Genetics of Type 2 Diabetes: From Candidate Genes to Genome-Wide Association Analysis

  • Jeffrey Kleinberger
  • Kevin Brown
  • Kristi D. SilverEmail author
  • Alan R. Shuldiner
Reference work entry


The recent epidemic of type 2 diabetes (T2D) can be mainly attributed to current changes in environment, including sedentary lifestyle and excess calorie intake. However, T2D is a complex multifactorial disease that is affected by both genetic and environmental influences. For example, the highly penetrant monogenic forms of diabetes described in this chapter show how rare genetic variants can cause diabetes. While individuals carrying these variants are not considered to have T2D, these forms of diabetes show the large effect-size that genetic variants can have. Alternatively, age-related complex diseases, like T2D, are influenced by a large number of common genetic variants that have relatively small effects on risk. Through candidate gene studies, family-based linkage studies, and genome-wide association studies (GWAS), nearly 100 genetic variants have been shown to contribute to T2D susceptibility. Some of the most well-established variants and loci are described in this chapter. However, these variants still only account for a small percentage of the total heritability of T2D. While the understanding of the genetics of diabetes has greatly improved in the last 30 years, technological advancement, such as high-throughput genome sequencing, will allow for a deeper understanding of the role of genetics in T2D.


Genome wide Association Study Monogenic Diabetes Type 2 Diabetes 


  1. 1.
    Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: pathogenesis and treatment. Lancet. 2008;371(9631):2153–6. doi:10.1016/S0140-6736(08)60932-0.PubMedCrossRefGoogle Scholar
  2. 2.
    Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA. 2003;289(1):76–9. doi: jbr20304 [pii].PubMedCrossRefGoogle Scholar
  3. 3.
    McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9(5):356–69. doi:10.1038/nrg2344.PubMedCrossRefGoogle Scholar
  4. 4.
    Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest. 2008;118(5):1590–605. doi:10.1172/JCI34772.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ounissi-Benkalha H, Polychronakos C. The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Trends Mol Med. 2008;14(6):268–75. doi:10.1016/j.molmed.2008.04.002.PubMedCrossRefGoogle Scholar
  6. 6.
    Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2(1):a007732. doi:10.1101/cshperspect.a007732.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Stankov K, Benc D, Draskovic D. Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatrics. 2013;132(6):1112–22. doi:10.1542/peds.2013-1652.PubMedCrossRefGoogle Scholar
  8. 8.
    Storling J, Brorsson CA. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes. Curr Diab Rep. 2013;13(5):633–41. doi:10.1007/s11892-013-0408-6.PubMedCrossRefGoogle Scholar
  9. 9.
    Adeghate E, Schattner P, Dunn E. An update on the etiology and epidemiology of diabetes mellitus. Ann N Y Acad Sci. 2006;1084:1–29. doi: 1084/1/1 [pii].PubMedCrossRefGoogle Scholar
  10. 10.
    Lyssenko V, Almgren P, Anevski D, et al. Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. Diabetes. 2005;54(1):166–74. doi: 54/1/166 [pii].PubMedCrossRefGoogle Scholar
  11. 11.
    Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD. Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia. 1987;30(10):763–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Mayer EJ, Newman B, Austin MA, et al. Genetic and environmental influences on insulin levels and the insulin resistance syndrome: an analysis of women twins. Am J Epidemiol. 1996;143(4):323–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Hsueh WC, Mitchell BD, Aburomia R, et al. Diabetes in the old order Amish: characterization and heritability analysis of the Amish Family Diabetes Study. Diabetes Care. 2000;23(5):595–601.PubMedCrossRefGoogle Scholar
  14. 14.
    Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab. 2008;4(4):200–13. doi:10.1038/ncpendmet0778.PubMedCrossRefGoogle Scholar
  15. 15.
    Ellard S, Bellanne-Chantelot C, Hattersley AT, European Molecular Genetics Quality Network (EMQN) MODY group. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia. 2008;51(4):546–53. doi:10.1007/s00125-008-0942-y.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Vionnet N, Stoffel M, Takeda J, et al. Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature. 1992;356(6371):721–2. doi:10.1038/356721a0.PubMedCrossRefGoogle Scholar
  17. 17.
    Yamagata K, Oda N, Kaisaki PJ, et al. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature. 1996;384(6608):455–8. doi:10.1038/384455a0.PubMedCrossRefGoogle Scholar
  18. 18.
    Yamagata K, Furuta H, Oda N, et al. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature. 1996;384(6608):458–60. doi:10.1038/384458a0.PubMedCrossRefGoogle Scholar
  19. 19.
    Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet. 1997;17(2):138–9. doi:10.1038/ng1097-138.PubMedCrossRefGoogle Scholar
  20. 20.
    Horikawa Y, Iwasaki N, Hara M, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet. 1997;17(4):384–5. doi:10.1038/ng1297-384.PubMedCrossRefGoogle Scholar
  21. 21.
    Malecki MT, Jhala US, Antonellis A, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet. 1999;23(3):323–8. doi:10.1038/15500.PubMedCrossRefGoogle Scholar
  22. 22.
    Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci U S A. 2005;102(13):4807–12. doi: 0409177102 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Raeder H, Johansson S, Holm PI, et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet. 2006;38(1):54–62. doi: ng1708 [pii].PubMedCrossRefGoogle Scholar
  24. 24.
    Plengvidhya N, Kooptiwut S, Songtawee N, et al. PAX4 mutations in thais with maturity onset diabetes of the young. J Clin Endocrinol Metab. 2007;92(7):2821–6. doi: jc.2006-1927 [pii].PubMedCrossRefGoogle Scholar
  25. 25.
    Edghill EL, Flanagan SE, Patch AM, et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes. 2008;57(4):1034–42. doi: db07-1405 [pii].PubMedCrossRefGoogle Scholar
  26. 26.
    Molven A, Ringdal M, Nordbo AM, et al. Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes. 2008;57(4):1131–5. doi:10.2337/db07-1467.PubMedCrossRefGoogle Scholar
  27. 27.
    Borowiec M, Liew CW, Thompson R, et al. Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci U S A. 2009;106(34):14460–5. doi:10.1073/pnas.0906474106.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bowman P, Flanagan SE, Edghill EL, et al. Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia. 2012;55(1):123–7. doi:10.1007/s00125-011-2319-x.PubMedCrossRefGoogle Scholar
  29. 29.
    Bonnefond A, Philippe J, Durand E, et al. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS One. 2012;7(6), e37423. doi:10.1371/journal.pone.0037423.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Pihoker C, Gilliam LK, Ellard S, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for diabetes in youth. J Clin Endocrinol Metab. 2013;98(10):4055–62. doi:10.1210/jc.2013-1279.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504–8. doi:10.1007/s00125-010-1799-4.PubMedCrossRefGoogle Scholar
  32. 32.
    Iynedjian PB. Molecular physiology of mammalian glucokinase. Cell Mol Life Sci. 2009;66(1):27–42. doi:10.1007/s00018-008-8322-9.PubMedCrossRefGoogle Scholar
  33. 33.
    Gloyn AL, Noordam K, Willemsen MA, et al. Insights into the biochemical and genetic basis of glucokinase activation from naturally occurring hypoglycemia mutations. Diabetes. 2003;52(9):2433–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Njolstad PR, Sovik O, Cuesta-Munoz A, et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med. 2001;344(21):1588–92. doi:10.1056/NEJM200105243442104.PubMedCrossRefGoogle Scholar
  35. 35.
    Njolstad PR, Sagen JV, Bjorkhaug L, et al. Permanent neonatal diabetes caused by glucokinase deficiency: inborn error of the glucose-insulin signaling pathway. Diabetes. 2003;52(11):2854–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Osbak KK, Colclough K, Saint-Martin C, et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat. 2009;30(11):1512–26. doi:10.1002/humu.21110.PubMedCrossRefGoogle Scholar
  37. 37.
    Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA. 2014;311(3):279–86. doi:10.1001/jama.2013.283980.PubMedCrossRefGoogle Scholar
  38. 38.
    Ajjan RA, Owen KR. Glucokinase MODY and implications for treatment goals of common forms of diabetes. Curr Diab Rep. 2014;14(12):559. doi:10.1007/s11892-014-0559-0.PubMedCrossRefGoogle Scholar
  39. 39.
    Colom C, Corcoy R. Maturity onset diabetes of the young and pregnancy. Best Pract Res Clin Endocrinol Metab. 2010;24(4):605–15. doi:10.1016/j.beem.2010.05.008.PubMedCrossRefGoogle Scholar
  40. 40.
    Chakera AJ, Carleton VL, Ellard S, et al. Antenatal diagnosis of fetal genotype determines if maternal hyperglycemia due to a glucokinase mutation requires treatment. Diabetes Care. 2012;35(9):1832–4. doi:10.2337/dc12-0151.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Servitja JM, Pignatelli M, Maestro MA, et al. Hnf1alpha (MODY3) controls tissue-specific transcriptional programs and exerts opposed effects on cell growth in pancreatic islets and liver. Mol Cell Biol. 2009;29(11):2945–59. doi:10.1128/MCB.01389-08.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Maestro MA, Cardalda C, Boj SF, Luco RF, Servitja JM, Ferrer J. Distinct roles of HNF1beta, HNF1alpha, and HNF4alpha in regulating pancreas development, beta-cell function and growth. Endocr Dev. 2007;12:33–45. doi: 109603 [pii].PubMedCrossRefGoogle Scholar
  43. 43.
    Boj SF, Petrov D, Ferrer J. Epistasis of transcriptomes reveals synergism between transcriptional activators Hnf1alpha and Hnf4alpha. PLoS Genet. 2010;6(5), e1000970. doi:10.1371/journal.pgen.1000970.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bellanne-Chantelot C, Carette C, Riveline J, et al. The type and the position of HNF1A mutation modulate age at diagnosis of diabetes in patients with maturity-onset diabetes of the young (MODY)-3. Diabetes. 2007;57(2):503–8. doi:10.2337/db07-0859.PubMedCrossRefGoogle Scholar
  45. 45.
    Shepherd M, Shields B, Ellard S, Rubio-Cabezas O, Hattersley AT. A genetic diagnosis of HNF1A diabetes alters treatment and improves glycaemic control in the majority of insulin-treated patients. Diabet Med. 2009;26(4):437–41. doi:10.1111/j.1464-5491.2009.02690.x.PubMedCrossRefGoogle Scholar
  46. 46.
    Hegele RA, Cao H, Harris SB, Hanley AJ, Zinman B. Hepatocyte nuclear factor-1 alpha G319S. A private mutation in Oji-Cree associated with type 2 diabetes. Diabetes Care. 1999;22(3):524.PubMedCrossRefGoogle Scholar
  47. 47.
    SIGMA Type 2 Diabetes Consortium, Estrada K, Aukrust I, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA. 2014;311(22):2305–14. doi:10.1001/jama.2014.6511.CrossRefGoogle Scholar
  48. 48.
    Bellanne-Chantelot C, Chauveau D, Gautier JF, et al. Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann Intern Med. 2004;140(7):510–7. doi: 140/7/510 [pii].PubMedCrossRefGoogle Scholar
  49. 49.
    Bellanne-Chantelot C, Clauin S, Chauveau D, et al. Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes. 2005;54(11):3126–32. doi: 54/11/3126 [pii].PubMedCrossRefGoogle Scholar
  50. 50.
    Thomas CP, Erlandson JC, Edghill EL, Hattersley AT, Stolpen AH. A genetic syndrome of chronic renal failure with multiple renal cysts and early onset diabetes. Kidney Int. 2008;74(8):1094–9. doi:10.1038/ki.2008.227.PubMedCrossRefGoogle Scholar
  51. 51.
    Ohlsson H, Karlsson K, Edlund T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 1993;12(11):4251–9.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Waeber G, Thompson N, Nicod P, Bonny C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol. 1996;10(11):1327–34. doi:10.1210/mend.10.11.8923459.PubMedGoogle Scholar
  53. 53.
    Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 1998;12(12):1763–8.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sachdeva MM, Claiborn KC, Khoo C, et al. Pdx1 (MODY4) regulates pancreatic beta cell susceptibility to ER stress. Proc Natl Acad Sci U S A. 2009;106(45):19090–5. doi:10.1073/pnas.0904849106.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997;15(1):106–10. doi:10.1038/ng0197-106.PubMedCrossRefGoogle Scholar
  56. 56.
    Thomas IH, Saini NK, Adhikari A, et al. Neonatal diabetes mellitus with pancreatic agenesis in an infant with homozygous IPF-1 Pro63fsX60 mutation. Pediatr Diabetes. 2009;10(7):492–6. doi:10.1111/j.1399-5448.2009.00526.x.PubMedCrossRefGoogle Scholar
  57. 57.
    Fajans SS, Bell GI, Paz VP, et al. Obesity and hyperinsulinemia in a family with pancreatic agenesis and MODY caused by the IPF1 mutation Pro63fsX60. Transl Res. 2010;156(1):7–14. doi:10.1016/j.trsl.2010.03.003.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Schwitzgebel VM, Mamin A, Brun T, et al. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J Clin Endocrinol Metab. 2003;88(9):4398–406. doi:10.1210/jc.2003-030046.PubMedCrossRefGoogle Scholar
  59. 59.
    Cockburn BN, Bermano G, Boodram LL, et al. Insulin promoter factor-1 mutations and diabetes in Trinidad: identification of a novel diabetes-associated mutation (E224K) in an Indo-Trinidadian family. J Clin Endocrinol Metab. 2004;89(2):971–8. doi:10.1210/jc.2003-031282.PubMedCrossRefGoogle Scholar
  60. 60.
    Naya FJ, Stellrecht CM, Tsai MJ. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 1995;9(8):1009–19.PubMedCrossRefGoogle Scholar
  61. 61.
    Liu L, Furuta H, Minami A, et al. A novel mutation, Ser159Pro in the NeuroD1/BETA2 gene contributes to the development of diabetes in a Chinese potential MODY family. Mol Cell Biochem. 2007;303(1–2):115–20. doi:10.1007/s11010-007-9463-0.PubMedGoogle Scholar
  62. 62.
    Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes. 2010;59(9):2326–31. doi:10.2337/db10-0011.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lomberk G, Grzenda A, Mathison A, et al. Kruppel-like factor 11 regulates the expression of metabolic genes via an evolutionarily conserved protein interaction domain functionally disrupted in maturity onset diabetes of the young. J Biol Chem. 2013;288(24):17745–58. doi:10.1074/jbc.M112.434670.PubMedCrossRefGoogle Scholar
  64. 64.
    Bonnefond A, Lomberk G, Buttar N, et al. Disruption of a novel Kruppel-like transcription factor p300-regulated pathway for insulin biosynthesis revealed by studies of the c.-331 INS mutation found in neonatal diabetes mellitus. J Biol Chem. 2011;286(32):28414–24. doi:10.1074/jbc.M110.215822.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Raeder H, Haldorsen IS, Ersland L, et al. Pancreatic lipomatosis is a structural marker in nondiabetic children with mutations in carboxyl-ester lipase. Diabetes. 2007;56(2):444–9. doi: 56/2/444 [pii].PubMedCrossRefGoogle Scholar
  66. 66.
    Stoy J, Edghill EL, Flanagan SE, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A. 2007;104(38):15040–4. doi: 0707291104 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Flanagan SE, Clauin S, Bellanne-Chantelot C, et al. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat. 2009;30(2):170–80. doi:10.1002/humu.20838.PubMedCrossRefGoogle Scholar
  68. 68.
    1000 Genomes Project Consortium, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi:10.1038/nature11632.CrossRefGoogle Scholar
  69. 69.
    Tennessen JA, Bigham AW, O’Connor TD, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337(6090):64–9. doi:10.1126/science.1219240.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Proks P. Neonatal diabetes caused by activating mutations in the sulphonylurea receptor. Diabetes Metab J. 2013;37(3):157–64. doi:10.4093/dmj.2013.37.3.157.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med. 2004;350(18):1838–49. doi:10.1056/NEJMoa032922.PubMedCrossRefGoogle Scholar
  72. 72.
    Naylor RN, Greeley SA, Bell GI, Philipson LH. Genetics and pathophysiology of neonatal diabetes mellitus. J Diabetes Investig. 2011;2(3):158–69. doi:10.1111/j.2040-1124.2011.00106.x.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Edghill EL, Gloyn AL, Gillespie KM, et al. Activating mutations in the KCNJ11 gene encoding the ATP-sensitive K+ channel subunit Kir6.2 are rare in clinically defined type 1 diabetes diagnosed before 2 years. Diabetes. 2004;53(11):2998–3001. doi: 53/11/2998 [pii].PubMedCrossRefGoogle Scholar
  74. 74.
    Vaxillaire M, Populaire C, Busiah K, et al. Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients. Diabetes. 2004;53(10):2719–22. doi: 53/10/2719 [pii].PubMedCrossRefGoogle Scholar
  75. 75.
    Gloyn AL, Diatloff-Zito C, Edghill EL, et al. KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. Eur J Hum Genet. 2006;14(7):824–30. doi: 5201629 [pii].PubMedCrossRefGoogle Scholar
  76. 76.
    Tornovsky S, Crane A, Cosgrove KE, et al. Hyperinsulinism of infancy: novel ABCC8 and KCNJ11 mutations and evidence for additional locus heterogeneity. J Clin Endocrinol Metab. 2004;89(12):6224–34. doi: 89/12/6224 [pii].PubMedCrossRefGoogle Scholar
  77. 77.
    Babenko AP, Polak M, Cave H, et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med. 2006;355(5):456–66. doi: 355/5/456 [pii].PubMedCrossRefGoogle Scholar
  78. 78.
    Pearson ER, Flechtner I, Njolstad PR, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med. 2006;355(5):467–77. doi: 355/5/467 [pii].PubMedCrossRefGoogle Scholar
  79. 79.
    Slingerland AS, Hurkx W, Noordam K, et al. Sulphonylurea therapy improves cognition in a patient with the V59M KCNJ11 mutation. Diabet Med. 2008;25(3):277–81. doi:10.1111/j.1464-5491.2007.02373.x.PubMedCrossRefGoogle Scholar
  80. 80.
    Koster JC, Cadario F, Peruzzi C, Colombo C, Nichols CG, Barbetti F. The G53D mutation in Kir6.2 (KCNJ11) is associated with neonatal diabetes and motor dysfunction in adulthood that is improved with sulfonylurea therapy. J Clin Endocrinol Metab. 2008;93(3):1054–61. doi: jc.2007-1826 [pii].PubMedCrossRefGoogle Scholar
  81. 81.
    Mlynarski W, Tarasov AI, Gach A, et al. Sulfonylurea improves CNS function in a case of intermediate DEND syndrome caused by a mutation in KCNJ11. Nat Clin Pract Neurol. 2007;3(11):640–5. doi: ncpneuro0640 [pii].PubMedCrossRefGoogle Scholar
  82. 82.
    Meur G, Simon A, Harun N, et al. Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention. Diabetes. 2010;59(3):653–61. doi:10.2337/db09-1091.PubMedCrossRefGoogle Scholar
  83. 83.
    Park SY, Ye H, Steiner DF, Bell GI. Mutant proinsulin proteins associated with neonatal diabetes are retained in the endoplasmic reticulum and not efficiently secreted. Biochem Biophys Res Commun. 2010;391(3):1449–54. doi:10.1016/j.bbrc.2009.12.090.PubMedCrossRefGoogle Scholar
  84. 84.
    Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet. 2000;25(4):406–9. doi:10.1038/78085.PubMedCrossRefGoogle Scholar
  85. 85.
    Rubio-Cabezas O, Minton JA, Caswell R, et al. Clinical heterogeneity in patients with FOXP3 mutations presenting with permanent neonatal diabetes. Diabetes Care. 2009;32(1):111–6. doi:10.2337/dc08-1188.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Sellick GS, Barker KT, Stolte-Dijkstra I, et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet. 2004;36(12):1301–5. doi: ng1475 [pii].PubMedCrossRefGoogle Scholar
  87. 87.
    Barrett TG, Bundey SE, Macleod AF. Neurodegeneration and diabetes: UK nationwide study of wolfram (DIDMOAD) syndrome. Lancet. 1995;346(8988):1458–63. doi: S0140-6736(95)92473-6 [pii].PubMedCrossRefGoogle Scholar
  88. 88.
    Senee V, Chelala C, Duchatelet S, et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet. 2006;38(6):682–7. doi: ng1802 [pii].PubMedCrossRefGoogle Scholar
  89. 89.
    Hamilton-Shield JP. Overview of neonatal diabetes. Endocr Dev. 2007;12:12–23. doi: 109601 [pii].PubMedCrossRefGoogle Scholar
  90. 90.
    Greeley SA, Naylor RN, Philipson LH, Bell GI. Neonatal diabetes: an expanding list of genes allows for improved diagnosis and treatment. Curr Diab Rep. 2011;11(6):519–32. doi:10.1007/s11892-011-0234-7.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Arima T, Drewell RA, Oshimura M, Wake N, Surani MA. A novel imprinted gene, HYMAI, is located within an imprinted domain on human chromosome 6 containing ZAC. Genomics. 2000;67(3):248–55. doi:10.1006/geno.2000.6266.PubMedCrossRefGoogle Scholar
  92. 92.
    Gardner RJ, Mackay DJ, Mungall AJ, et al. An imprinted locus associated with transient neonatal diabetes mellitus. Hum Mol Genet. 2000;9(4):589–96. doi: ddd067 [pii].PubMedCrossRefGoogle Scholar
  93. 93.
    Mackay DJ, Callaway JL, Marks SM, et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet. 2008;40(8):949–51. doi:10.1038/ng.187.PubMedCrossRefGoogle Scholar
  94. 94.
    Reardon W, Ross RJ, Sweeney MG, et al. Diabetes mellitus associated with a pathogenic point mutation in mitochondrial DNA. Lancet. 1992;340(8832):1376–9. doi: 0140-6736(92)92560-3 [pii].PubMedCrossRefGoogle Scholar
  95. 95.
    van den Ouweland JM, Lemkes HH, Ruitenbeek W, et al. Mutation in mitochondrial tRNA(leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet. 1992;1(5):368–71. doi:10.1038/ng0892-368.PubMedCrossRefGoogle Scholar
  96. 96.
    Velho G, Byrne MM, Clement K, et al. Clinical phenotypes, insulin secretion, and insulin sensitivity in kindreds with maternally inherited diabetes and deafness due to mitochondrial tRNALeu(UUR) gene mutation. Diabetes. 1996;45(4):478–87.PubMedCrossRefGoogle Scholar
  97. 97.
    Laloi-Michelin M, Meas T, Ambonville C, et al. The clinical variability of maternally inherited diabetes and deafness is associated with the degree of heteroplasmy in blood leukocytes. J Clin Endocrinol Metab. 2009;94(8):3025–30. doi:10.1210/jc.2008-2680.PubMedCrossRefGoogle Scholar
  98. 98.
    Maassen JA, Janssen GM, ’t Hart LM. Molecular mechanisms of mitochondrial diabetes (MIDD). Ann Med. 2005;37(3):213–21. doi: U7XKN537461G3327 [pii].PubMedCrossRefGoogle Scholar
  99. 99.
    Murphy R, Turnbull DM, Walker M, Hattersley AT. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet Med. 2008;25(4):383–99. doi:10.1111/j.1464-5491.2008.02359.x.PubMedCrossRefGoogle Scholar
  100. 100.
    Smith PR, Bain SC, Good PA, et al. Pigmentary retinal dystrophy and the syndrome of maternally inherited diabetes and deafness caused by the mitochondrial DNA 3243 tRNA(leu) A to G mutation. Ophthalmology. 1999;106(6):1101–8. doi: S0161-6420(99)90244-0 [pii].PubMedCrossRefGoogle Scholar
  101. 101.
    Kadowaki T, Bevins CL, Cama A, et al. Two mutant alleles of the insulin receptor gene in a patient with extreme insulin resistance. Science. 1988;240(4853):787–90.PubMedCrossRefGoogle Scholar
  102. 102.
    Mercado MM, McLenithan JC, Silver KD, Shuldiner AR. Genetics of insulin resistance. Curr Diab Rep. 2002;2(1):83–95.PubMedCrossRefGoogle Scholar
  103. 103.
    Moller DE, Cohen O, Yamaguchi Y, et al. Prevalence of mutations in the insulin receptor gene in subjects with features of the type A syndrome of insulin resistance. Diabetes. 1994;43(2):247–55.PubMedCrossRefGoogle Scholar
  104. 104.
    Taylor SI, Cama A, Accili D, et al. Mutations in the insulin receptor gene. Endocr Rev. 1992;13(3):566–95. doi:10.1210/edrv-13-3-566.PubMedCrossRefGoogle Scholar
  105. 105.
    Krook A, O’Rahilly S. Mutant insulin receptors in syndromes of insulin resistance. Baillieres Clin Endocrinol Metab. 1996;10(1):97–122.PubMedCrossRefGoogle Scholar
  106. 106.
    Kosztolanyi G. Leprechaunism/Donohue syndrome/insulin receptor gene mutations: a syndrome delineation story from clinicopathological description to molecular understanding. Eur J Pediatr. 1997;156(4):253–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Musso C, Cochran E, Moran SA, et al. Clinical course of genetic diseases of the insulin receptor (type A and Rabson-Mendenhall syndromes): a 30-year prospective. Medicine (Baltimore). 2004;83(4):209–22. doi: 00005792-200407000-00001 [pii].CrossRefGoogle Scholar
  108. 108.
    Taylor SI, Arioglu E. Genetically defined forms of diabetes in children. J Clin Endocrinol Metab. 1999;84(12):4390–6. doi:10.1210/jcem.84.12.6237.PubMedCrossRefGoogle Scholar
  109. 109.
    Agarwal AK, Arioglu E, De Almeida S, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31(1):21–3. doi:10.1038/ng880.PubMedCrossRefGoogle Scholar
  110. 110.
    Magre J, Delepine M, Khallouf E, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet. 2001;28(4):365–70. doi:10.1038/ng585.PubMedCrossRefGoogle Scholar
  111. 111.
    Kim CA, Delepine M, Boutet E, et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab. 2008;93(4):1129–34. doi:10.1210/jc.2007-1328.PubMedCrossRefGoogle Scholar
  112. 112.
    Hayashi YK, Matsuda C, Ogawa M, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119(9):2623–33. doi:10.1172/JCI38660.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Shackleton S, Lloyd DJ, Jackson SN, et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet. 2000;24(2):153–6. doi:10.1038/72807.PubMedCrossRefGoogle Scholar
  114. 114.
    Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880–3. doi:10.1038/47254.PubMedGoogle Scholar
  115. 115.
    Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes. 2002;51(12):3586–90.PubMedCrossRefGoogle Scholar
  116. 116.
    Gandotra S, Le Dour C, Bottomley W, et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med. 2011;364(8):740–8. doi:10.1056/NEJMoa1007487.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Rubio-Cabezas O, Puri V, Murano I, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med. 2009;1(5):280–7. doi:10.1002/emmm.200900037.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Carboni N, Brancati F, Cocco E, et al. Partial lipodystrophy associated with muscular dystrophy of unknown genetic origin. Muscle Nerve. 2014;49(6):928–30. doi:10.1002/mus.24157.PubMedCrossRefGoogle Scholar
  119. 119.
    Bonnefond A, Froguel P. Rare and common genetic events in type 2 diabetes: what should biologists know? Cell Metab. 2015;21(3):357–68. doi:10.1016/j.cmet.2014.12.020.PubMedCrossRefGoogle Scholar
  120. 120.
    Reynisdottir I, Thorleifsson G, Benediktsson R, et al. Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2. Am J Hum Genet. 2003;73(2):323–35. doi: S0002-9297(07)61921-1 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320–3. doi: ng1732 [pii].PubMedCrossRefGoogle Scholar
  122. 122.
    Peng S, Zhu Y, Lu B, Xu F, Li X, Lai M. TCF7L2 gene polymorphisms and type 2 diabetes risk: a comprehensive and updated meta-analysis involving 121,174 subjects. Mutagenesis. 2013;28(1):25–37. doi:10.1093/mutage/ges048.PubMedCrossRefGoogle Scholar
  123. 123.
    Cauchi S, El Achhab Y, Choquet H, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med (Berl). 2007;85(7):777–82. doi:10.1007/s00109-007-0203-4.CrossRefGoogle Scholar
  124. 124.
    Damcott CM, Pollin TI, Reinhart LJ, et al. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes. 2006;55(9):2654–9. doi: 55/9/2654 [pii].PubMedCrossRefGoogle Scholar
  125. 125.
    Tong Y, Lin Y, Zhang Y, et al. Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large human genome epidemiology (HuGE) review and meta-analysis. BMC Med Genet. 2009;10:15. doi:10.1186/1471-2350-10-15.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Liu Z, Habener JF. WNT signaling in pancreatic islets. Adv Exp Med Biol. 2010;654:391–419. doi:10.1007/978-90-481-3271-3_17.PubMedCrossRefGoogle Scholar
  127. 127.
    Xiong X, Shao W, Jin T. New insight into the mechanisms underlying the function of the incretin hormone glucagon-like peptide-1 in pancreatic beta-cells: the involvement of the WNT signaling pathway effector beta-catenin. Islets. 2012;4(6):359–65. doi:10.4161/isl.23345.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Pilgaard K, Jensen CB, Schou JH, et al. The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men. Diabetologia. 2009;52(7):1298–307. doi:10.1007/s00125-009-1307-x.PubMedCrossRefGoogle Scholar
  129. 129.
    Shu L, Matveyenko AV, Kerr-Conte J, Cho JH, McIntosh CH, Maedler K. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet. 2009;18(13):2388–99. doi:10.1093/hmg/ddp178.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Pearson ER, Donnelly LA, Kimber C, et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes. 2007;56(8):2178–82. doi: db07-0440 [pii].PubMedCrossRefGoogle Scholar
  131. 131.
    Holstein A, Hahn M, Korner A, Stumvoll M, Kovacs P. TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes. BMC Med Genet. 2011;12:30. doi:10.1186/1471-2350-12-30.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Schroner Z, Javorsky M, Tkacova R, et al. Effect of sulphonylurea treatment on glycaemic control is related to TCF7L2 genotype in patients with type 2 diabetes. Diabetes Obes Metab. 2011;13(1):89–91. doi:10.1111/j.1463-1326.2010.01324.x.PubMedCrossRefGoogle Scholar
  133. 133.
    Freathy RM, Hayes MG, Urbanek M, et al. Hyperglycemia and adverse pregnancy outcome (HAPO) study: common genetic variants in GCK and TCF7L2 are associated with fasting and postchallenge glucose levels in pregnancy and with the new consensus definition of gestational diabetes mellitus from the international association of diabetes and pregnancy study groups. Diabetes. 2010;59(10):2682–9. doi:10.2337/db10-0177.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Pappa KI, Gazouli M, Economou K, et al. Gestational diabetes mellitus shares polymorphisms of genes associated with insulin resistance and type 2 diabetes in the Greek population. Gynecol Endocrinol. 2011;27(4):267–72. doi:10.3109/09513590.2010.490609.PubMedCrossRefGoogle Scholar
  135. 135.
    Cho YM, Kim TH, Lim S, et al. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia. 2009;52(2):253–61. doi:10.1007/s00125-008-1196-4.PubMedCrossRefGoogle Scholar
  136. 136.
    Shaat N, Lernmark A, Karlsson E, et al. A variant in the transcription factor 7-like 2 (TCF7L2) gene is associated with an increased risk of gestational diabetes mellitus. Diabetologia. 2007;50(5):972–9. doi:10.1007/s00125-007-0623-2.PubMedCrossRefGoogle Scholar
  137. 137.
    Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in the diabetes prevention program. N Engl J Med. 2006;355(3):241–50. doi: 355/3/241 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40(9):1098–102. doi:10.1038/ng.208.PubMedCrossRefGoogle Scholar
  139. 139.
    Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40(9):1092–7. doi:10.1038/ng.207.PubMedCrossRefGoogle Scholar
  140. 140.
    Jonsson A, Isomaa B, Tuomi T, et al. A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion. Diabetes. 2009;58(10):2409–13. doi:10.2337/db09-0246.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Been LF, Ralhan S, Wander GS, et al. Variants in KCNQ1 increase type II diabetes susceptibility in South Asians: a study of 3,310 subjects from India and the US. BMC Med Genet. 2011;12:18. doi:10.1186/1471-2350-12-18.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Long J, Edwards T, Signorello LB, et al. Evaluation of genome-wide association study-identified type 2 diabetes loci in African Americans. Am J Epidemiol. 2012;176(11):995–1001. doi:10.1093/aje/kws176.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Ng MC, Shriner D, Chen BH, et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 2014;10(8), e1004517. doi:10.1371/journal.pgen.1004517.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Palmer ND, Goodarzi MO, Langefeld CD, et al. Genetic variants associated with quantitative glucose homeostasis traits translate to type 2 diabetes in Mexican Americans: the GUARDIAN (genetics underlying diabetes in hispanics) consortium. Diabetes. 2015;64(5):1853–66. doi:10.2337/db14-0732.PubMedCrossRefGoogle Scholar
  145. 145.
    Hanson RL, Guo T, Muller YL, et al. Strong parent-of-origin effects in the association of KCNQ1 variants with type 2 diabetes in American Indians. Diabetes. 2013;62(8):2984–91. doi:10.2337/db12-1767.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Tan JT, Nurbaya S, Gardner D, Ye S, Tai ES, Ng DP. Genetic variation in KCNQ1 associates with fasting glucose and beta-cell function: a study of 3,734 subjects comprising three ethnicities living in Singapore. Diabetes. 2009;58(6):1445–9. doi:10.2337/db08-1138.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Yu W, Hu C, Zhang R, et al. Effects of KCNQ1 polymorphisms on the therapeutic efficacy of oral antidiabetic drugs in Chinese patients with type 2 diabetes. Clin Pharmacol Ther. 2011;89(3):437–42. doi:10.1038/clpt.2010.351.PubMedCrossRefGoogle Scholar
  148. 148.
    Schroner Z, Dobrikova M, Klimcakova L, et al. Variation in KCNQ1 is associated with therapeutic response to sulphonylureas. Med Sci Monit. 2011;17(7):CR392–6. doi: 881850 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell. 2006;127(2):265–75. doi: S0092-8674(06)01284-0 [pii].PubMedCrossRefGoogle Scholar
  150. 150.
    Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994;264(5157):436–40.PubMedCrossRefGoogle Scholar
  151. 151.
    Krishnamurthy J, Ramsey MR, Ligon KL, et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature. 2006;443(7110):453–7. doi: nature05092 [pii].PubMedCrossRefGoogle Scholar
  152. 152.
    Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–5. doi: 1142382 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–41. doi: 1142364 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, Novartis Institutes of BioMedical Research, Saxena R, Voight BF, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–6. doi: 1142358 [pii].CrossRefGoogle Scholar
  155. 155.
    Peng F, Hu D, Gu C, et al. The relationship between five widely-evaluated variants in CDKN2A/B and CDKAL1 genes and the risk of type 2 diabetes: a meta-analysis. Gene. 2013;531(2):435–43. doi:10.1016/j.gene.2013.08.075.PubMedCrossRefGoogle Scholar
  156. 156.
    Grarup N, Rose CS, Andersson EA, et al. Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes. 2007;56(12):3105–11. doi: db07-0856 [pii].PubMedCrossRefGoogle Scholar
  157. 157.
    Pal A, Potjer TP, Thomsen SK, et al. Loss-of-function mutations in the cell-cycle control gene CDKN2A impact on glucose homeostasis in humans. Diabetes. 2016;65(2):527–33. Doi: db15060 [pii].Google Scholar
  158. 158.
    Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–3. doi: 1142842 [pii].PubMedCrossRefGoogle Scholar
  159. 159.
    Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357(5):443–53. doi: NEJMoa072366 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94. doi: 1141634 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Rampersaud E, Mitchell BD, Pollin TI, et al. Physical activity and the association of common FTO gene variants with body mass index and obesity. Arch Intern Med. 2008;168(16):1791–7. doi:10.1001/archinte.168.16.1791.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Meyre D, Delplanque J, Chevre JC, et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet. 2009;41(2):157–9. doi:10.1038/ng.301.PubMedCrossRefGoogle Scholar
  163. 163.
    Xi B, Takeuchi F, Meirhaeghe A, et al. Associations of genetic variants in/near body mass index-associated genes with type 2 diabetes: a systematic meta-analysis. Clin Endocrinol (Oxf). 2014;81(5):702–10. doi:10.1111/cen.12428.CrossRefGoogle Scholar
  164. 164.
    Claussnitzer M, Dankel SN, Kim KH, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373(10):895–907. doi:10.1056/NEJMoa1502214.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359(24):2558–66. doi:10.1056/NEJMoa0803839.PubMedCrossRefGoogle Scholar
  166. 166.
    McCaffery JM, Papandonatos GD, Huggins GS, et al. FTO predicts weight regain in the look AHEAD clinical trial. Int J Obes (Lond). 2013;37(12):1545–52. doi:10.1038/ijo.2013.54.CrossRefGoogle Scholar
  167. 167.
    Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881–5. doi:nature05616 [pii].Google Scholar
  168. 168.
    Cai Y, Yi J, Ma Y, Fu D. Meta-analysis of the effect of HHEX gene polymorphism on the risk of type 2 diabetes. Mutagenesis. 2011;26(2):309–14. doi:10.1093/mutage/geq095.PubMedCrossRefGoogle Scholar
  169. 169.
    Palmer ND, McDonough CW, Hicks PJ, et al. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One. 2012;7(1), e29202. doi:10.1371/journal.pone.0029202.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Bort R, Martinez-Barbera JP, Beddington RS, Zaret KS. Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development. 2004;131(4):797–806. doi:10.1242/dev.00965.PubMedCrossRefGoogle Scholar
  171. 171.
    Hunter MP, Wilson CM, Jiang X, et al. The homeobox gene hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol. 2007;308(2):355–67. doi: S0012-1606(07)01084-6 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Rudovich N, Pivovarova O, Fisher E, et al. Polymorphisms within insulin-degrading enzyme (IDE) gene determine insulin metabolism and risk of type 2 diabetes. J Mol Med (Berl). 2009;87(11):1145–51. doi:10.1007/s00109-009-0540-6.CrossRefGoogle Scholar
  173. 173.
    Dimas AS, Lagou V, Barker A, et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63(6):2158–71. doi:10.2337/db13-0949.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Ruchat SM, Elks CE, Loos RJ, et al. Association between insulin secretion, insulin sensitivity and type 2 diabetes susceptibility variants identified in genome-wide association studies. Acta Diabetol. 2009;46(3):217–26. doi:10.1007/s00592-008-0080-5.PubMedCrossRefGoogle Scholar
  175. 175.
    Pascoe L, Tura A, Patel SK, et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes. 2007;56(12):3101–4. doi: db07-0634 [pii].PubMedCrossRefGoogle Scholar
  176. 176.
    Rosengren AH, Braun M, Mahdi T, et al. Reduced insulin exocytosis in human pancreatic beta-cells with gene variants linked to type 2 diabetes. Diabetes. 2012;61(7):1726–33. doi:10.2337/db11-1516.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39(6):770–5. doi: ng2043 [pii].PubMedCrossRefGoogle Scholar
  178. 178.
    Cheng L, Zhang D, Zhou L, Zhao J, Chen B. Association between SLC30A8 rs13266634 polymorphism and type 2 diabetes risk: a meta-analysis. Med Sci Monit. 2015;21:2178–89. doi: 10.12659/MSM.894052.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Egefjord L, Jensen JL, Bang-Berthelsen CH, et al. Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis? BMC Endocr Disord. 2009;9:7. doi:10.1186/1472-6823-9-7.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Boesgaard TW, Zilinskaite J, Vanttinen M, et al. The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients–the EUGENE2 study. Diabetologia. 2008;51(5):816–20. doi:10.1007/s00125-008-0955-6.PubMedCrossRefGoogle Scholar
  181. 181.
    Maruthur NM, Clark JM, Fu M, Linda Kao WH, Shuldiner AR. Effect of zinc supplementation on insulin secretion: interaction between zinc and SLC30A8 genotype in old order Amish. Diabetologia. 2015;58(2):295–303. doi:10.1007/s00125-014-3419-1.PubMedCrossRefGoogle Scholar
  182. 182.
    Flannick J, Thorleifsson G, Beer NL, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46(4):357–63. doi:10.1038/ng.2915.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Yen CJ, Beamer BA, Negri C, et al. Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic caucasians: identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem Biophys Res Commun. 1997;241(2):270–4. doi: S0006-291X(97)97798-6 [pii].PubMedCrossRefGoogle Scholar
  184. 184.
    Celi FS, Shuldiner AR. The role of peroxisome proliferator-activated receptor gamma in diabetes and obesity. Curr Diab Rep. 2002;2(2):179–85.PubMedCrossRefGoogle Scholar
  185. 185.
    Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76–80. doi:10.1038/79216.PubMedCrossRefGoogle Scholar
  186. 186.
    Deeb SS, Fajas L, Nemoto M, et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998;20(3):284–7. doi:10.1038/3099.PubMedCrossRefGoogle Scholar
  187. 187.
    Azab MM, Abdel-Azeez HA, Zanaty MF, El Alawi SM. Peroxisome proliferator activated receptor gamma2 gene Pro12Ala gene polymorphism in type 2 diabetes and its relationship with diabetic nephropathy. Clin Lab. 2014;60(5):743–9.PubMedGoogle Scholar
  188. 188.
    Wang X, Liu J, Ouyang Y, Fang M, Gao H, Liu L. The association between the Pro12Ala variant in the PPARgamma2 gene and type 2 diabetes mellitus and obesity in a Chinese population. PLoS One. 2013;8(8), e71985. doi:10.1371/journal.pone.0071985.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Robitaille J, Despres JP, Perusse L, Vohl MC. The PPAR-gamma P12A polymorphism modulates the relationship between dietary fat intake and components of the metabolic syndrome: Results from the quebec family study. Clin Genet. 2003;63(2):109–16. doi: 026 [pii].PubMedCrossRefGoogle Scholar
  190. 190.
    Tellechea ML, Aranguren F, Perez MS, Cerrone GE, Frechtel GD, Taverna MJ. Pro12Ala polymorphism of the peroxisome proliferatoractivated receptor-gamma gene is associated with metabolic syndrome and surrogate measures of insulin resistance in healthy men: interaction with smoking status. Circ J. 2009;73(11):2118–24. doi:JST.JSTAGE/circj/CJ-09-0320 [pii].Google Scholar
  191. 191.
    Hani EH, Boutin P, Durand E, et al. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in caucasians. Diabetologia. 1998;41(12):1511–5. doi:10.1007/s001250051098.PubMedCrossRefGoogle Scholar
  192. 192.
    Barroso I, Luan J, Middelberg RP, et al. Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol. 2003;1(1), E20. doi:10.1371/journal.pbio.0000020.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Gloyn AL, Weedon MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52(2):568–72.PubMedCrossRefGoogle Scholar
  194. 194.
    Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta. 2003;1606(1–3):1–21. doi: S0005272803001099 [pii].PubMedGoogle Scholar
  195. 195.
    Schwanstecher C, Meyer U, Schwanstecher M. K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. Diabetes. 2002;51(3):875–9.PubMedCrossRefGoogle Scholar
  196. 196.
    Schwanstecher C, Neugebauer B, Schulz M, Schwanstecher M. The common single nucleotide polymorphism E23K in K(IR)6.2 sensitizes pancreatic beta-cell ATP-sensitive potassium channels toward activation through nucleoside diphosphates. Diabetes. 2002;51 Suppl 3:S363–7.PubMedCrossRefGoogle Scholar
  197. 197.
    Nielsen EM, Hansen L, Carstensen B, et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes. 2003;52(2):573–7.PubMedCrossRefGoogle Scholar
  198. 198.
    Lyssenko V, Almgren P, Anevski D, et al. Genetic prediction of future type 2 diabetes. PLoS Med. 2005;2(12), e345. doi: 04-PLME-RA-0293R3 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Qiu L, Na R, Xu R, et al. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. PLoS One. 2014;9(4), e93961. doi:10.1371/journal.pone.0093961.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Li YY. The KCNJ11 E23K gene polymorphism and type 2 diabetes mellitus in the Chinese Han population: a meta-analysis of 6,109 subjects. Mol Biol Rep. 2013;40(1):141–6. doi:10.1007/s11033-012-2042-9.PubMedCrossRefGoogle Scholar
  201. 201.
    Sesti G, Laratta E, Cardellini M, et al. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5′-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J Clin Endocrinol Metab. 2006;91(6):2334–9. doi: jc.2005-2323 [pii].PubMedCrossRefGoogle Scholar
  202. 202.
    Stancakova A, Pihlajamaki J, Kuusisto J, et al. Single-nucleotide polymorphism rs7754840 of CDKAL1 is associated with impaired insulin secretion in nondiabetic offspring of type 2 diabetic subjects and in a large sample of men with normal glucose tolerance. J Clin Endocrinol Metab. 2008;93(5):1924–30. doi:10.1210/jc.2007-2218.PubMedCrossRefGoogle Scholar
  203. 203.
    Groenewoud MJ, Dekker JM, Fritsche A, et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia. 2008;51(9):1659–63. doi:10.1007/s00125-008-1083-z.PubMedCrossRefGoogle Scholar
  204. 204.
    Wu J, Wu J, Zhou Y, et al. Quantitative assessment of the variation in IGF2BP2 gene and type 2 diabetes risk. Acta Diabetol. 2012;49 Suppl 1:S87–97. doi:10.1007/s00592-011-0336-3.PubMedCrossRefGoogle Scholar
  205. 205.
    Calderari S, Gangnerau MN, Thibault M, et al. Defective IGF2 and IGF1R protein production in embryonic pancreas precedes beta cell mass anomaly in the goto-kakizaki rat model of type 2 diabetes. Diabetologia. 2007;50(7):1463–71. doi:10.1007/s00125-007-0676-2.PubMedCrossRefGoogle Scholar
  206. 206.
    Christiansen J, Kolte AM, Hansen T, Nielsen FC. IGF2 mRNA-binding protein 2: biological function and putative role in type 2 diabetes. J Mol Endocrinol. 2009;43(5):187–95. doi:10.1677/JME-09-0016.PubMedCrossRefGoogle Scholar
  207. 207.
    Li X, Allayee H, Xiang AH, et al. Variation in IGF2BP2 interacts with adiposity to alter insulin sensitivity in Mexican Americans. Obesity (Silver Spring). 2009;17(4):729–36. doi:10.1038/oby.2008.593.PubMedCentralCrossRefGoogle Scholar
  208. 208.
    Chistiakov DA, Nikitin AG, Smetanina SA, et al. The rs11705701 G>A polymorphism of IGF2BP2 is associated with IGF2BP2 mRNA and protein levels in the visceral adipose tissue – a link to type 2 diabetes susceptibility. Rev Diabet Stud. 2012;9(2–3):112–22. doi:10.1900/RDS.2012.9.112.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Stancakova A, Kuulasmaa T, Paananen J, et al. Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes. 2009;58(9):2129–36. doi:10.2337/db09-0117.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Wu Y, Li H, Loos RJ, et al. Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes. 2008;57(10):2834–42. doi:10.2337/db08-0047.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Rodriguez S, Eiriksdottir G, Gaunt TR, et al. IGF2BP1, IGF2BP2 and IGF2BP3 genotype, haplotype and genetic model studies in metabolic syndrome traits and diabetes. Growth Horm IGF Res. 2010;20(4):310–8. doi:10.1016/j.ghir.2010.04.002.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Takeda K, Inoue H, Tanizawa Y, et al. WFS1 (wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet. 2001;10(5):477–84.PubMedCrossRefGoogle Scholar
  213. 213.
    Shang L, Hua H, Foo K, et al. Beta-cell dysfunction due to increased ER stress in a stem cell model of wolfram syndrome. Diabetes. 2014;63(3):923–33. doi:10.2337/db13-0717.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Sandhu MS, Weedon MN, Fawcett KA, et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet. 2007;39(8):951–3. doi: ng2067 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Wasson J, Permutt MA. Candidate gene studies reveal that the WFS1 gene joins the expanding list of novel type 2 diabetes genes. Diabetologia. 2008;51(3):391–3. doi:10.1007/s00125-007-0920-9.PubMedCrossRefGoogle Scholar
  216. 216.
    Cheurfa N, Brenner GM, Reis AF, et al. Decreased insulin secretion and increased risk of type 2 diabetes associated with allelic variations of the WFS1 gene: the data from epidemiological study on the insulin resistance syndrome (DESIR) prospective study. Diabetologia. 2011;54(3):554–62. doi:10.1007/s00125-010-1989-0.PubMedCrossRefGoogle Scholar
  217. 217.
    Franks PW, Rolandsson O, Debenham SL, et al. Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia. 2008;51(3):458–63. doi:10.1007/s00125-007-0887-6.PubMedCrossRefGoogle Scholar
  218. 218.
    Sparso T, Andersen G, Albrechtsen A, et al. Impact of polymorphisms in WFS1 on prediabetic phenotypes in a population-based sample of middle-aged people with normal and abnormal glucose regulation. Diabetologia. 2008;51(9):1646–52. doi:10.1007/s00125-008-1064-2.PubMedCrossRefGoogle Scholar
  219. 219.
    Drieschner N, Kerschling S, Soller JT, et al. A domain of the thyroid adenoma associated gene (THADA) conserved in vertebrates becomes destroyed by chromosomal rearrangements observed in thyroid adenomas. Gene. 2007;403(1–2):110–7. doi: S0378-1119(07)00376-9 [pii].PubMedCrossRefGoogle Scholar
  220. 220.
    Parikh H, Lyssenko V, Groop LC. Prioritizing genes for follow-up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus. BMC Med Genomics. 2009;2:72. doi:10.1186/1755-8794-2-72.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Simonis-Bik AM, Nijpels G, van Haeften TW, et al. Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes. 2010;59(1):293–301. doi:10.2337/db09-1048.PubMedCrossRefGoogle Scholar
  222. 222.
    Green RE, Krause J, Briggs AW, et al. A draft sequence of the neandertal genome. Science. 2010;328(5979):710–22. doi:10.1126/science.1188021.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–45. doi:10.1038/ng.120.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    McDaniell R, Warthen DM, Sanchez-Lara PA, et al. NOTCH2 mutations cause alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79(1):169–73. doi: S0002-9297(07)60019-6 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Simpson MA, Irving MD, Asilmaz E, et al. Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet. 2011;43(4):303–5. doi:10.1038/ng.779.PubMedCrossRefGoogle Scholar
  226. 226.
    Jonsson A, Ladenvall C, Ahluwalia TS, et al. Effects of common genetic variants associated with type 2 diabetes and glycemic traits on alpha- and beta-cell function and insulin action in humans. Diabetes. 2013;62(8):2978–83. doi:10.2337/db12-1627.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Stancakova A, Paananen J, Soininen P, et al. Effects of 34 risk loci for type 2 diabetes or hyperglycemia on lipoprotein subclasses and their composition in 6,580 nondiabetic Finnish men. Diabetes. 2011;60(5):1608–16. doi:10.2337/db10-1655.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    van de Bunt M, Gaulton KJ, Parts L, et al. The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One. 2013;8(1), e55272. doi:10.1371/journal.pone.0055272.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Moltke I, Grarup N, Jorgensen ME, et al. A common greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature. 2014;512(7513):190–3. doi:10.1038/nature13425.PubMedCrossRefGoogle Scholar
  230. 230.
    Cartee GD. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle. Diabetologia. 2015;58(1):19–30. doi:10.1007/s00125-014-3395-5.PubMedCrossRefGoogle Scholar
  231. 231.
    SIGMA Type 2 Diabetes Consortium, Williams AL, Jacobs SB, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature. 2014;506(7486):97–101. doi:10.1038/nature12828.Google Scholar
  232. 232.
    Traurig M, Hanson RL, Marinelarena A, et al. Analysis of SLC16A11 variants in 12,811 American Indians: genotype-obesity interaction for type 2 diabetes and an association with RNASEK expression. Diabetes. 2016;65(2):510–9. doi:10.2337/db15-0571.PubMedCrossRefGoogle Scholar
  233. 233.
    Hara K, Fujita H, Johnson TA, et al. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum Mol Genet. 2014;23(1):239–46. doi:10.1093/hmg/ddt399.PubMedCrossRefGoogle Scholar
  234. 234.
    Lyssenko V, Jonsson A, Almgren P, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008;359(21):2220–32. doi:10.1056/NEJMoa0801869.PubMedCrossRefGoogle Scholar
  235. 235.
    Meigs JB, Shrader P, Sullivan LM, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008;359(21):2208–19. doi:10.1056/NEJMoa0804742.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jeffrey Kleinberger
    • 1
  • Kevin Brown
    • 1
  • Kristi D. Silver
    • 1
    Email author
  • Alan R. Shuldiner
    • 1
    • 2
  1. 1.Division of Endocrinology, Diabetes and NutritionUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Program for Personalized and Genomic Medicine, and Division of Endocrinology, Diabetes and NutritionUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations