Acid–Base Balance in the Poisoned Patient

  • Stephen W. BorronEmail author
Reference work entry


Acid-base disorders are a major source of morbidity and mortality among patients in the intensive care unit (ICU). An observational cohort study of 9,799 ICU patients found that nearly two thirds of critically ill patients suffered from acute Metabolic Acidosis. Mortality among those with metabolic acidosis was 45% compared with 25% for those without it. For those with lactic acidosis, the mortality rate was 56% [1]. It is difficult to directly extrapolate these findings to poisoned patients who generally have a significantly lower mortality rate than the average ICU patient. We do know, however, from studies of poisonings with specific substances, such as metformin, ethylene glycol, and methanol, that the presence of severe metabolic acidosis is associated with a relatively poor prognosis [2]. A review of 22 cases of metformin overdose revealed a median pH nadir of 7.30 and median plasma lactate of 10.8 mmol/L among survivors compared with pH 6.71 and median plasma lactate of 35.0 mmol/L among non-survivors [2]. Among 18 ethylene glycol poisoned patients, non-survivors had a mean admission pH of 7.05, compared with 7.31 in survivors [3]. No patient with a pH less than 7.10 survived. Not surprisingly, most of the non-survivors presented to the hospital late after ingestion (from 6 h to > 24 h). In a review of one-time methanol exposures with known time of ingestion, 22 patients presented for care <6 h after ingestion and had an early methanol level. Sixteen of these were acidotic on arrival [4]. Blood methanol concentrations ranged from 10 to 570 mg/dL (3–178 mmol/L), and initial arterial pH ranged from 6.90 to 7.42. All underwent treatment with alcohol dehydrogenase inhibitors (with or without hemodialysis). One patient with pH 6.99 died. Three patients with pH ranging from 7.26 to 7.32 suffered optic neuropathies but survived. One patient with pH 6.90 was described as “alive” on discharge, with the remaining 11 (pH range 7.09–7.42) noted as having a full recovery. In summary, it appears that severe metabolic acidosis is associated with a poor prognosis in representative poisonings and that time of presentation plays a significant role in outcome. A larger study of the prognostic value of acid–base disturbances in poisoning in general among ICU patients would be edifying.


Anion gap Acidosis Strong ion gap Respiratory alkalosis Salicylates Metabolic alkalosis Ethylene glycol 



This chapter is dedicated to the memory of Professor Chantal Bismuth, whose contributions to medical toxicology are innumerable and lasting. With her sharply analytical mind, incisive wit, and charming smile, she mentored hundreds of toxicologists-in-training, challenged the status quo, and brought focus to many nebulous concepts in toxicology. She will be missed.


  1. 1.
    Gunnerson KJ, Saul M, He S, Kellum JA. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care. 2006;10(1):R22.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Dell’Aglio DM, Perino LJ, Kazzi Z, Abramson J, Schwartz MD, Morgan BW. Acute metformin overdose: examining serum pH, lactate level, and metformin concentrations in survivors versus nonsurvivors: a systematic review of the literature. Ann Emerg Med. 2009;54(6):818–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Tanasescu A, Macovei RA, Tudosie MS. Outcome of patients in acute poisoning with ethylene glycol – factors which may have influence on evolution. J Med Life. 2014;7(Spec No. 3):81–6.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kostic MA, Dart RC. Rethinking the toxic methanol level. J Toxicol Clin Toxicol. 2003;41(6):793–800.PubMedCrossRefGoogle Scholar
  5. 5.
    Rastegar A. Clinical utility of Stewart’s method in diagnosis and management of acid–base disorders. Clin J Am Soc Nephrol. 2009;4(7):1267–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Al-Jaghbeer M, Kellum JA. Acid–base disturbances in intensive care patients: etiology, pathophysiology and treatment. Nephrol Dial Transplant. 2014;30(7):1104–11.Google Scholar
  7. 7.
    O’Malley GF. Emergency department management of the salicylate-poisoned patient. Emerg Med Clin North Am. 2007;25(2):333–46. abstract viii.PubMedCrossRefGoogle Scholar
  8. 8.
    Fernandez R, Larrain C, Zapata P. Acute ventilatory and circulatory reactions evoked by nicotine: are they excitatory or depressant? Respir Physiol Neurobiol. 2002;133(3):173–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Karapetian GK, Engels HJ, Gretebeck KA, Gretebeck RJ. Effect of caffeine on LT, VT and HRVT. Int J Sports Med. 2012;33(7):507–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Kolarzyk E, Targosz D, Pach D, Misiolek L. Nervous regulation of breathing in opiate dependent patient. Part I. Respiratory system efficiency and breathing regulation in the first stage of controlled abstinence. Przegl Lek. 2000;57(10):531–5.PubMedGoogle Scholar
  11. 11.
    Campbell C, Weinger MB, Quinn M. Alterations in diaphragm EMG activity during opiate-induced respiratory depression. Respir Physiol. 1995;100(2):107–17.PubMedCrossRefGoogle Scholar
  12. 12.
    Gueye PN, Lofaso F, Borron SW, Mellerio F, Vicaut E, Harf A, et al. Mechanism of respiratory insufficiency in pure or mixed drug-induced coma involving benzodiazepines. J Toxicol Clin Toxicol. 2002;40(1):35–47.PubMedCrossRefGoogle Scholar
  13. 13.
    Patel AM, Adeseun GA, Goldfarb S. Calcium-alkali syndrome in the modern era. Nutrients. 2013;5(12):4880–93.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Patel AM, Goldfarb S. Got calcium? Welcome to the calcium-alkali syndrome. J Am Soc Nephrol. 2010;21(9):1440–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Wu KD, Chuang RB, Wu FL, Hsu WA, Jan IS, Tsai KS. The milk-alkali syndrome caused by betelnuts in oyster shell paste. J Toxicol Clin Toxicol. 1996;34(6):741–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Muller-Lissner SA. Adverse effects of laxatives: fact and fiction. Pharmacology. 1993;47 Suppl 1:138–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Tatsumi H, Masuda Y, Imaizumi H, Kuroda H, Yoshida S, Kyan R, et al. A case of cardiopulmonary arrest caused by laxatives-induced hypermagnesemia in a patient with anorexia nervosa and chronic renal failure. J Anesth. 2011;25(6):935–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Chiang WF, Yan MT, Wu TJ, Lin SH. A hypokalaemic woman with nephrocalcinosis: rebirth of old knowledge. Ann Clin Biochem. 2013;50(Pt 2):176–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Miller JL, Schaefer J, Tam M, Harrison DL, Johnson PN. Ethacrynic Acid continuous infusions in critically ill pediatric patients. J Pediatr Pharmacol Ther. 2014;19(1):49–55.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Isaia GC, Pellissetto C, Ravazzoli M, Tamone C. Acute adrenal crisis and hypercalcemia in a patient assuming high liquorice doses. Minerva Med. 2008;99(1):91–4.PubMedGoogle Scholar
  21. 21.
    Onishi A, Muto S, Homma S, Inaba T, Shuto R, Kusano E, et al. Pseudoaldosteronism with increased serum cortisol associated with pneumonia, hypouricemia, hypocalcemia, and hypophosphatemia. Clin Nephrol. 2010;74(5):403–8.PubMedGoogle Scholar
  22. 22.
    Chrispal A, Boorugu H, Prabhakar AT, Moses V. Amikacin-induced type 5 Bartter-like syndrome with severe hypocalcemia. J Postgrad Med. 2009;55(3):208–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Arroyo M, Fenves AZ, Emmett M. The calcium-alkali syndrome. Proc (Baylor Univ Med Cent). 2013;26(2):179–81.Google Scholar
  24. 24.
    Olveira Fuster G, Mancha Doblas I, Vazquez San Miguel F, de Antonio EI, CSE F. Surreptitious intake of diuretics as the cause of pseudo-Bartter’s syndrome: apropos of a case and differential diagnosis. An Med Interna. 1996;13(10):496–9.PubMedGoogle Scholar
  25. 25.
    Ricci Z, Haiberger R, Pezzella C, Garisto C, Favia I, Cogo P. Furosemide versus ethacrynic acid in pediatric patients undergoing cardiac surgery: a randomized controlled trial. Crit Care. 2015;19(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lenzenhuber E, Muller C, Rommelspacher H, Spies C. Gamma-hydroxybutyrate for treatment of alcohol withdrawal syndrome in intensive care patients. A comparison between with two symptom-oriented therapeutic concepts. Anaesthesist. 1999;48(2):89–96.PubMedCrossRefGoogle Scholar
  27. 27.
    Chou CL, Chen YH, Chau T, Lin SH. Acquired bartter-like syndrome associated with gentamicin administration. Am J Med Sci. 2005;329(3):144–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Shetty AK, Rogers NL, Mannick EE, Aviles DH. Syndrome of hypokalemic metabolic alkalosis and hypomagnesemia associated with gentamicin therapy: case reports. Clin Pediatr (Phila). 2000;39(9):529–33.CrossRefGoogle Scholar
  29. 29.
    Centers for Disease Control, Prevention. Infant metabolic alkalosis and soy-based formula – United States. 1979. MMWR Morb Mortal Wkly Rep. 1996;45(45):985–8.Google Scholar
  30. 30.
    Herrmann U, Schwille PO, Schwarzlaender H, Berger I, Hoffmann G. Citrate and recurrent idiopathic calcium urolithiasis. A longitudinal pilot study on the metabolic effects of oral potassium sodium citrate administered as short-, medium- and long-term to male stone patients. Urol Res. 1992;20(5):347–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Smith GI, Jeukendrup AE, Ball D. Sodium acetate induces a metabolic alkalosis but not the increase in fatty acid oxidation observed following bicarbonate ingestion in humans. J Nutr. 2007;137(7):1750–6.PubMedGoogle Scholar
  32. 32.
    Adeva-Andany MM, Fernandez-Fernandez C, Mourino-Bayolo D, Castro-Quintela E, Dominguez-Montero A. Sodium bicarbonate therapy in patients with metabolic acidosis. Scientific World Journal. 2014;2014:627673.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ichai C, Orban JC, Fontaine E. Sodium lactate for fluid resuscitation: the preferred solution for the coming decades? Crit Care. 2014;18(4):163.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Geara AS, Parikh A, Rekhtman Y, Rao MK. The case mid R: metabolic alkalosis in a patient with cystic fibrosis. Kidney Int. 2012;81(4):421–2.PubMedCrossRefGoogle Scholar
  35. 35.
    Gee P, Richardson S, Woltersdorf W, Moore G. Toxic effects of BZP-based herbal party pills in humans: a prospective study in Christchurch, New Zealand. N Z Med J. 2005;118(1227):U1784.PubMedGoogle Scholar
  36. 36.
    Balikova M. Nonfatal and fatal DOB (2,5-dimethoxy-4-bromoamphetamine) overdose. Forensic Sci Int. 2005;153(1):85–91.PubMedCrossRefGoogle Scholar
  37. 37.
    Ben-Abraham R, Szold O, Rudick V, Weinbroum AA. “Ecstasy” intoxication: life-threatening manifestations and resuscitative measures in the intensive care setting. Eur J Emerg Med. 2003;10(4):309–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Greene SL, Dargan PI, O’Connor N, Jones AL, Kerins M. Multiple toxicity from 3,4-methylenedioxymethamphetamine (“ecstasy”). Am J Emerg Med. 2003;21(2):121–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Liss DB, Paden MS, Schwarz ES, Mullins ME. What is the clinical significance of 5-oxoproline (pyroglutamic acid) in high anion gap metabolic acidosis following paracetamol (acetaminophen) exposure? Clin Toxicol (Phila). 2013;51(9):817–27.CrossRefGoogle Scholar
  40. 40.
    Kassamali R, Sica DA. Acetazolamide: a forgotten diuretic agent. Cardiol Rev. 2011;19(6):276–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Muraki K, Inoue Y, Ohta I, Kondo K, Matayoshi Y, Kamei T. Massive rhabdomyolysis and acute renal failure after acetonitrile exposure. Intern Med. 2001;40(9):936–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Foley RJ. Inhaled industrial acetylene. A diabetic ketoacidosis mimic. JAMA. 1985;254(8):1066–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Budris WA, Roxe DM, Duvel JM. High anion gap metabolic acidosis associated with aminocaproic acid. Ann Pharmacother. 1999;33(3):308–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Lan KC, Lin YF, Yu FC, Lin CS, Chu P. Clinical manifestations and prognostic features of acute methamphetamine intoxication. J Formos Med Assoc. 1998;97(8):528–33.PubMedGoogle Scholar
  45. 45.
    Gerard JM, Luisiri A. A fatal overdose of arginine hydrochloride. J Toxicol Clin Toxicol. 1997;35(6):621–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Chang S, Lamm SH. Human health effects of sodium azide exposure: a literature review and analysis. Int J Toxicol. 2003;22(3):175–86.PubMedCrossRefGoogle Scholar
  47. 47.
    Schwarz ES, Wax PM, Kleinschmidt KC, Sharma K, Chung WM, Cantu G, et al. Multiple poisonings with sodium azide at a local restaurant. J Emerg Med. 2014;46(4):491–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Corradi F, Brusasco C, Palermo S, Belvederi G. A case report of massive acute boric acid poisoning. Eur J Emerg Med. 2010;17(1):48–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Benaissa ML, Megarbane B, Borron SW, Baud FJ. Is elevated plasma lactate a useful marker in the evaluation of pure carbon monoxide poisoning? Intensive Care Med. 2003;29(8):1372–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Kao LW, Nanagas KA. Carbon monoxide poisoning. Med Clin North Am. 2005;89(6):1161–94.PubMedCrossRefGoogle Scholar
  51. 51.
    Moon JM, Shin MH, Chun BJ. The value of initial lactate in patients with carbon monoxide intoxication: in the emergency department. Hum Exp Toxicol. 2011;30(8):836–43.PubMedCrossRefGoogle Scholar
  52. 52.
    Sokal JA, Kralkowska E. The relationship between exposure duration, carboxyhemoglobin, blood glucose, pyruvate and lactate and the severity of intoxication in 39 cases of acute carbon monoxide poisoning in man. Arch Toxicol. 1985;57(3):196–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Paillet-Loilier M, Cesbron A, Le Boisselier R, Bourgine J, Debruyne D. Emerging drugs of abuse: current perspectives on substituted cathinones. Subst Abuse Rehabil. 2014;5:37–52.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Szerlip HM, Singer I. Hyperchloremic metabolic acidosis after chlorine inhalation. Am J Med. 1984;77(3):581–2.PubMedCrossRefGoogle Scholar
  55. 55.
    Bin Salih S, Al Qahtani M, Al Anazi T, Al Hussein M, Al Hayyan H, Al Modaimegh H. Metabolic acidosis and generalized seizures secondary to citalopram overdose: a case report. J Clin Pharm Ther. 2010;35(4):479–82.PubMedGoogle Scholar
  56. 56.
    Hoffman RS. Treatment of patients with cocaine-induced arrhythmias: bringing the bench to the bedside. Br J Clin Pharmacol. 2010;69(5):448–57.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Allam S, Noble JS. Cocaine-excited delirium and severe acidosis. Anaesthesia. 2001;56(4):385–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Baud FJ, Barriot P, Toffis V, Riou B, Vicaut E, Lecarpentier Y, et al. Elevated blood cyanide concentrations in victims of smoke inhalation. N Engl J Med. 1991;325(25):1761–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Bismuth C, Baud F, Borron S, Scherrmann J. Antibodies proposed as therapeutic agents. Arch Toxicol Suppl. 1996;18:321–32.PubMedCrossRefGoogle Scholar
  60. 60.
    Baud FJ, Borron SW, Megarbane B, Trout H, Lapostolle F, Vicaut E, et al. Value of lactic acidosis in the assessment of the severity of acute cyanide poisoning. Crit Care Med. 2002;30(9):2044–50.PubMedCrossRefGoogle Scholar
  61. 61.
    Borron SW, Baud FJ. Antidotes for acute cyanide poisoning. Curr Pharm Biotechnol. 2012;13(10):1940–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Huntington S, Heppner J, Vohra R, Mallios R, Geller RJ. Serious adverse effects from single-use detergent sacs: report from a U.S. statewide poison control system. Clin Toxicol (Phila). 2014;52(3):220–5.CrossRefGoogle Scholar
  63. 63.
    Beuhler MC, Gala PK, Wolfe HA, Meaney PA, Henretig FM. Laundry detergent “pod” ingestions: a case series and discussion of recent literature. Pediatr Emerg Care. 2013;29(6):743–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Wilson KC, Reardon C, Farber HW. Propylene glycol toxicity in a patient receiving intravenous diazepam. N Engl J Med. 2000;343(11):815.PubMedCrossRefGoogle Scholar
  65. 65.
    Moon JM, Chun BJ. Clinical characteristics of patients after dicamba herbicide ingestion. Clin Toxicol (Phila). 2014;52(1):48–53.CrossRefGoogle Scholar
  66. 66.
    Dragovic G, Jevtovic D. The role of nucleoside reverse transcriptase inhibitors usage in the incidence of hyperlactatemia and lactic acidosis in HIV/AIDS patients. Biomed Pharmacother. 2012;66(4):308–11.PubMedCrossRefGoogle Scholar
  67. 67.
    Dlamini J, Ledwaba L, Mokwena N, Mokhathi T, Orsega S, Tsoku M, et al. Lactic acidosis and symptomatic hyperlactataemia in a randomized trial of first-line therapy in HIV-infected adults in South Africa. Antivir Ther. 2011;16(4):605–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Borron SW, Baud FJ, Garnier R. Intravenous 4-methylpyrazole as an antidote for diethylene glycol and triethylene glycol poisoning: a case report. Vet Hum Toxicol. 1997;39(1):26–8.PubMedGoogle Scholar
  69. 69.
    Vassiliadis J, Graudins A, Dowsett RP. Triethylene glycol poisoning treated with intravenous ethanol infusion. J Toxicol Clin Toxicol. 1999;37(6):773–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Brent J. Fomepizole for the treatment of pediatric ethylene and diethylene glycol, butoxyethanol, and methanol poisonings. Clin Toxicol (Phila). 2010;48(5):401–6.CrossRefGoogle Scholar
  71. 71.
    Kraut JA, Xing SX. Approach to the evaluation of a patient with an increased serum osmolal gap and high-anion-gap metabolic acidosis. Am J Kidney Dis. 2011;58(3):480–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Moses V, Peter JV. Acute intentional toxicity: endosulfan and other organochlorines. Clin Toxicol (Phila). 2010;48(6):539–44.CrossRefGoogle Scholar
  73. 73.
    Sharma RK, Kaul A, Gupta A, Bhadauria D, Prasad N, Jain A, et al. High anion gap refractory metabolic acidosis as a critical presentation of endosulfan poisoning. Indian J Pharmacol. 2011;43(4):469–71.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Allison MG, McCurdy MT. Alcoholic metabolic emergencies. Emerg Med Clin North Am. 2014;32(2):293–301.PubMedCrossRefGoogle Scholar
  75. 75.
    Brent J. Fomepizole for ethylene glycol and methanol poisoning. N Engl J Med. 2009;360(21):2216–23.PubMedCrossRefGoogle Scholar
  76. 76.
    Ghannoum M, Hoffman RS, Mowry JB, Lavergne V. Trends in toxic alcohol exposures in the United States from 2000 to 2013: a focus on the use of antidotes and extracorporeal treatments. Semin Dial. 2014;27(4):395–401.PubMedCrossRefGoogle Scholar
  77. 77.
    Gualtieri JF, DeBoer L, Harris CR, Corley R. Repeated ingestion of 2-butoxyethanol: case report and literature review. J Toxicol Clin Toxicol. 2003;41(1):57–62.PubMedCrossRefGoogle Scholar
  78. 78.
    Hung T, Dewitt CR, Martz W, Schreiber W, Holmes DT. Fomepizole fails to prevent progression of acidosis in 2-butoxyethanol and ethanol coingestion. Clin Toxicol (Phila). 2010;48(6):569–71.CrossRefGoogle Scholar
  79. 79.
    Osterhoudt KC. Fomepizole therapy for pediatric butoxyethanol intoxication. J Toxicol Clin Toxicol. 2002;40(7):929–30.PubMedCrossRefGoogle Scholar
  80. 80.
    Nitter-Hauge S. Poisoning with ethylene glycol monomethyl ether. Report of two cases. Acta Med Scand. 1970;188(4):277–80.PubMedGoogle Scholar
  81. 81.
    Bedichek E, Kirschbaum B. A case of propylene glycol toxic reaction associated with etomidate infusion. Arch Intern Med. 1991;151(11):2297–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Ganesh A, Audu P. Hyperosmolar, increased-anion-gap metabolic acidosis and hyperglycemia after etomidate infusion. J Clin Anesth. 2008;20(4):290–3.PubMedCrossRefGoogle Scholar
  83. 83.
    McConnel JR, Ong CS, McAllister JL, Gross TG. Propylene glycol toxicity following continuous etomidate infusion for the control of refractory cerebral edema. Neurosurgery. 1996;38(1):232–3.PubMedCrossRefGoogle Scholar
  84. 84.
    Van de Wiele B, Rubinstein E, Peacock W, Martin N. Propylene glycol toxicity caused by prolonged infusion of etomidate. J Neurosurg Anesthesiol. 1995;7(4):259–62.PubMedCrossRefGoogle Scholar
  85. 85.
    Moyle G. Toxicity of antiretroviral nucleoside and nucleotide analogues: is mitochondrial toxicity the only mechanism? Drug Saf. 2000;23(6):467–81.PubMedCrossRefGoogle Scholar
  86. 86.
    Honkoop P, Scholte HR, de Man RA, Schalm SW. Mitochondrial injury. Lessons from the fialuridine trial. Drug Saf. 1997;17(1):1–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Arnaudo JP, Maheut H, Martin B, Hesse JY. Reversible ketoacidosis and hyperglycemia after absorption of flumequine. Effect of high doses in a non-diabetic adult. Nouv Presse Med. 1980;9(9):636.PubMedGoogle Scholar
  88. 88.
    Pandey CK, Agarwal A, Baronia A, Singh N. Toxicity of ingested formalin and its management. Hum Exp Toxicol. 2000;19(6):360–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Dalus D, Mathew AJ, Pillai SS. Formic acid poisoning in a tertiary care center in South India: a 2-year retrospective analysis of clinical profile and predictors of mortality. J Emerg Med. 2013;44(2):373–80.PubMedCrossRefGoogle Scholar
  90. 90.
    Yang CC, Ger J, Li CF. Formic acid: a rare but deadly source of carbon monoxide poisoning. Clin Toxicol (Phila). 2008;46(4):287–9.CrossRefGoogle Scholar
  91. 91.
    Kamijo Y, Takai M, Fujita Y, Hirose Y, Iwasaki Y, Ishihara S. A multicenter retrospective survey on a suicide trend using hydrogen sulfide in Japan. Clin Toxicol (Phila). 2013;51(5):425–8.CrossRefGoogle Scholar
  92. 92.
    Asif MJ, Exline MC. Utilization of hyperbaric oxygen therapy and induced hypothermia after hydrogen sulfide exposure. Respir Care. 2012;57(2):307–10.PubMedCrossRefGoogle Scholar
  93. 93.
    Madiwale T, Liebelt E. Iron: not a benign therapeutic drug. Curr Opin Pediatr. 2006;18(2):174–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Chang TP, Rangan C. Iron poisoning: a literature-based review of epidemiology, diagnosis, and management. Pediatr Emerg Care. 2011;27(10):978–85.PubMedCrossRefGoogle Scholar
  95. 95.
    Osterhoudt KC, Henretig FM. A 16-year-old with recalcitrant seizures. Pediatr Emerg Care. 2012;28(3):304–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Minns AB, Ghafouri N, Clark RF. Isoniazid-induced status epilepticus in a pediatric patient after inadequate pyridoxine therapy. Pediatr Emerg Care. 2010;26(5):380–1.PubMedCrossRefGoogle Scholar
  97. 97.
    Riker RR, Fraser GL. Adverse events associated with sedatives, analgesics, and other drugs that provide patient comfort in the intensive care unit. Pharmacotherapy. 2005;25(5 Pt 2):8S–18.PubMedCrossRefGoogle Scholar
  98. 98.
    Zosel A, Egelhoff E, Heard K. Severe lactic acidosis after an iatrogenic propylene glycol overdose. Pharmacotherapy. 2010;30(2):219.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Pillai U, Hothi JC, Bhat ZY. Severe propylene glycol toxicity secondary to use of anti-epileptics. Am J Ther. 2014;21(4):e106–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Adebamiro A, Perazella MA. Recurrent acute kidney injury following bath salts intoxication. Am J Kidney Dis. 2012;59(2):273–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Chan P, Chen JH, Lee MH, Deng JF. Fatal and nonfatal methamphetamine intoxication in the intensive care unit. J Toxicol Clin Toxicol. 1994;32(2):147–55.PubMedCrossRefGoogle Scholar
  102. 102.
    Roberts DM, Yates C, Megarbane B, Winchester JF, Maclaren R, Gosselin S, et al. Recommendations for the role of extracorporeal treatments in the management of acute methanol poisoning: a systematic review and consensus statement. Crit Care Med. 2015;43(2):461–72.PubMedCrossRefGoogle Scholar
  103. 103.
    Pearson JM, Hargraves TL, Hair LS, Massucci CJ, Frazee 3rd CC, Garg U, et al. Three fatal intoxications due to methylone. J Anal Toxicol. 2012;36(6):444–51.PubMedCrossRefGoogle Scholar
  104. 104.
    Eizadi-Mood N. Nalidixic acid overdose and metabolic acidosis. CJEM. 2006;8(2):78.PubMedCrossRefGoogle Scholar
  105. 105.
    Dhongade RK, Kavade SG, Damle RS. Neem oil poisoning. Indian Pediatr. 2008;45(1):56–7.PubMedGoogle Scholar
  106. 106.
    Meeran M, Murali A, Balakrishnan R, Narasimhan D. “Herbal remedy is natural and safe” – truth or myth? J Assoc Physicians India. 2013;61(11):848–50.PubMedGoogle Scholar
  107. 107.
    Hottinger DG, Beebe DS, Kozhimannil T, Prielipp RC, Belani KG. Sodium nitroprusside in 2014: a clinical concepts review. J Anaesthesiol Clin Pharmacol. 2014;30(4):462–71.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Lipper B, Bell A, Gaynor B. Recurrent hypotension immediately after seizures in nortriptyline overdose. Am J Emerg Med. 1994;12(4):452–3.PubMedCrossRefGoogle Scholar
  109. 109.
    Ballesteros S, Martinez MA, Ballesteros MA, de la Torre CS, Rodriguez-Borregan JC. A severe case of olanzapine overdose with analytical data. Clin Toxicol (Phila). 2007;45(4):412–5.CrossRefGoogle Scholar
  110. 110.
    Zadik Z, Blachar Y, Barak Y, Levin S. Organophosphate poisoning presenting as diabetic ketoacidosis. J Toxicol Clin Toxicol. 1983;20(4):381–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Haddad LM, Dimond KA, Schweistris JE. Phenol poisoning. JACEP. 1979;8(7):267–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Todorovic V. Acute phenol poisoning. Med Pregl. 2003;56 Suppl 1:37–41.PubMedGoogle Scholar
  113. 113.
    Hainer V, Aldhoon-Hainerova I. Tolerability and safety of the new anti-obesity medications. Drug Saf. 2014;37(9):693–702.PubMedCrossRefGoogle Scholar
  114. 114.
    Caravati EM. Metabolic abnormalities associated with phosphoric acid ingestion. Ann Emerg Med. 1987;16(8):904–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Fernandez OU, Canizares LL. Acute hepatotoxicity from ingestion of yellow phosphorus-containing fireworks. J Clin Gastroenterol. 1995;21(2):139–42.PubMedCrossRefGoogle Scholar
  116. 116.
    Woolf AD, Ebert TH. Toxicity after self-poisoning by ingestion of potassium chloroplatinite. J Toxicol Clin Toxicol. 1991;29(4):467–72.PubMedCrossRefGoogle Scholar
  117. 117.
    Bismuth C, Baud FJ, Djeghout H, Astier A, Aubriot D. Cyanide poisoning from propionitrile exposure. J Emerg Med. 1987;5(3):191–5.PubMedCrossRefGoogle Scholar
  118. 118.
    Scolnick B, Hamel D, Woolf AD. Successful treatment of life-threatening propionitrile exposure with sodium nitrite/sodium thiosulfate followed by hyperbaric oxygen. J Occup Med. 1993;35(6):577–80.PubMedCrossRefGoogle Scholar
  119. 119.
    Mirrakhimov AE, Voore P, Halytskyy O, Khan M, Ali AM. Propofol infusion syndrome in adults: a clinical update. Crit Care Res Pract. 2015;2015:260385.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Lawson-Smith P, Jansen EC, Hyldegaard O. Cyanide intoxication as part of smoke inhalation – a review on diagnosis and treatment from the emergency perspective. Scand J Trauma Resusc Emerg Med. 2011;19:14.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Orbegozo Cortes D, Rayo Bonor A, Vincent JL. Isotonic crystalloid solutions: a structured review of the literature. Br J Anaesth. 2014;112(6):968–81.PubMedCrossRefGoogle Scholar
  122. 122.
    Guidet B, Soni N, Della Rocca G, Kozek S, Vallet B, Annane D, et al. A balanced view of balanced solutions. Crit Care. 2010;14(5):325.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Morgan TJ. The ideal crystalloid – what is “balanced”? Curr Opin Crit Care. 2013;19(4):299–307.PubMedCrossRefGoogle Scholar
  124. 124.
    Lactic Acidosis International Study Group. Risk factors for lactic acidosis and severe hyperlactataemia in HIV-1-infected adults exposed to antiretroviral therapy. AIDS. 2007;21(18):2455–64.CrossRefGoogle Scholar
  125. 125.
    McLeod HL, Baker Jr DK, Pui CH, Rodman JH. Somnolence, hypotension, and metabolic acidosis following high-dose teniposide treatment in children with leukemia. Cancer Chemother Pharmacol. 1991;29(2):150–4.PubMedCrossRefGoogle Scholar
  126. 126.
    Charytan D, Jansen K. Severe metabolic complications from theophylline intoxication. Nephrology (Carlton). 2003;8(5):239–42.CrossRefGoogle Scholar
  127. 127.
    Manzanares W, Hardy G. Thiamine supplementation in the critically ill. Curr Opin Clin Nutr Metab Care. 2011;14(6):610–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Tormoehlen LM, Tekulve KJ, Nanagas KA. Hydrocarbon toxicity: a review. Clin Toxicol (Phila). 2014;52(5):479–89.CrossRefGoogle Scholar
  129. 129.
    Dell’Orto VG, Belotti EA, Goeggel-Simonetti B, Simonetti GD, Ramelli GP, Bianchetti MG, et al. Metabolic disturbances and renal stone promotion on treatment with topiramate: a systematic review. Br J Clin Pharmacol. 2014;77(6):958–64.PubMedCrossRefGoogle Scholar
  130. 130.
    Scheulen ME, Hilger RA, Oberhoff C, Casper J, Freund M, Josten KM, et al. Clinical phase I dose escalation and pharmacokinetic study of high-dose chemotherapy with treosulfan and autologous peripheral blood stem cell transplantation in patients with advanced malignancies. Clin Cancer Res. 2000;6(11):4209–16.PubMedGoogle Scholar
  131. 131.
    Hemstreet BA. Antimicrobial-associated renal tubular acidosis. Ann Pharmacother. 2004;38(6):1031–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Nanau RM, Neuman MG. Adverse drug reactions induced by valproic acid. Clin Biochem. 2013;46(15):1323–38.PubMedCrossRefGoogle Scholar
  133. 133.
    Watson ID, McBride D, Paterson KR. Fatal xylenol self-poisoning. Postgrad Med J. 1986;62(727):411–2.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Tripuraneni NS, Smith PR, Weedon J, Rosa U, Sepkowitz D. Prognostic factors in lactic acidosis syndrome caused by nucleoside reverse transcriptase inhibitors: report of eight cases and review of the literature. AIDS Patient Care STDS. 2004;18(7):379–84.PubMedCrossRefGoogle Scholar
  135. 135.
    Arenas-Pinto A, Grant AD, Edwards S, Weller IV. Lactic acidosis in HIV infected patients: a systematic review of published cases. Sex Transm Infect. 2003;79(4):340–3.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Wilson BJ, Cowan HJ, Lord JA, Zuege DJ, Zygun DA. The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study. BMC Emerg Med. 2010;10:9.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Pretto JJ, Roebuck T, Beckert L, Hamilton G. Clinical use of pulse oximetry: official guidelines from the Thoracic Society of Australia and New Zealand. Respirology. 2014;19(1):38–46.PubMedCrossRefGoogle Scholar
  138. 138.
    Weaver LK, Churchill SK, Deru K, Cooney D. False positive rate of carbon monoxide saturation by pulse oximetry of emergency department patients. Respir Care. 2013;58(2):232–40.PubMedGoogle Scholar
  139. 139.
    Chang KC, Orr J, Hsu WC, Yu L, Tsou MY, Westenskow DR, et al. Accuracy of CO2 monitoring via nasal cannulas and oral bite blocks during sedation for esophagogastroduodenoscopy. J Clin Monit Comput. 2015.Google Scholar
  140. 140.
    Salem MM, Mujais SK. Gaps in the anion gap. Arch Intern Med. 1992;152(8):1625–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Wrenn K. The delta (delta) gap: an approach to mixed acid–base disorders. Ann Emerg Med. 1990;19(11):1310–3.PubMedCrossRefGoogle Scholar
  142. 142.
    Adrogue HJ, Wilson H, Boyd 3rd AE, Suki WN, Eknoyan G. Plasma acid–base patterns in diabetic ketoacidosis. N Engl J Med. 1982;307(26):1603–10.PubMedCrossRefGoogle Scholar
  143. 143.
    Brivet F, Bernardin M, Dormont J. Hyperchloremic acidosis in metabolic acidosis with anion gap excess. Comparison with diabetic ketoacidosis. Presse Med. 1991;20(9):413–7.PubMedGoogle Scholar
  144. 144.
    Skellett S, Mayer A, Durward A, Tibby SM, Murdoch IA. Chasing the base deficit: hyperchloraemic acidosis following 0.9% saline fluid resuscitation. Arch Dis Child. 2000;83(6):514–6.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Gabow PA, Kaehny WD, Fennessey PV, Goodman SI, Gross PA, Schrier RW. Diagnostic importance of an increased serum anion gap. N Engl J Med. 1980;303(15):854–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Winter SD, Pearson JR, Gabow PA, Schultz AL, Lepoff RB. The fall of the serum anion gap. Arch Intern Med. 1990;150(2):311–3.PubMedCrossRefGoogle Scholar
  147. 147.
    Sadjadi SA. A new range for the anion gap. Ann Intern Med. 1995;123(10):807.PubMedCrossRefGoogle Scholar
  148. 148.
    Sadjadi SA, Manalo R, Jaipaul N, McMillan J. Ion-selective electrode and anion gap range: what should the anion gap be? Int J Nephrol Renov Dis. 2013;6:101–5.CrossRefGoogle Scholar
  149. 149.
    Lolekha PH, Vanavanan S, Teerakarnjana N, Chaichanajarernkul U. Reference ranges of electrolyte and anion gap on the Beckman E4A, Beckman Synchron CX5, Nova CRT, and Nova Stat Profile Ultra. Clin Chim Acta. 2001;307(1–2):87–93.PubMedCrossRefGoogle Scholar
  150. 150.
    Paulson WD, Roberts WL, Lurie AA, Koch DD, Butch AW, Aguanno JJ. Wide variation in serum anion gap measurements by chemistry analyzers. Am J Clin Pathol. 1998;110(6):735–42.PubMedCrossRefGoogle Scholar
  151. 151.
    Kraut JA, Nagami GT. The serum anion gap in the evaluation of acid–base disorders: what are its limitations and can its effectiveness be improved? Clin J Am Soc Nephrol. 2013;8(11):2018–24.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Jacob J, Lavonas EJ. Falsely normal anion gap in severe salicylate poisoning caused by laboratory interference. Ann Emerg Med. 2011;58(3):280–1.PubMedCrossRefGoogle Scholar
  153. 153.
    Herres J, Ryan D, Salzman M. Delayed salicylate toxicity with undetectable initial levels after large-dose aspirin ingestion. Am J Emerg Med. 2009;27(9):1173 e1–3.CrossRefGoogle Scholar
  154. 154.
    Figge J, Jabor A, Kazda A, Fencl V. Anion gap and hypoalbuminemia. Crit Care Med. 1998;26(11):1807–10.PubMedCrossRefGoogle Scholar
  155. 155.
    Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid–base disturbances in critically ill patients. Am J Respir Crit Care Med. 2000;162(6):2246–51.PubMedCrossRefGoogle Scholar
  156. 156.
    Wang F, Butler T, Rabbani GH, Jones PK. The acidosis of cholera. Contributions of hyperproteinemia, lactic acidemia, and hyperphosphatemia to an increased serum anion gap. N Engl J Med. 1986;315(25):1591–5.PubMedCrossRefGoogle Scholar
  157. 157.
    Decaux G, Schlesser M, Coffernils M, Prospert F, Namias B, Brimioulle S, et al. Uric acid, anion gap and urea concentration in the diagnostic approach to hyponatremia. Clin Nephrol. 1994;42(2):102–8.PubMedGoogle Scholar
  158. 158.
    Decaux G, Musch W. Clinical laboratory evaluation of the syndrome of inappropriate secretion of antidiuretic hormone. Clin J Am Soc Nephrol. 2008;3(4):1175–84.PubMedCrossRefGoogle Scholar
  159. 159.
    Dorwart WV, Chalmers L. Comparison of methods for calculating serum osmolality form chemical concentrations, and the prognostic value of such calculations. Clin Chem. 1975;21(2):190–4.PubMedGoogle Scholar
  160. 160.
    Brindley PG, Butler MS, Cembrowski G, Brindley DN. Falsely elevated point-of-care lactate measurement after ingestion of ethylene glycol. CMAJ. 2007;176(8):1097–9.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Fijen JW, Kemperman H, Ververs FF, Meulenbelt J. False hyperlactatemia in ethylene glycol poisoning. Intensive Care Med. 2006;32(4):626–7.PubMedCrossRefGoogle Scholar
  162. 162.
    Jorens PG. Falsely elevated lactate and ethylene glycol. Clin Toxicol (Phila). 2009;47(7):691.CrossRefGoogle Scholar
  163. 163.
    Manini AF, Hoffman RS, McMartin KE, Nelson LS. Relationship between serum glycolate and falsely elevated lactate in severe ethylene glycol poisoning. J Anal Toxicol. 2009;33(3):174–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Verelst S, Vermeersch P, Desmet K. Ethylene glycol poisoning presenting with a falsely elevated lactate level. Clin Toxicol (Phila). 2009;47(3):236–8.CrossRefGoogle Scholar
  165. 165.
    Megarbane B, Resiere D. Toxicological analysis is mandatory to interpret elevation in blood lactate concentration in toxic alcohol poisoning. Ann Fr Anesth Reanim. 2014;33(5):368–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Jorens PG, Demey HE, Schepens PJ, Coucke V, Verpooten GA, Couttenye MM, et al. Unusual D-lactic acid acidosis from propylene glycol metabolism in overdose. J Toxicol Clin Toxicol. 2004;42(2):163–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Marraffa JM, Hui A, Stork CM. Severe hyperphosphatemia and hypocalcemia following the rectal administration of a phosphate-containing Fleet pediatric enema. Pediatr Emerg Care. 2004;20(7):453–6.PubMedCrossRefGoogle Scholar
  168. 168.
    Hsu HJ, Wu MS. Extreme hyperphosphatemia and hypocalcemic coma associated with phosphate enema. Intern Med. 2008;47(7):643–6.PubMedCrossRefGoogle Scholar
  169. 169.
    Wiener SW. Toxicologic acid–base disorders. Emerg Med Clin North Am. 2014;32(1):149–65.PubMedCrossRefGoogle Scholar
  170. 170.
    Astrup P, Jorgensen K, Andersen OS, Engel K. The acid–base metabolism. A new approach. Lancet. 1960;1(7133):1035–9.PubMedCrossRefGoogle Scholar
  171. 171.
    O’Leary TD, Langton SR. Calculated bicarbonate or total carbon dioxide? Clin Chem. 1989;35(8):1697–700.PubMedGoogle Scholar
  172. 172.
    Rosan RC, Enlander D, Ellis J. Unpredictable error in calculated bicarbonate homeostasis during pediatric intensive care: the delusion of fixed pK’. Clin Chem. 1983;29(1):69–73.PubMedGoogle Scholar
  173. 173.
    Kume T, Sisman AR, Solak A, Tuglu B, Cinkooglu B, Coker C. The effects of different syringe volume, needle size and sample volume on blood gas analysis in syringes washed with heparin. Biochem Med (Zagreb). 2012;22(2):189–201.CrossRefGoogle Scholar
  174. 174.
    Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med. 1999;27(8):1577–81.PubMedCrossRefGoogle Scholar
  175. 175.
    Kellum JA. Metabolic acidosis in the critically ill: lessons from physical chemistry. Kidney Int Suppl. 1998;66:S81–6.PubMedGoogle Scholar
  176. 176.
    Stewart PA. Modern quantitative acid–base chemistry. Can J Physiol Pharmacol. 1983;61(12):1444–61.PubMedCrossRefGoogle Scholar
  177. 177.
    Fencl V, Leith DE. Stewart’s quantitative acid–base chemistry: applications in biology and medicine. Respir Physiol. 1993;91(1):1–16.PubMedCrossRefGoogle Scholar
  178. 178.
    Kellum JA, Kramer DJ, Pinsky MR. Strong ion gap: a methodology for exploring unexplained anions. J Crit Care. 1995;10(2):51–5.PubMedCrossRefGoogle Scholar
  179. 179.
    Anstey CM. An assessment of the population variance of the strong ion gap using Monte Carlo simulation. Anaesth Intensive Care. 2009;37(6):983–91.PubMedGoogle Scholar
  180. 180.
    Gunnerson KJ, Srisawat N, Kellum JA. Is there a difference between strong ion gap in healthy volunteers and intensive care unit patients? J Crit Care. 2010;25(3):520–4.PubMedCrossRefGoogle Scholar
  181. 181.
    Durward A, Tibby SM, Skellett S, Austin C, Anderson D, Murdoch IA. The strong ion gap predicts mortality in children following cardiopulmonary bypass surgery. Pediatr Crit Care Med. 2005;6(3):281–5.PubMedCrossRefGoogle Scholar
  182. 182.
    Moviat M, van den Boogaard M, Intven F, van der Voort P, van der Hoeven H, Pickkers P. Stewart analysis of apparently normal acid–base state in the critically ill. J Crit Care. 2013;28(6):1048–54.PubMedCrossRefGoogle Scholar
  183. 183.
    Zheng CM, Liu WC, Zheng JQ, Liao MT, Ma WY, Hung KC, et al. Metabolic acidosis and strong ion gap in critically ill patients with acute kidney injury. Biomed Res Int. 2014;2014:819528.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Story DA, Morimatsu H, Bellomo R. Strong ions, weak acids and base excess: a simplified Fencl-Stewart approach to clinical acid–base disorders. Br J Anaesth. 2004;92(1):54–60.PubMedCrossRefGoogle Scholar
  185. 185.
    Ahmed SM, Maheshwari P, Agarwal S, Nadeem A, Singh L. Evaluation of the efficacy of simplified Fencl-Stewart equation in analyzing the changes in acid base status following resuscitation with two different fluids. Int J Crit Illn Inj Sci. 2013;3(3):206–10.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Hoffman RS, Smilkstein MJ, Howland MA, Goldfrank LR. Osmol gaps revisited: normal values and limitations. J Toxicol Clin Toxicol. 1993;31(1):81–93.PubMedCrossRefGoogle Scholar
  187. 187.
    Lynd LD, Richardson KJ, Purssell RA, Abu-Laban RB, Brubacher JR, Lepik KJ, et al. An evaluation of the osmole gap as a screening test for toxic alcohol poisoning. BMC Emerg Med. 2008;8:5.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Khajuria A, Krahn J. Osmolality revisited – deriving and validating the best formula for calculated osmolality. Clin Biochem. 2005;38(6):514–9.PubMedCrossRefGoogle Scholar
  189. 189.
    Purssell RA, Pudek M, Brubacher J, Abu-Laban RB. Derivation and validation of a formula to calculate the contribution of ethanol to the osmolal gap. Ann Emerg Med. 2001;38(6):653–9.PubMedCrossRefGoogle Scholar
  190. 190.
    Mahon WA, Holland J, Urowitz MB. Hyperosmolar, non-ketotic diabetic coma. Can Med Assoc J. 1968;99(22):1090–2.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Carstairs SD, Suchard JR, Smith T, Simon LV, Kalynych CJ, Shimada M, et al. Contribution of serum ethanol concentration to the osmol gap: a prospective volunteer study. Clin Toxicol (Phila). 2013;51(5):398–401.CrossRefGoogle Scholar
  192. 192.
    Garrard A, Sollee DR, Butterfield RC, Johannsen L, Wood A, Bertholf RL. Validation of a pre-existing formula to calculate the contribution of ethanol to the osmolar gap. Clin Toxicol (Phila). 2012;50(7):562–6.CrossRefGoogle Scholar
  193. 193.
    Sud P, Nelson LS, Bouchard M, Lee WW. Contribution of serum ethanol concentration to the osmol gap: a prospective volunteer study. Clin Toxicol (Phila). 2013;51(8):810.CrossRefGoogle Scholar
  194. 194.
    Siervo M, Bunn D, Prado CM, Hooper L. Accuracy of prediction equations for serum osmolarity in frail older people with and without diabetes. Am J Clin Nutr. 2014;100(3):867–76.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Martin-Calderon JL, Bustos F, Tuesta-Reina LR, Varona JM, Caballero L, Solano F. Choice of the best equation for plasma osmolality calculation: comparison of fourteen formulae. Clin Biochem. 2015;48(7–8):529–33.PubMedCrossRefGoogle Scholar
  196. 196.
    Porter WH. Invalid correction of “falsely” elevated osmol gap. J Emerg Med. 2007;32(3):311–2. author reply 2–3.PubMedCrossRefGoogle Scholar
  197. 197.
    Buckley NA, Whyte IM, Dawson AH. Osmolal gap. J Toxicol Clin Toxicol. 1994;32:93–5.CrossRefGoogle Scholar
  198. 198.
    Hovda KE, Hunderi OH, Rudberg N, Froyshov S, Jacobsen D. Anion and osmolal gaps in the diagnosis of methanol poisoning: clinical study in 28 patients. Intensive Care Med. 2004;30(9):1842–6.PubMedCrossRefGoogle Scholar
  199. 199.
    Hunderi OH, Hovda KE, Jacobsen D. Use of the osmolal gap to guide the start and duration of dialysis in methanol poisoning. Scand J Urol Nephrol. 2006;40(1):70–4.PubMedCrossRefGoogle Scholar
  200. 200.
    Narins RG, Emmett M. Simple and mixed acid–base disorders: a practical approach. Medicine (Baltimore). 1980;59(3):161–87.CrossRefGoogle Scholar
  201. 201.
    Levy B, Perez P, Perny J, Thivilier C, Gerard A. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med. 2011;39(3):450–5.PubMedCrossRefGoogle Scholar
  202. 202.
    Heckmann M, Trotter A, Pohlandt F, Lindner W. Epinephrine treatment of hypotension in very low birthweight infants. Acta Paediatr. 2002;91(5):566–70.PubMedCrossRefGoogle Scholar
  203. 203.
    Morgan TJ, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid–base change during in vitro hemodilution. Crit Care Med. 2002;30(1):157–60.PubMedCrossRefGoogle Scholar
  204. 204.
    Morgan TJ, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid–base change during acute normovolaemic haemodilution. Intensive Care Med. 2004;30(7):1432–7.PubMedCrossRefGoogle Scholar
  205. 205.
    Omron EM, Omron RM. A physicochemical model of crystalloid infusion on acid–base status. J Intensive Care Med. 2010;25(5):271–80.PubMedCrossRefGoogle Scholar
  206. 206.
    Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255(5):821–9.PubMedCrossRefGoogle Scholar
  207. 207.
    Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS, et al. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis*. Crit Care Med. 2014;42(7):1585–91.PubMedCrossRefGoogle Scholar
  208. 208.
    Graf H, Leach W, Arieff AI. Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science. 1985;227(4688):754–6.PubMedCrossRefGoogle Scholar
  209. 209.
    Forsythe SM, Schmidt GA. Sodium bicarbonate for the treatment of lactic acidosis. Chest. 2000;117(1):260–7.PubMedCrossRefGoogle Scholar
  210. 210.
    Liebelt EL. Targeted management strategies for cardiovascular toxicity from tricyclic antidepressant overdose: the pivotal role for alkalinization and sodium loading. Pediatr Emerg Care. 1998;14(4):293–8.PubMedCrossRefGoogle Scholar
  211. 211.
    Mackway-Jones K. Towards evidence based emergency medicine: best BETs from the Manchester Royal Infirmary. Alkalinisation in the management of tricyclic antidepressant overdose. J Accid Emerg Med. 1999;16(2):139–40.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Woolf AD, Erdman AR, Nelson LS, Caravati EM, Cobaugh DJ, Booze LL, et al. Tricyclic antidepressant poisoning: an evidence-based consensus guideline for out-of-hospital management. Clin Toxicol (Phila). 2007;45(3):203–33.CrossRefGoogle Scholar
  213. 213.
    Kraut JA, Madias NE. Treatment of acute metabolic acidosis: a pathophysiologic approach. Nat Rev Nephrol. 2012;8(10):589–601.PubMedCrossRefGoogle Scholar
  214. 214.
    Gehlbach BK, Schmidt GA. Bench-to-bedside review: treating acid–base abnormalities in the intensive care unit – the role of buffers. Crit Care. 2004;8(4):259–65.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Weber T, Tschernich H, Sitzwohl C, Ullrich R, Germann P, Zimpfer M, et al. Tromethamine buffer modifies the depressant effect of permissive hypercapnia on myocardial contractility in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;162(4 Pt 1):1361–5.PubMedCrossRefGoogle Scholar
  216. 216.
    Marfo K, Garala M, Kvetan V, Gasperino J. Use of Tris-hydroxymethyl aminomethane in severe lactic acidosis due to highly active antiretroviral therapy: a case report. J Clin Pharm Ther. 2009;34(1):119–23.PubMedCrossRefGoogle Scholar
  217. 217.
    Kallet RH, Jasmer RM, Luce JM, Lin LH, Marks JD. The treatment of acidosis in acute lung injury with tris-hydroxymethyl aminomethane (THAM). Am J Respir Crit Care Med. 2000;161(4 Pt 1):1149–53.PubMedCrossRefGoogle Scholar
  218. 218.
    Nahas GG, Sutin KM, Fermon C, Streat S, Wiklund L, Wahlander S, et al. Guidelines for the treatment of acidaemia with THAM. Drugs. 1998;55(2):191–224.PubMedCrossRefGoogle Scholar
  219. 219.
    Heaney D, Majid A, Junor B. Bicarbonate haemodialysis as a treatment of metformin overdose. Nephrol Dial Transplant. 1997;12(5):1046–7.PubMedCrossRefGoogle Scholar
  220. 220.
    Ledebo I. Acid–base correction and convective dialysis therapies. Nephrol Dial Transplant. 2000;15 Suppl 2:45–8.PubMedCrossRefGoogle Scholar
  221. 221.
    Sabeel AI, Kurkus J, Lindholm T. Intensified dialysis treatment of ethylene glycol intoxication. Scand J Urol Nephrol. 1995;29(2):125–9.PubMedCrossRefGoogle Scholar
  222. 222.
    Calello DP, Liu KD, Wiegand TJ, Roberts DM, Lavergne V, Gosselin S, et al. Extracorporeal treatment for metformin poisoning: systematic review and recommendations from the extracorporeal treatments in poisoning workgroup. Crit Care Med. 2015;43:1716.PubMedCrossRefGoogle Scholar
  223. 223.
    Ghannoum M, Laliberte M, Nolin TD, MacTier R, Lavergne V, Hoffman RS, et al. Extracorporeal treatment for valproic acid poisoning: systematic review and recommendations from the EXTRIP workgroup. Clin Toxicol (Phila). 2015;53(5):454–65.CrossRefGoogle Scholar
  224. 224.
    Gosselin S, Juurlink DN, Kielstein JT, Ghannoum M, Lavergne V, Nolin TD, et al. Extracorporeal treatment for acetaminophen poisoning: recommendations from the EXTRIP workgroup. Clin Toxicol (Phila). 2014;52(8):856–67.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Medical ToxicologyTexas Tech UniversityEl PasoUSA

Personalised recommendations