Skip to main content

Clinical Aspects and Treatment of the Hypoxic-Ischemic Syndrome

  • Living reference work entry
  • First Online:
  • 482 Accesses

Abstract

In the Western world, perinatal asphyxia is still a relatively common phenomenon in perinatal care. Since differences in causes and patterns of brain injury following perinatal asphyxia exist between full-term and preterm neonates, this chapter will focus on full-term neonates.

This is a preview of subscription content, log in via an institution.

References

  • Adamson SJ, Alessandri LM, Badawi N, Burton PR, Pemberton PJ, Stanley F (1995) Predictors of neonatal encephalopathy in full-term infants. BMJ 311:598–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • al Naqeeb N, Edwards AD, Cowan FM, Azzopardi D (1999) Assessment of neonatal encephalopathy by amplitude-integrated electroencephalography. Pediatrics 103:1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Alderliesten T, de Vries LS, Benders MJ, Koopman C, Groenendaal F (2011) MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusion-weighted MR imaging and 1H MR spectroscopy. Radiology 261:235–242

    Article  PubMed  Google Scholar 

  • Alderliesten T, Nikkels PG, Benders MJ, de Vries LS, Groenendaal F (2013) Antemortem cranial MRI compared with postmortem histopathologic examination of the brain in term infants with neonatal encephalopathy following perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 98:F304–F309

    Article  PubMed  Google Scholar 

  • American College of Obstetricians and Gynecologists’ Task Force on Neonatal Encephalopathy (2014) Executive summary: neonatal encephalopathy and neurologic outcome, second edition. Report of the American College of Obstetricians and Gynecologists’ Task Force on Neonatal Encephalopathy. Obstet Gynecol 123:896–901

    Article  Google Scholar 

  • American Academy of Pediatrics, Committee on Fetus and Newborn, American College of Obstetricians and Gynecologists and Committee on Obstetric Practice (2006) The Apgar score. Pediatrics 117:1444–1447

    Article  Google Scholar 

  • Amer-Wahlin I, Hellsten C, Noren H et al (2001) Cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram for intrapartum fetal monitoring: a Swedish randomised controlled trial. Lancet 358:534–538

    Article  CAS  PubMed  Google Scholar 

  • Andre M, Boutroy MJ, Dubruc C et al (1986) Clonazepam pharmacokinetics and therapeutic efficacy in neonatal seizures. Eur J Clin Pharmacol 30:585–589

    Article  CAS  PubMed  Google Scholar 

  • Apgar V (1953) A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg 32:260–267

    Article  CAS  PubMed  Google Scholar 

  • Arabin B, Ragosch V, Mohnhaupt A (1995) From biochemical to biophysical placental function tests in fetal surveillance. Am J Perinatol 12:168–171

    Article  CAS  PubMed  Google Scholar 

  • Archbald F, Verma UL, Tejani NA, Handwerker SM (1984) Cerebral function monitor in the neonate. II: Birth asphyxia. Dev Med Child Neurol 26:162–168

    Article  CAS  PubMed  Google Scholar 

  • Archer LN, Levene MI, Evans DH (1986) Cerebral artery Doppler ultrasonography for prediction of outcome after perinatal asphyxia. Lancet 2:1116–1118

    Article  CAS  PubMed  Google Scholar 

  • Arduini D, Rizzo G, Romanini C, Mancuso S (1989) Are blood flow velocity waveforms related to umbilical cord acid- base status in the human fetus? Gynecol Obstet Invest 27:183–187

    Article  CAS  PubMed  Google Scholar 

  • Azzopardi DV, Strohm B, Edwards AD et al (2009) Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 361:1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Baenziger O, Martin E, Steinlin M et al (1993) Early pattern recognition in severe perinatal asphyxia: a prospective MRI study. Neuroradiology 35:437–442

    Article  CAS  PubMed  Google Scholar 

  • Barkovich AJ, Westmark K, Partridge C, Sola A, Ferriero DM (1995) Perinatal asphyxia: MR findings in the first 10 days. AJNR Am J Neuroradiol 16:427–438

    CAS  PubMed  Google Scholar 

  • Bednarek N, Mathur A, Inder T, Wilkinson J, Neil J, Shimony J (2012) Impact of therapeutic hypothermia on MRI diffusion changes in neonatal encephalopathy. Neurology 78:1420–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belai Y, Goodwin TM, Durand M, Greenspoon JS, Paul RH, Walther FJ (1998) Umbilical arteriovenous PO2 and PCO2 differences and neonatal morbidity in term infants with severe acidosis. Am J Obstet Gynecol 178:13–19

    Article  CAS  PubMed  Google Scholar 

  • Bjerre I, Hellstro”m-Westas L, Rosen I, Svenningsen N (1983) Monitoring of cerebral function after severe asphyxia in infancy. Arch Dis Child 58:997–1002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blennow M, Savman K, Ilves P, Thoresen M, Rosengren L (2001) Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr 90:1171–1175

    Article  CAS  PubMed  Google Scholar 

  • Boenisch H, Saling E (1976) The reliability of pH values in fetal blood samples: a study of the second stage. J Perinat Med 4:45

    Article  CAS  PubMed  Google Scholar 

  • Bonifacio SL, deVries LS, Groenendaal F (2015) Impact of hypothermia on predictors of poor outcome: how do we decide to redirect care? Semin Fetal Neonatal Med 20:122–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JK, Purvis RJ, Forfar JO, Cockburn F (1974) Neurological aspects of perinatal asphyxia. Dev Med Child Neurol 16:567–580

    Article  CAS  PubMed  Google Scholar 

  • Buonocore G, Zani S, Perrone S, Caciotti B, Bracci R (1998) Intraerythrocyte nonprotein-bound iron and plasma malondialdehyde in the hypoxic newborn. Free Radic Biol Med 25:766–770

    Article  CAS  PubMed  Google Scholar 

  • Buonocore G, Perrone S, Gioia D et al (1999) Nucleated red blood cell count at birth as an index of perinatal brain damage. Am J Obstet Gynecol 181:1500–1505

    Article  CAS  PubMed  Google Scholar 

  • Buonocore G, Perrone S, Longini M et al (2003) Non protein bound iron as early predictive marker of neonatal brain damage. Brain 126:1224–1230

    Article  PubMed  Google Scholar 

  • Caplan MS, Hedlund E, Adler L, Hsueh W (1994) Role of asphyxia and feeding in a neonatal rat model of necrotizing enterocolitis. Pediatr Pathol 14:1017–1028

    Article  CAS  PubMed  Google Scholar 

  • Carter BS, McNabb F, Merenstein GB (1998) Prospective validation of a scoring system for predicting neonatal morbidity after acute perinatal asphyxia. J Pediatr 132:619–623

    Article  CAS  PubMed  Google Scholar 

  • Casey BM, McIntire DD, Leveno KJ (2001) The continuing value of the Apgar score for the assessment of newborn infants. N Engl J Med 344:467–471

    Article  CAS  PubMed  Google Scholar 

  • Castle V, Andrew M, Kelton J, Giron D, Johnston M, Carter C (1986) Frequency and mechanism of neonatal thrombocytopenia. J Pediatr 108:749–755

    Article  CAS  PubMed  Google Scholar 

  • Cataltepe O, Vannucci RC, Heitjan DF, Towfighi J (1995) Effect of status epilepticus on hypoxic-ischemic brain damage in the immature rat. Pediatr Res 38:251–257

    Article  CAS  PubMed  Google Scholar 

  • Catlin EA, Carpenter MW, Brann BS, Mayfield SR, Shaul PW, Goldstein M (1986) The Apgar score revisited: influence of gestational age. J Pediatr 109:865–868

    Article  CAS  PubMed  Google Scholar 

  • Chiesa C, Pellegrini G, Panero A et al (2003) Umbilical cord interleukin-6 levels are elevated in term neonates with perinatal asphyxia. Eur J Clin Invest 33:352–358

    Article  CAS  PubMed  Google Scholar 

  • Chou YH, Tsou Yau KI, Wang PJ (1998) Clinical application of the measurement of cord plasma lactate and pyruvate in the assessment of high-risk neonates. Acta Paediatr 87:764–768

    Article  CAS  PubMed  Google Scholar 

  • Connell J, Oozeer R, de Vries L, Dubowitz LM, Dubowitz V (1989) Clinical and EEG response to anticonvulsants in neonatal seizures. Arch Dis Child 64:459–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan F, Rutherford M, Groenendaal F et al (2003) Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 361:736–742

    Article  PubMed  Google Scholar 

  • Daniel SS, Adamsons K Jr, James LS (1966) Lactate and pyruvate as an index of prenatal oxygen deprivation. Pediatrics 37:942–953

    CAS  PubMed  Google Scholar 

  • de Vries LS (1993) Somatosensory-evoked potentials in term neonates with postasphyxial encephalopathy. Clin Perinatol 20:463–482

    PubMed  Google Scholar 

  • de Vries LS, Groenendaal F (2010) Patterns of neonatal hypoxic-ischaemic brain injury. Neuroradiology 52:555–566

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vries LS, Eken P, Groenendaal F, Rademaker KJ, Hoogervorst B, Bruinse HW (1998) Antenatal onset of haemorrhagic and/or ischaemic lesions in preterm infants: prevalence and associated obstetric variables. Arch Dis Child Fetal Neonatal Ed 78:F51–F56

    Article  PubMed  PubMed Central  Google Scholar 

  • Eken P, Jansen GH, Groenendaal F, Rademaker KJ, de Vries LS (1994) Intracranial lesions in the fullterm infant with hypoxic ischaemic encephalopathy: ultrasound and autopsy correlation. Neuropediatrics 25:301–307

    Article  CAS  PubMed  Google Scholar 

  • Eken P, Toet MC, Groenendaal F, de Vries LS (1995) Predictive value of early neuroimaging, pulsed Doppler and neurophysiology in full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 73:F75–F80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekert P, Perlman M, Steinlin M, Hao Y (1997) Predicting the outcome of postasphyxial hypoxic-ischemic encephalopathy within 4 hours of birth. J Pediatr 131:613–617

    Article  CAS  PubMed  Google Scholar 

  • Fellman V, Raivio KO (1997) Reperfusion injury as the mechanism of brain damage after perinatal asphyxia. Pediatr Res 41:599–606

    Article  CAS  PubMed  Google Scholar 

  • Fenichel GM (1983) Hypoxic-ischemic encephalopathy in the newborn. Arch Neurol 40:261–266

    Article  CAS  PubMed  Google Scholar 

  • Filippi L, Fiorini P, Daniotti M et al (2012) Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI). BMC Pediatr 12:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster-Barber A, Dickens B, Ferriero DM (2001) Human perinatal asphyxia: correlation of neonatal cytokines with MRI and outcome. Dev Neurosci 23:213–218

    Article  CAS  PubMed  Google Scholar 

  • Fujikura T, Klionsky B (1975) The significance of meconium staining. Am J Obstet Gynecol 121:45–50

    Article  CAS  PubMed  Google Scholar 

  • Gazzolo D, Marinoni E, Di Iorio R et al (2004) Urinary S100B protein measurements: a tool for the early identification of hypoxic-ischemic encephalopathy in asphyxiated full-term infants. Crit Care Med 32:131–136

    Article  CAS  PubMed  Google Scholar 

  • Gibson NA, Graham M, Levene MI (1992) Somatosensory evoked potentials and outcome in perinatal asphyxia. Arch Dis Child 67:393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluckman PD, Wyatt JS, Azzopardi D et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365:663–670

    Article  PubMed  Google Scholar 

  • Goodwin TM, Belai I, Hernandez P, Durand M, Paul RH (1992) Asphyxial complications in the term newborn with severe umbilical acidemia. Am J Obstet Gynecol 167:1506–1512

    Article  CAS  PubMed  Google Scholar 

  • Grant A, O’Brien N, Joy MT, Hennessy E, MacDonald D (1989) Cerebral palsy among children born during the Dublin randomised trial of intrapartum monitoring. Lancet 2:1233–1236

    Article  CAS  PubMed  Google Scholar 

  • Grigg-Damberger MM, Coker SB, Halsey CL, Anderson CL (1989) Neonatal burst suppression: its developmental significance. Pediatr Neurol 5:84–92

    Article  CAS  PubMed  Google Scholar 

  • Groenendaal F, Brouwer AJ (2009) Clinical aspects of induced hypothermia in full term neonates with perinatal asphyxia. Early Hum Dev 85:73–76

    Article  PubMed  Google Scholar 

  • Groenendaal F, Veenhoven RH, van der Grond J, Jansen GH, Witkamp TD, de Vries LS (1994) Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 35:148–151

    Article  CAS  PubMed  Google Scholar 

  • Hagberg H, Edwards AD, Groenendaal F (2015) Perinatal brain damage: the term infant. Neurobiol Dis

    Google Scholar 

  • Harteman JC, Groenendaal F, Toet MC et al (2013) Diffusion-weighted imaging changes in cerebral watershed distribution following neonatal encephalopathy are not invariably associated with an adverse outcome. Dev Med Child Neurol 55:642–653

    Article  PubMed  Google Scholar 

  • Hay WW Jr, Thilo E, Curlander JB (1991) Pulse oximetry in neonatal medicine. Clin Perinatol 18:441–472

    PubMed  Google Scholar 

  • Hellstrom-Westas L, Rosen I, Svenningsen NW (1995) Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child Fetal Neonatal Ed 72:F34–F38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herrmann U Jr, Durig P, Amato M, Sidiropoulos D, Schneider H (1989) Outcome of fetuses with abnormal biophysical profile. Gynecol Obstet Invest 27:122–125

    Article  PubMed  Google Scholar 

  • Holden KR, Mellits ED, Freeman JM (1982) Neonatal seizures. I. Correlation of prenatal and perinatal events with outcomes. Pediatrics 70:165–176

    CAS  PubMed  Google Scholar 

  • Holmes G, Rowe J, Hafford J, Schmidt R, Testa M, Zimmerman A (1982) Prognostic value of the electroencephalogram in neonatal asphyxia. Electroencephalogr Clin Neurophysiol 53:60–72

    Article  CAS  PubMed  Google Scholar 

  • Hope PL, Costello AML, Cady EB et al (1984) Cerebral energy metabolism studied with phosphorous NMR spectroscopy in normal and birth asphyxiated infants. Lancet 8399:366–370

    Article  Google Scholar 

  • Huang CC, Wang ST, Chang YC, Lin KP, Wu PL (1999) Measurement of the urinary lactate: creatinine ratio for the early identification of newborn infants at risk for hypoxic-ischemic encephalopathy. N Engl J Med 341:328–335

    Article  CAS  PubMed  Google Scholar 

  • Hull J, Dodd KL (1992) Falling incidence of hypoxic-ischaemic encephalopathy in term infants. Br J Obstet Gynaecol 99:386–391

    Article  CAS  PubMed  Google Scholar 

  • Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG (2013) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 1, CD003311

    PubMed  Google Scholar 

  • Kaandorp JJ, van Bel F, Veen S et al (2012) Long-term neuroprotective effects of allopurinol after moderate perinatal asphyxia: follow-up of two randomised controlled trials. Arch Dis Child Fetal Neonatal Ed 97:F162–F166

    Article  PubMed  Google Scholar 

  • King TA, Jackson GL, Josey AS et al (1998) The effect of profound umbilical artery acidemia in term neonates admitted to a newborn nursery. J Pediatr 132:624–629

    Article  CAS  PubMed  Google Scholar 

  • Klinger G, Beyene J, Shah P, Perlman M (2005) Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? Arch Dis Child Fetal Neonatal Ed 90:F49–F52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L’Abee C, de Vries LS, van der Grond J, Groenendaal F (2005) Early diffusion-weighted MRI and 1H-magnetic resonance spectroscopy in asphyxiated full-term neonates. Biol Neonate 88:306–312

    Article  PubMed  Google Scholar 

  • Lavrijsen SW, Uiterwaal CSPM, Stigter RH, de Vries LS, Visser GHA, Groenendaal F (2005) Severe umbilical cord acidemia and neurological outcome in preterm and full-term neonates. Biol Neonate 88:27–34

    Article  PubMed  Google Scholar 

  • Lemmers PM, Zwanenburg RJ, Benders MJ et al (2013) Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value? Pediatr Res 74:180–185

    Article  CAS  PubMed  Google Scholar 

  • Levene MI, Kornberg J, Williams THC (1985) The incidence and severity of postasphyxial encephalopathy in full-term infants. Early Hum Dev 11:21–28

    Article  CAS  PubMed  Google Scholar 

  • Levene MI, Sands C, Grindulis H, Moore JR (1986) Comparison of two methods of predicting outcome in perinatal asphyxia. Lancet 1:67–69

    Article  CAS  PubMed  Google Scholar 

  • Lorek A, Takei Y, Cady EB et al (1994) Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 36:699–706

    Article  CAS  PubMed  Google Scholar 

  • Low JA, Galbraith RS, Muir DW, Killen HL, Pater EA, Karchmar EJ (1984) Factors associated with motor and cognitive deficits in children after intrapartum fetal hypoxia. Am J Obstet Gynecol 148:533–539

    Article  CAS  PubMed  Google Scholar 

  • Low JA, Galbraith RS, Muir DW, Killen HL, Pater EA, Karchmar EJ (1985) The relationship between perinatal hypoxia and newborn encephalopathy. Am J Obstet Gynecol 152:256–260

    Article  CAS  PubMed  Google Scholar 

  • Low JA, Pickersgill H, Killen H, Derrick EJ (2001) The prediction and prevention of intrapartum fetal asphyxia in term pregnancies. Am J Obstet Gynecol 184:724–730

    Article  CAS  PubMed  Google Scholar 

  • Luciano R, Gallini F, Romagnoli C, Papacci P, Tortorolo G (1998) Doppler evaluation of renal blood flow velocity as a predictive index of acute renal failure in perinatal asphyxia. Eur J Pediatr 157:656–660

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Tatsumura M, Nakajima K (1991) Objective and quantitative evaluation of fetal movement with ultrasonic Doppler actocardiogram. Biol Neonate 60(Suppl 1):41–51

    Article  PubMed  Google Scholar 

  • Martin-Ancel A, Garcia-Alix A, Pascual-Salcedo D, Cabanas F, Valcarce M, Quero J (1997) Interleukin-6 in the cerebrospinal fluid after perinatal asphyxia is related to early and late neurological manifestations. Pediatrics 100:789–794

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Biarge M, Diez-Sebastian J, Wusthoff CJ, Mercuri E, Cowan FM (2013) Antepartum and intrapartum factors preceding neonatal hypoxic-ischemic encephalopathy. Pediatrics 132:e952–e959

    Article  PubMed  Google Scholar 

  • Mathew OP, Bland H, Boxerman SB, James E (1980) CSF lactate levels in high risk neonates with and without asphyxia. Pediatrics 66:224–227

    CAS  PubMed  Google Scholar 

  • Meis PJ, Hall M III, Marshall JR, Hobel CJ (1978) Meconium passage: a new classification for risk assessment during labor. Am J Obstet Gynecol 131:509–513

    Article  CAS  PubMed  Google Scholar 

  • Mellits ED, Holden KR, Freeman JM (1982) Neonatal seizures. II. A multivariate analysis of factors associated with outcome. Pediatrics 70:177–185

    CAS  PubMed  Google Scholar 

  • Mercuri E, von Siebenthal K, Daniels H, Guzzetta F, Casaer P (1994) Multimodality evoked responses in the neurological assessment of the newborn. Eur J Pediatr 153:622–631

    Article  CAS  PubMed  Google Scholar 

  • Monod N, Pajot N, Guidasci S (1972) The neonatal EEG: statistical studies and prognostic value in full-term and preterm babies. Electroencephalogr Clin Neurophysiol 32:529–544

    Article  CAS  PubMed  Google Scholar 

  • Muttitt SC, Taylor MJ, Kobayashi JS, MacMillan L, Whyte HE (1991) Serial visual evoked potentials and outcome in term birth asphyxia. Pediatr Neurol 7:86–90

    Article  CAS  PubMed  Google Scholar 

  • Myers RE (1975) Four patterns of perinatal brain damage and their conditions of occurrence in primates. Adv Neurol 10:223–234

    CAS  PubMed  Google Scholar 

  • Myers RE (1977) Experimental models of perinatal brain damage: relevance to human pathology. In: Gluck L (ed) Intrauterine asphyxia and the developing fetal brain. Year Book Medical Publ, Chicago, pp 37–97

    Google Scholar 

  • Nagdyman N, Grimmer I, Scholz T, Muller C, Obladen M (2003) Predictive value of brain-specific proteins in serum for neurodevelopmental outcome after birth asphyxia. Pediatr Res 54:270–275

    Article  CAS  PubMed  Google Scholar 

  • Nelson KB, Dambrosia JM, Ting TY, Grether JK (1996) Uncertain value of electronic fetal monitoring in predicting cerebral palsy. N Engl J Med 334:613–618

    Article  CAS  PubMed  Google Scholar 

  • Niklinski W, Palynyczko Z, Jozwik M, Sledziewski A (1987) Cord blood serum creatine kinase isoenzymes with placental dysfunction. J Perinatol Med 15:350–354

    Article  CAS  Google Scholar 

  • Nylund L, Dahlin I, Lagercrantz H (1987) Fetal catecholamines and the Apgar score. J Perinat Med 15:340–344

    Article  CAS  PubMed  Google Scholar 

  • Okereafor A, Allsop J, Counsell SJ et al (2008) Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics 121:906–914

    Article  PubMed  Google Scholar 

  • Oygur N, Sonmez O, Saka O, Yegin O (1998) Predictive value of plasma and cerebrospinal fluid tumour necrosis factor-alpha and interleukin-1 beta concentrations on outcome of full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 79:F190–F193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlman JM, Risser R (1996) Can asphyxiated infants at risk for neonatal seizures be rapidly identified by current high-risk markers? Pediatrics 97:456–462

    CAS  PubMed  Google Scholar 

  • Perlman JM, Tack ED, Martin T, Shackelford G, Amon E (1989) Acute systemic organ injury in term infants after asphyxia. Am J Dis Child 143:617–620

    CAS  PubMed  Google Scholar 

  • Portman RJ, Carter BS, Gaylord MS, Murphy MG, Thieme RE, Merenstein GB (1990) Predicting neonatal morbidity after perinatal asphyxia: a scoring system. Am J Obstet Gynecol 162:174–182

    Article  CAS  PubMed  Google Scholar 

  • Pourcyrous M, Bada HS, Yang W et al (1999) Prognostic significance of cerebrospinal fluid cyclic adenosine monophosphate in neonatal asphyxia. J Pediatr 134:90–96

    Article  CAS  PubMed  Google Scholar 

  • Pressler RM, Mangum B (2013) Newly emerging therapies for neonatal seizures. Semin Fetal Neonatal Med 18:216–223

    Article  PubMed  Google Scholar 

  • Ramantani G, Ikonomidou C, Walter B, Rating D, Dinger J (2011) Levetiracetam: safety and efficacy in neonatal seizures. Eur J Paediatr Neurol 15:1–7

    Article  PubMed  Google Scholar 

  • Ranck JB, Windle WF (1959) Brain damage in the monkey, Macaca mulatta, by asphyxia neonatorum. Exp Neurol 1:130–154

    Article  PubMed  Google Scholar 

  • Robertson NJ, Cowan FM, Cox IJ, Edwards AD (2002) Brain alkaline intracellular pH after neonatal encephalopathy. Ann Neurol 52:732–742

    Article  CAS  PubMed  Google Scholar 

  • Robertson NJ, Tan S, Groenendaal F et al (2012) Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? J Pediatr 160:544–552

    Article  PubMed  PubMed Central  Google Scholar 

  • Roka A, Melinda KT, Vasarhelyi B, Machay T, Azzopardi D, Szabo M (2008) Elevated morphine concentrations in neonates treated with morphine and prolonged hypothermia for hypoxic ischemic encephalopathy. Pediatrics 121:e844–e849

    Article  PubMed  Google Scholar 

  • Roth SC, Edwards AD, Cady EB et al (1992) Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year. Dev Med Child Neurol 34:285–295

    Article  CAS  PubMed  Google Scholar 

  • Ruth VJ, Raivio KO (1988) Perinatal brain damage: predictive value of metabolic acidosis and the Apgar score. BMJ 297:24–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruth V, Fyhrquist F, Clemons G, Raivio KO (1988) Cord plasma vasopressin, erythropoietin, and hypoxanthine as indices of asphyxia at birth. Pediatr Res 24:490–494

    Article  CAS  PubMed  Google Scholar 

  • Rutherford M, Pennock J, Schwieso J, Cowan F, Dubowitz L (1996) Hypoxic-ischaemic encephalopathy: early and late magnetic resonance imaging findings in relation to outcome. Arch Dis Child Fetal Neonatal Ed 75:F145–F151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutherford MA, Pennock JM, Counsell SJ et al (1998) Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic- ischemic encephalopathy. Pediatrics 102:323–328

    Article  CAS  PubMed  Google Scholar 

  • Rutherford M, Counsell S, Allsop J et al (2004) Diffusion-weighted magnetic resonance imaging in term perinatal brain injury: a comparison with site of lesion and time from birth. Pediatrics 114:1004–1014

    Article  PubMed  Google Scholar 

  • Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress; a clinical and electroencephalographic study. Arch Neurol 33:696–705

    Article  CAS  PubMed  Google Scholar 

  • Saugstad OD (1976) Hypoxanthine as a measurement of hypoxia. Pediatr Res 9:575

    Article  Google Scholar 

  • Saugstad OD (2003) Oxygen toxicity at birth: the pieces are put together. Pediatr Res 54:798

    Article  Google Scholar 

  • Savman K, Blennow M, Gustafson K, Tarkowski E, Hagberg H (1998) Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr Res 43:746–751

    Article  CAS  PubMed  Google Scholar 

  • Schifrin BS (1994) The ABCs of electronic fetal monitoring. J Perinatol 14:396–402

    CAS  PubMed  Google Scholar 

  • Sehdev HM, Stamilio DM, Macones GA, Graham E, Morgan MA (1997) Predictive factors for neonatal morbidity in neonates with an umbilical arterial cord pH less than 7.00. Am J Obstet Gynecol 177:1030–1034

    Article  CAS  PubMed  Google Scholar 

  • Shankaran S, Woldt E, Koepke T, Bedard MP, Nandyal R (1991) Acute neonatal morbidity and long-term central nervous system sequelae of perinatal asphyxia in term infants. Early Hum Dev 25:135–148

    Article  CAS  PubMed  Google Scholar 

  • Shankaran S, Laptook AR, Ehrenkranz RA et al (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353:1574–1584

    Article  CAS  PubMed  Google Scholar 

  • Sie LT, van der Knaap MS, Oosting J, de Vries LS, Lafeber HN, Valk J (2000) MR patterns of hypoxic-ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuropediatrics 31:128–136

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Wells L, Dodd K (2000) The continuing fall in incidence of hypoxic-ischaemic encephalopathy in term infants. BJOG 107:461–466

    Article  CAS  PubMed  Google Scholar 

  • Sola A, Rogido MR, Deulofeut R (2007) Oxygen as a neonatal health hazard: call for detente in clinical practice. Acta Paediatr 96:801–812

    Article  PubMed  Google Scholar 

  • Squier W (2002) Acquired damage to the developing brain: timing and causation. Acquired damage to the developing brain: timing and causation. Oxford University Press, London

    Google Scholar 

  • Sykes GS, Molloy PM, Johnson P et al (1982) Do Apgar scores indicate asphyxia? Lancet 1:494–496

    Article  CAS  PubMed  Google Scholar 

  • Taylor MJ, Murphy WJ, Whyte HE (1992) Prognostic reliability of somatosensory and visual evoked potentials of asphyxiated term infants. Dev Med Child Neurol 34:507–515

    Article  CAS  PubMed  Google Scholar 

  • Thompson CM, Puterman AS, Linley LL et al (1997) The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr 86:757–761

    Article  CAS  PubMed  Google Scholar 

  • Thornberg E, Thiringer K, Hagberg H, Kjellmer I (1995) Neuron specific enolase in asphyxiated newborns: association with encephalopathy and cerebral function monitor trace. Arch Dis Child Fetal Neonatal Ed 72:F39–F42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toet MC, Hellstrom-Westas L, Groenendaal F, Eken P, de Vries LS (1999) Amplitude integrated EEG at 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 81:F19–F23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toet MC, van der Meij W, de Vries LS, Uiterwaal CS, van Huffelen KC (2002) Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics 109:772–779

    Article  PubMed  Google Scholar 

  • Toet MC, Lemmers PM, van Schelven LJ, Van Bel F (2006) Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics 117:333–339

    Article  PubMed  Google Scholar 

  • Toet MC, Van Rooij LG, de Vries LS (2008) The use of amplitude integrated electroencephalography for assessing neonatal neurologic injury. Clin Perinatol 35:665–678, v

    Article  PubMed  Google Scholar 

  • Torrance HL, Benders MJ, Derks JB et al (2009) Maternal allopurinol treatment during fetal hypoxia lowers cord blood levels of the brain injury marker protein S-100B. Pediatrics 124:350–357

    Article  PubMed  Google Scholar 

  • Van Bel F, Walther FJ (1990) Myocardial dysfunction and cerebral blood flow velocity following birth asphyxia. Acta Paediatr Scand 79:756–762

    Article  PubMed  Google Scholar 

  • Van Bel F, Van de Bor M, Stijnen T, Baan J, Ruys JH (1987) Cerebral blood flow velocity pattern in healthy and asphyxiated newborns: a controlled study. Eur J Pediatr 146:461–467

    Article  PubMed  Google Scholar 

  • van den Berg PP, Nelen WL, Jongsma HW et al (1996) Neonatal complications in newborns with an umbilical artery pH < 7.00. Am J Obstet Gynecol 175:1152–1157

    Article  PubMed  Google Scholar 

  • van den Broek MP, Groenendaal F, Egberts AC, Rademaker CM (2010) Effects of hypothermia on pharmacokinetics and pharmacodynamics: a systematic review of preclinical and clinical studies. Clin Pharmacokinet 49:277–294

    Article  PubMed  Google Scholar 

  • van den Broek MP, Huitema AD, van Hasselt JG et al (2011) Lidocaine (lignocaine) dosing regimen based upon a population pharmacokinetic model for preterm and term neonates with seizures. Clin Pharmacokinet 50:461–469

    Article  PubMed  Google Scholar 

  • van den Broek MP, Groenendaal F, Toet MC et al (2012) Pharmacokinetics and clinical efficacy of phenobarbital in asphyxiated newborns treated with hypothermia: a thermopharmacological approach. Clin Pharmacokinet 51:671–679

    Article  PubMed  CAS  Google Scholar 

  • van den Broek MP, Rademaker CM, van Straaten HL et al (2013) Anticonvulsant treatment of asphyxiated newborns under hypothermia with lidocaine: efficacy, safety and dosing. Arch Dis Child Fetal Neonatal Ed 98:F341–F345

    Article  PubMed  Google Scholar 

  • van den Broek MP, van Straaten HL, Huitema AD et al (2015) Anticonvulsant effectiveness and hemodynamic safety of midazolam in full-term infants treated with hypothermia. Neonatology 107:150–156

    Article  PubMed  CAS  Google Scholar 

  • van der Aa NE, Benders MJ, Groenendaal F, de Vries LS (2014) Neonatal stroke: a review of the current evidence on epidemiology, pathogenesis, diagnostics and therapeutic options. Acta Paediatr 103:356–364

    Article  PubMed  Google Scholar 

  • van Laerhoven H, de Haan TR, Offringa M, Post B, van der Lee JH (2013) Prognostic tests in term neonates with hypoxic-ischemic encephalopathy: a systematic review. Pediatrics 131:88–98

    Article  PubMed  Google Scholar 

  • Van Rooij LG, Toet MC, Osredkar D, van Huffelen AC, Groenendaal F, de Vries LS (2005) Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 90:F245–F251

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Rooij LG, Toet MC, van Huffelen AC et al (2010) Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics 125:e358–e366

    Article  PubMed  Google Scholar 

  • Vannucci RC, Towfighi J, Vannucci SJ (2004) Secondary energy failure after cerebral hypoxia-ischemia in the immature rat. J Cereb Blood Flow Metab 24:1090–1097

    Article  CAS  PubMed  Google Scholar 

  • Vento M, Saugstad OD (2010) Resuscitation of the term and preterm infant. Semin Fetal Neonatal Med 15:216–222

    Article  CAS  PubMed  Google Scholar 

  • Volpe JJ (2008) Neurology of the newborn. Saunders Book Company, Philadelphia

    Google Scholar 

  • Volpe JJ, Herscovitch P, Perlman JM, Kreusser KL, Raichle ME (1985) Positron emission tomography in the asphyxiated term newborn: parasagittal impairment of cerebral blood flow. Ann Neurol 17:287–296

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Miyazaki S, Hara K, Hakamada S (1980) Behavioral state cycles, background EEGs and prognosis of newborns with perinatal hypoxia. Electroencephalogr Clin Neurophysiol 49:618–625

    Article  CAS  PubMed  Google Scholar 

  • Wayenberg JL, Vermeylen D, Bormans J, Magrez P, Muller MF, Pardou A (1994) Diagnosis of severe birth asphyxia and early prediction of neonatal neurological outcome in term asphyxiated newborns. J Perinat Med 22:129–136

    Article  CAS  PubMed  Google Scholar 

  • Westerhuis ME, Porath MM, Becker JH et al (2012) Identification of cases with adverse neonatal outcome monitored by cardiotocography versus ST analysis: secondary analysis of a randomized trial. Acta Obstet Gynecol Scand 91:830–837

    Article  PubMed  Google Scholar 

  • Winkler CL, Hauth JC, Tucker JM, Owen J, Brumfield CG (1991) Neonatal complications at term as related to the degree of umbilical artery acidemia. Am J Obstet Gynecol 164:637–641

    Article  CAS  PubMed  Google Scholar 

  • Wyatt JS (1993) Near-infrared spectroscopy in asphyxial brain injury. Clin Perinatol 20:369–378

    CAS  PubMed  Google Scholar 

  • Xanthou M, Fotopoulos S, Mouchtouri A, Lipsou N, Zika I, Sarafidou J (2002) Inflammatory mediators in perinatal asphyxia and infection. Acta Paediatr Suppl 91:92–97

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floris Groenendaal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Groenendaal, F., van Bel, F. (2016). Clinical Aspects and Treatment of the Hypoxic-Ischemic Syndrome. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-18159-2_273-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18159-2_273-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-18159-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics