al. Onset of diabetes with high titer anti-GAD antibody after IFN therapy for chronic hepatitis. Diabetes Res Clin Pract. 1996;30:237–41.CrossRefGoogle Scholar
  87. 87.
    Gallanosa AG, Spyker DA, Curnow RT. Diabetes mellitus associated with autonomic and peripheral neuropathy after Vacor poisoning: a review. Clin Toxicol. 1981;18:441–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Florescu D, Kotler DP. Insulin resistance, glucose intolerance and diabetes mellitus in HIV-infected patients. Antivir Ther. 2007;12:149–62.PubMedGoogle Scholar
  89. 89.
    Moyle G. Metabolic issues associated with protease inhibitors. J Acquir Immune Defic Syndr. 2007;45:S19–26.PubMedCrossRefGoogle Scholar
  90. 90.
    Martinez E, Mocroft A, Garcia-Viejo MA, et al. Risk of lipodystrophy in HIV-1-infected patients treated with protease inhibitors: a prospective cohort study. Lancet. 2001;357:592–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Liang J, Distler O, Cooper DA, et al. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia. Nat Med. 2001;7:1327–31.PubMedCrossRefGoogle Scholar
  92. 92.
    Riddle TM, Kuhel DG, Woollett LA, et al. HIV protease inhibitor induces fatty acid and sterol biosynthesis in liver and adipose tissues due to the accumulation of activated sterol regulatory element-binding proteins in the nucleus. J Biol Chem. 2001;276:37514–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Martine C, Auclair M, Vigouroux C, et al. The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance. Diabetes. 2001;50:1378–88.CrossRefGoogle Scholar
  94. 94.
    Murata H, Hruz PW, Mueckler M. The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem. 2000;275:20251–4.PubMedCrossRefGoogle Scholar
  95. 95.
    American Diabetes Association. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care. 2015;38(9):1777–803.CrossRefGoogle Scholar
  96. 96.
    Cederberg H, Stancakova A, Yaluri N, Modi S, Kuusisto J, Laakso M. Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: a 6 year follow-up study of the METSIM cohort. Diabetilogia. 2015;58:1109–17.CrossRefGoogle Scholar
  97. 97.
    Mikkelsen KH, Knop FK, Frost M, Hallas J, Pottgard A. Use of antibiotics and risk of type 2 diabetes: a population-based case–control study. J Clin Endocrinol Metab. 2015;100(10):3633–3640.Google Scholar
  98. 98.
    Thuny F, Richet H, Casalta J-P, Angelakis E, Habib G, Raoult D. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One. 2010;5(2), e9074.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes. 2013;37(1):16–23.CrossRefGoogle Scholar
  100. 100.
    Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A, DeRusso PA. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 2014;168(11):1063–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Carvalho BM, Guadagnini D, Tsukumo DML, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55(10):2823–34.PubMedCrossRefGoogle Scholar
  102. 102.
    Membrez M, Blancher F, Jaquet M, et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerant in mice. FASEB J. 2001;22(7):2416–26.CrossRefGoogle Scholar
  103. 103.
    Butler AA, LeRoith D. Minireview: tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinology. 2001;142:1685–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Usala AL, Madigan T, Burguera B, et al. Treatment of insulin-resistant diabetic ketoacidosis with insulin-like growth factor I in an adolescent with insulin-dependent diabetes [Brief report]. N Engl J Med. 1992;327:853–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46:3–10.PubMedCrossRefGoogle Scholar
  106. 106.
    Leung KC, Ho KKY. Stimulation of mitochondrial fatty acid oxidation by growth hormone in human fibroblasts. J Clin Endocrinol Metab. 1997;82:4208–13.PubMedGoogle Scholar
  107. 107.
    Goodman HN. The metabolic actions of growth hormone. In: Jefferson LS, Cherrington AD, Goodman HM, editors. Handbook of physiology, section, 7; The endocrine system, vol. 2. The endocrine pancreas and regulation of metabolism. New York: Oxford University Press, Inc.; 2001. p. 849–906.Google Scholar
  108. 108.
    Vilar L, Naves LA, Costa SS, et al. Increase of classic and nonclassic cardiovascular risk factors in patients with acromegaly. Endocr Pract. 2007;13:363–72.PubMedCrossRefGoogle Scholar
  109. 109.
    Munck A, Naray-Fejes-Toth A. Glucocorticoid physiology. In: DeGroot LJ, Jameson LJ, editors. Endocrinology. 5th ed. Philadelphia: Elsevier Saunders; 2006. p. 2287–309.Google Scholar
  110. 110.
    Salati LM. Regulation of fatty acid biosynthesis and lipolysis. In: Jefferson LS, Cherrington AD, Goodman HM, editors. Handbook of physiology, section, 7; The endocrine system, vol. 2. The endocrine pancreas and regulation of metabolism. New York: Oxford University Press, Inc.; 2001. p. 495–527.Google Scholar
  111. 111.
    Jefferson LS, Vary TC, Kimball SR. Regulation of protein metabolism in muscle. In: Jefferson LS, Cherrington AD, Goodman HM, editors. Handbook of physiology, section, 7; The endocrine system, vol. 2. The endocrine pancreas and regulation of metabolism. New York: Oxford University Press, Inc.; 2001. p. 536.Google Scholar
  112. 112.
    Gura T. Pot-bellied mice point to obesity enzyme [News of the Week]. Science. 2001;294:2071–2.PubMedCrossRefGoogle Scholar
  113. 113.
    Masuzaki H, Paterson J, Shinyama H, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294:2166–70.PubMedCrossRefGoogle Scholar
  114. 114.
    Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21:1443–55.PubMedCrossRefGoogle Scholar
  115. 115.
    Manger WM, Gifford RW. Clinical and experimental pheochromocytoma. 2nd ed. Cambridge: Blackwell Science, Inc.; 1996. p. 209.Google Scholar
  116. 116.
    Cryer PE. Catecholamines, pheochromocytoma and diabetes. Diabet Rev. 1993;1:309–17.Google Scholar
  117. 117.
    Pacak K. Preoperative management of the pheochromocytoma patient. J Clin Endocrinol Metab. 2007;92(11):4069–79.PubMedCrossRefGoogle Scholar
  118. 118.
    Romero R, Casanova B, Pulido N, et al. Stimulation of glucose transport by thyroid hormone in 3T3-L1 adipocytes: increased abundance of GLUT1 and GLUT4 glucose transporter proteins. J Endocrinol. 2000;164:187–95.PubMedCrossRefGoogle Scholar
  119. 119.
    Tosi F, Moghetti P, Castello R, et al. Early changes in plasma glucagon and growth hormone response to oral glucose in experimental hyperthyroidism. Metab Clin Exp. 1996;45:1029–33.PubMedCrossRefGoogle Scholar
  120. 120.
    Feng X, Jiang Y, Meltzer P, Yen PM. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol. 2000;14(7):947–55.PubMedCrossRefGoogle Scholar
  121. 121.
    Mokuno T, Uchimura K, Hayashi R, et al. Glucose transporter 2 concentrations in hyper- and hypothyroid rat livers. J Endocrinol. 1999;160:285–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Kreze Sr A, Kreze-Spirova E, Mikulecky M. Diabetes mellitus in primary aldosteronism. Bratisl Lek Listy. 2000;101:187–90.PubMedGoogle Scholar
  123. 123.
    Ferrannini E, Galvan AQ, Santoro D, Natali A. Potassium as a link between insulin and the rennin–angiotensin–aldosterone system. J Hypertens. 1992;10 Suppl 1:S5–S10.CrossRefGoogle Scholar
  124. 124.
    Hitomi H, Kiyomoto H, Nishiyama A, et al. Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells. Hypertension. 2007;50:750–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Strauch B, Widimsky J, Sindelka G, Skrha J. Does the treatment of primary hyperaldosteronism influence glucose tolerance? Physiol Res. 2003;52(4):503–6.PubMedGoogle Scholar

Useful Websites

  1. – This is a complete textbook of endocrinology on the web that is available free.
  2. – This is a site designed for patients and their families.
  3. – Diseases of the pancreas can be found at this site.
  4. – This is a wonderful site to look up all of the endocrine tumors by system, body location, or type.
  5. Mayo Clinic Staff. “Primary Aldosteronism.” January 5, 2007. Accessed 16 Feb 2008.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ashutosh S. Pareek
    • 1
    • 2
    Email author
  • Yana B. Garger
    • 1
  • Prajesh M. Joshi
    • 1
  • Carla M. Romero
    • 1
  • Amit K. Seth
    • 1
  1. 1.Department of Medicine, Beth Israel Medical CenterAlbert Einstein College of MedicineNew YorkUSA
  2. 2.Department of EndocrinologyNorth Shore Physicians GroupSalemUSA

Personalised recommendations