Advertisement

Pathophysiology of Fetal and Neonatal Kidneys

  • Farid Boubred
  • Umberto Simeoni
Living reference work entry

Latest version View entry history

Abstract

Fetal renal development is a complex phenomenon. The ureteric bud and metanephric mesenchyme interaction is essential for nephrogenesis which results from the expression of specific genes, the fetal environment, or the interaction of both factors. IUGR, maternal diabetes, maternal undernutrition, micronutrient deficiency, and fetal or neonatal exposure to drugs (NSAIDS, ACE-Is, glucocorticoids, aminoglycosides) or to toxic (alcohol) are known to affect nephrogenesis. After a brief review of fetal and neonatal renal physiology, pathologic situations including preterm birth, congenital anomalies of the kidney and urinary tract, kidney diseases, and kidney-pharmacology interactions will be developed. Renal maldevelopment and exposure to factors that can alter the fetal and neonatal renal functions and structure increase the risk of hypertension and chronic renal disease in adulthood. Long-term follow-up is thus required and early markers of nephron dosing and renal injury should be developed with the aim to implement preventive strategies.

References

  1. Bacchetta J, Harambat J, Dubourg L et al (2009) Both extrauterine and intrauterine growth restriction impair renal function in children born very preterm. Kidney Int 76(4):445–452CrossRefPubMedGoogle Scholar
  2. Boubred F, Vendemia M, Garcia-Meric P et al (2006) Effects of maternally administered drugs on the fetal and neonatal kidney. Drug Saf 29:397–419CrossRefPubMedGoogle Scholar
  3. Boubred F, Saint-Faust M, Buffat C et al (2013) Developmental origins of chronic renal disease: an integrative hypothesis. Int J Nephrol 2013:346067.  https://doi.org/10.1155/2013/346067 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boubred F, Herlenius E, Bartocci M et al (2015) Extremely preterm infants who are small for gestational age have a high risk of early hypophosphatemia and hypokalemia. Acta Paediatr 104:1077–1083CrossRefPubMedGoogle Scholar
  5. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other. Am J Hypertens 1:335–347CrossRefPubMedGoogle Scholar
  6. Brophy PD, Robillard JE (2004) Functional development of the kidney in utero. In: Polin A, Fox W (eds) Fetal and neonatal physiology, 3rd edn. W.B. Saunders Company, Philadelphia, pp 1229–1239CrossRefGoogle Scholar
  7. Bueva A, Guignard JP (1994) Renal function in preterm neonates. Pediatr Res 36:572–577CrossRefPubMedGoogle Scholar
  8. Burrow CR (2000) Regulatory molecules in kidney development. Pediatr Nephrol 14:240–253CrossRefPubMedGoogle Scholar
  9. Catarelli D, Chirico G, Simoni U (2002) Renal effects of antenally and postnatally administered steroids. Pediatr Med Chir 24:157–162Google Scholar
  10. Chevalier RL (1996) Developmental renal physiology of the low birth weight preterm newborn. J Urol 156:714–719CrossRefPubMedGoogle Scholar
  11. Dinchuk JE, Car BD, Focht RJ et al (1995) Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase 2. Nature 378:406–409CrossRefPubMedGoogle Scholar
  12. Filler G, Guerrero-Kanan R, Alvarez-Elías AC (2016) Assessment of glomerular filtration rate in the neonate: is creatinine the best tool? Curr Opin Pediatr 28(2):173–179CrossRefPubMedGoogle Scholar
  13. Gallini F, Maggio L, Romagnoli C et al (2000) Progression of renal function in preterm neonates with gestational age ≤32 weeks. Pediatr Nephrol 15:119–112CrossRefPubMedGoogle Scholar
  14. Giniger RP, Buffat C, Millet V et al (2007) Renal effects of ibuprofen for the treatment of patent ductus arteriosus in premature infants. J Matern Fetal Neonatal Med 20:275–283CrossRefPubMedGoogle Scholar
  15. Gubhaju L, Sutherland MR, Yoder BA et al (2009) Is nephrogenesis affected by preterm birth? Studies in a non-human primate model. Am J Physiol Renal Physiol 297:F1668–F1677CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gubhaju L, Sutherland MR, Horne RS, Medhurst A, Kent AL, Ramsden A, Moore L, Singh G, Hoy WE, Black MJ (2014) Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Renal Physiol 307(2):F149–F158CrossRefPubMedGoogle Scholar
  17. Guignard JP (1975) Glomerular filtration rate in the first three weeks of life. J Pediatr 87:268–272CrossRefPubMedGoogle Scholar
  18. Guignard JP, Gruskin AB, Norman ME (eds) (1981) Pediatric nephrology. Martinus Nijhoff, The HagueGoogle Scholar
  19. Hoster M (2000) Embryonic epithelial membranes transporters. Am J Phys 279:F74–F52Google Scholar
  20. Keller G, Zimmer G, Gerhard M et al (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108CrossRefPubMedGoogle Scholar
  21. Kent AL, Koina ME, Gubhaju L et al (2014) Indomethacin administered early in the postnatal period results in reduced glomerular number in the adult rat. Am J Physiol Renal Physiol 307:F1105–F1110CrossRefPubMedGoogle Scholar
  22. Khan KNM, Stanfield KM, Dannenberg A et al (2001) Cyclooxygenase-2 expression in the developing human kidney. Pediatr Dev Pathol 4:461–466CrossRefPubMedGoogle Scholar
  23. McGrath-Morrow S, Choc C, Molls R et al (2006) VEGF receptor 2 blockade leads to renal cyst formation in mice. Kidney Int 69:1741–1748CrossRefPubMedGoogle Scholar
  24. Merlet-Benichou C, Gilbert T, Vilar J et al (1999) Nephron number: variability is the rule. Causes and consequences. Lab Investig 79:515–526PubMedGoogle Scholar
  25. Nicolaou N, Renkema KY, Bongers EM et al (2015) Genetic, environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol 11:720–731CrossRefPubMedGoogle Scholar
  26. Nielsen S, Frokaier J, Marples D et al (2002) Aquaporins in the kidney: from molecule to medicine. Physiol Rev 82:205–244CrossRefPubMedGoogle Scholar
  27. Peters CA, Carr MC, Lais A et al (1992) The response of the fetal kidney to obstruction. J Urol 148:503–509CrossRefPubMedGoogle Scholar
  28. Pryde PG, Sedman AB, Nugent CE et al (1993) Angiotensin-converting enzyme inhibitor fetopathy. J Am Soc Nephrol 3:1575–1582PubMedGoogle Scholar
  29. Rodriguez MM, Gomez AH, Abitbol CL (2004) Histomorphometric analysis of postnatal glomerulogenesis on extremely preterm infants. Pediatr Dev Pathol 7:17–25CrossRefPubMedGoogle Scholar
  30. Rodriguez-Soriano J (2000) New insight into the pathogenesis of renal tubular acidosis-from functional to molecular studies. Pediatr Nephrol 14:1121–1136CrossRefPubMedGoogle Scholar
  31. Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Solbaug MJ, Jose PA (2004) Postnatal maturation of renal blood flow. In: Polin A, Fox W (eds) Fetal and neonatal physiology, 3rd edn. W.B. Saunders Company, Philadelphia, pp 1243–1249Google Scholar
  33. Stelloh C, Allen KP, Mattson DL et al (2012) Prematurity in mice leads to reduction in nephron number, hypertension, and proteinuria. Transl Res 159:80–89CrossRefPubMedGoogle Scholar
  34. Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RS, Hoy WE, Bertram JF, Black MJ (2011) Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol 22(7):1365–1374CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sweet D, the working group on prematurity (2007) European consensus guidelines on the management of neonatal respiratory distress syndrome. J Perinat Med 35:175–186CrossRefPubMedGoogle Scholar
  36. Vieux R, Fresson J, Guillemin F et al (2011) Perinatal drug exposure and renal function in very preterm infants. Arch Dis Child Fetal Neonatal Ed 96:F290–F295CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of NeonatologyLa Conception HospitalMarseilleFrance
  2. 2.Division of PediatricsCHUV & UNILLausanneSwitzerland

Personalised recommendations