Malignant Hyperthermia

  • Henry Rosenberg
  • Dorothea Hall
  • Harvey Rosenbaum
Reference work entry


Malignant hyperthermia (MH) syndrome is an unusual disorder. Much like an individual who has an allergy, the MH-susceptible patient is often unaware of his or her problem unless there is a family history of anesthesia-related problems that suggest MH or until exposed to the “triggering” agent. MH syndrome may not develop on all exposures. The resemblance to an allergy breaks down, however, on further analysis. MH is an inherited disorder [1]. Patients develop a hypermetabolic condition on exposure to drugs that are generally used to produce general anesthesia such as isoflurane, halothane, desflurane, and sevoflurane or skeletal muscle paralysis, namely, succinylcholine [2]. The pathophysiologic change in MH relates to an uncontrolled increase of intracellular calcium in skeletal muscle that leads to hypermetabolism, depletion of energy sources, acidosis, and membrane breakdown [1–3]. Untreated, MH syndrome is fatal in most cases. With prompt discontinuation of trigger agents and administration of the drug dantrolene [4], mortality may be close to zero [5]. This chapter discusses clinical presentation, pathophysiology, molecular genetics, diagnosis, treatment, and sources of information for this unusual cause of anesthetic morbidity and mortality.


  1. 1.
    MacLennan DH, Phillips MS. Malignant hyperthermia. Science. 1992;256:789–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosenberg H, Dirksen R, Sambuughin NK. Malignant hyperthermia susceptibility in: GeneReviews at gene tests: medical genetics information resource [database online]. (2013). Revised and updated 2013.
  3. 3.
    Jurkat-Rott K, McCarthy T, Lehmann-Horn F. Genetics and pathogenesis of malignant hyperthermia. Muscle Nerve. 2000;23(1):4–17.PubMedCrossRefGoogle Scholar
  4. 4.
    Kolb ME, Horne ML, Martz R. Dantrolene in human malignant hyperthermia. Anesthesiology. 1982;56:254–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Larach MG, Brandom BW, Allen GC, Gronert GA, Lehman EB. Cardiac arrests and deaths associated with malignant hyperthermia in North America from 1987 to 2006: a report from the North American malignant hyperthermia registry of the malignant hyperthermia association of the United States. Anesthesiology. 2008;108(4):603–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Denborough MA, Lovell RRH. Anaesthetic deaths in a family. Lancet. 1960;2:45.CrossRefGoogle Scholar
  7. 7.
    Harrison GG. Pale, soft exudative pork, porcine stress syndrome and malignant hyperpyrexia – an identity? J S Afr Vet Assoc. 1972;43:57–63.PubMedGoogle Scholar
  8. 8.
    Kalow W, Britt BA, Terreau ME, et al. Metabolic error of muscle metabolism after recovery from malignant hyperthermia. Lancet. 1970;2:895–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Groom L, Muldoon SM, Tang ZZ, Brandom BW, Bayarsaikhan M, Bina S, Lee HS, Qiu X, Sambuughin N, Dirksen RT. Identical de novo mutation in the type 1 ryanodine receptor gene associated with fatal, stress-induced malignant hyperthermia in two unrelated families. Anesthesiology. 2011;115(5):938–45.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ellis FR, Harriman DG, Keaney NP, et al. Halothane-induced muscle contracture as a cause of hyperpyrexia. Br J Anaesth. 1971;43:721–2.PubMedGoogle Scholar
  11. 11.
    Harrison GG. Control of the malignant hyperpyrexic syndrome in MHS swine by dantrolene sodium. Br J Anaesth. 1975;47:62–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Rosenberg H, Fletcher JE. Report of a scientific meeting. International malignant hyperthermia workshop and symposium. Hiroshima, Japan, July 16–19, 1944. Anesthesiology. 1995;82:803–5.CrossRefGoogle Scholar
  13. 13.
    Chelu MG, Goonasekera SA, Durham WJ, Tang W, Lueck JD, Riehl J, Pessah IN, Zhang P, Bhattacharjee MB, Dirksen RT, Hamilton SL. Heat- and anesthesia-induced malignant hyperthermia in an RYR1 knock-in mouse. FASEB J. 2006;20:329–30.PubMedGoogle Scholar
  14. 14.
    Larach MG, Gronert GA, Allen GC, Brandom BW, Lehman EB. Clinical presentation, treatment, and complications of malignant hyperthermia in North America from, 1987 to 2006. Anesth Analg. 2010;110(2):498–507.PubMedCrossRefGoogle Scholar
  15. 15.
    Ording H. Incidence of malignant hyperthermia in Denmark. Anesth Analg. 1985;64:700–4.PubMedGoogle Scholar
  16. 16.
    Pinyavat T, Rosenberg H, Lang BH, Wong CA, Riazi S, Brady JE, Sun LS, Li G. Accuracy of malignant hyperthermia diagnosis in hospital records. Anesthesiology. 2015;122(1):55–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosero EB, Adesanya AO, Timaran CH, Joshi GP. Trends and outcomes of malignant hyperthermia in the United States, 2000 to 2005. Anesthesiology. 2009;110:89–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Bachand M, Vachon N, Boisvert M, et al. Clinical reassessment of malignant hyperthermia in Abitibi-Temiscamingue. Can J Anaesth. 1997;44:696–701.PubMedCrossRefGoogle Scholar
  19. 19.
    Brady J, Sun L, Rosenberg H, Li G. Prevalence of malignant hyperthermia in New York state, 2001–2005. Anesth Analg. 2009;109:1162–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Monnier N, Krivosic-Horber R, Payen J-F, et al. Presence of two different genetic traits in malignant hyperthermia families: Implication for genetic analysis, diagnosis, and incidence of malignant hyperthermia susceptibility. Anesthesiology. 2002;97:1067–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Gonsalves SG, Ng D, Johnston JJ, Teer JK, Stenson PD, Cooper DN, Mullikin JC, Biesecker LG. NISC comparative sequencing program. Using exome data to identify malignant hyperthermia susceptibility mutations. Anesthesiology. 2013;119(5):1043–53.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mickelson JR, Louis CF. Malignant hyperthermia: excitation-contraction coupling, Ca2+release channel, and cell Ca2+ regulation defects. Physiol Rev. 1996;76:537–92.PubMedGoogle Scholar
  23. 23.
    Rosenberg H, Brandom BW, Sambughin N. Malignant hyperthermia and other inherited disorders. In: Barash PG, Cullen BF, Stoelting RK, Cahalan M, Stock MC, editors. Clinical anesthesia. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2009.Google Scholar
  24. 24.
    Dowling JJ, Lillis S, Amburgey K, et al. King-Denborough syndrome with and without mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromucul Disord. 2011;21(6):420–7.CrossRefGoogle Scholar
  25. 25.
    Duarte ST, Oliveira J, Santos R, et al. Dominant and recessive RYR1 mutations in adults with core lesions and mild muscle symptoms. Muscle Nerve. 2011;44(1):102–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Loseth S, Voermans NC, Torbergsen T, et al. A novel late-onset axial myopathy associated with mutations in the skeletal muscle ryanodine receptor (RYR1) gene. J Neurol. 2013;260(6):1504–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Ording H, Brancadoro V, Cozzolino S, et al. In vitro contracture test for diagnosis of malignant hyperthermia following the protocol of the European MH Group: results of testing patients surviving fulminant MH and unrelated low-risk subjects. The European Malignant Hyperthermia Group. Acta Anaesthesiol Scand. 1997;41:955–66.PubMedCrossRefGoogle Scholar
  28. 28.
    Allen GC, Larach MG, Kunselman AR. The sensitivity and specificity of the caffeine-halothane contracture test: a report from the North American Malignant Hyperthermia Registry. The North American Malignant Hyperthermia Registry of MHAUS. Anesthesiology. 1998;88:579–88.PubMedCrossRefGoogle Scholar
  29. 29.
    Fletcher JE, Rosenberg H, Aggarwal M. Comparison of European and North American malignant hyperthermia diagnostic protocol outcomes for use in genetic studies. Anesthesiology. 1999;90:654–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Robinson RL, Monnier N, Wolz W, et al. A genome wide search for susceptibility loci in three European malignant hyperthermia pedigrees. Hum Mol Genet. 1997;6:953–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Sudbrak R, Procaccioo V, Klausnitzer M, et al. Mapping of a further malignant hyperthermia susceptibility locus to chromosome 3q13.1. Am J HumGenet. 1995;56:684–91.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Iles DE, Lehmann-Horn F, Scherer SW, et al. Localization of the gene encoding the alpha2/delta-subunits of the L-type voltage-dependent calcium channel to chromosome 7q and analysis of the segregation of flanking markers in malignant hyperthermia susceptible families. Hum Mol Genet. 1994;3:969–75.PubMedCrossRefGoogle Scholar
  33. 33.
    Levitt RC, Olckers A, Meyers S, et al. Evidence for the localization of a malignant hyperthermia susceptibility locus (MHS2) to human chromosome 17q. Genomics. 1992;14:562–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Iaizzo PA, Klein W, Lehmann-Horn F. Fura-2 detected myoplasmic calcium and its correlation with contracture force in skeletal muscle from normal and malignant hyperthermia susceptible pigs. Pflugers Arch. 1988;411:648–53.PubMedCrossRefGoogle Scholar
  35. 35.
    Lopez JR, Allen PD, Alamo L, et al. Myoplasmic free [Ca2+] during a malignant hyperthermia episode in swine. Muscle Nerve. 1988;11:82–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Censier K, Urwyler A, Zorzato F, et al. Intercellular calcium homeostasis in human primary muscle cells from malignant hyperthermia-susceptible and normal individuals. Effect of overexpression of recombinant wild-type and Arg163Cys mutated ryanodine receptors. J Clin Invest. 1998;101:1233–42.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Yang T, Esteve E, Pessah IN, et al. Elevated resting [Ca2+] (i) in myotubes expressing malignant hyperthermia RYR1 cDNA is partially restored by modulation of passive calcium leak from the SR. Am J Physiol Cell Physiol. 2007;292(5):1591–8.CrossRefGoogle Scholar
  38. 38.
    Louis CF, Zualkernan K, Roghair T, et al. The effects of volatile anesthetics on calcium regulation by malignant hyperthermia-susceptible sarcoplasmic reticulum. Anesthesiology. 1992;77:114–25.PubMedCrossRefGoogle Scholar
  39. 39.
    MacLennan DH, Chen SR. Store –overload induced Ca2+ release as a triggering mechanism for CPVT and MH episodes caused by mutations in RYR and CASQ genes. J Physiol. 2009;587:3113–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Riazi S, Kraeva N, Muldoon SM, Dowling J, Ho C, Petre MA, Parness J, Dirksen RT, Rosenberg H. Malignant Hyperthermia and the clinical significance of type-1 ryanodine receptor gene (RYR1) variants: proceedings of the MHAUS Scientific Conference. Can J of Anesth. 2014;61(11):1040–9.CrossRefGoogle Scholar
  41. 41.
    Eltit JM, Bannister R, Moua O, et al. Malignant hyperthermia susceptibility arising from altered resting coupling between the skeletal muscle L-type Ca2+ channel and the type 1 ryanodine receptor. Proc Natl Acad Sci U S A. 2012;109:79023–8.CrossRefGoogle Scholar
  42. 42.
    Eltit JM, Ding X, Pessah IN, Allen PD, Lopez JR. Nonspecific sarcolemmal cation channels are critical for the pathogenesis of malignant hyperthermia. FASEB J. 2013;27(3):991–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Olgin J, Argov Z, Rosenberg H, et al. Non-invasive evaluation of malignant hyperthermia susceptibility with phosphorus nuclear magnetic resonance spectroscopy. Anesthesiology. 1988;68:507–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Webster DW, Thompson RT, Gravelle DR, et al. Metabolic response to exercise in malignant hyperthermia-sensitive patients measured by 31P magnetic resonance spectroscopy. Magn Reson Med. 1990;15:81–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Olgin J, Rosenberg H, Allen G, et al. A blinded comparison of noninvasive, in vivo phosphorus nuclear magnetic resonance spectroscopy and the in vitro halothane/caffeine contracture test in the evaluation of malignant hyperthermia susceptibility. Anesth Analg. 1991;72:36–47.PubMedCrossRefGoogle Scholar
  46. 46.
    Payen JF, Fouilhe N, Sam-Lai E, et al. In vitro 31P-magnetic resonance spectroscopy of muscle extracts in malignant hyperthermia-susceptible patients. Anesthesiology. 1996;84:1077–82.PubMedCrossRefGoogle Scholar
  47. 47.
    Bendahan D, Kozak-Ribbens G, Rodet L, et al. 31Phosphorus magnetic resonance spectroscopy characterization of muscular metabolic anomalies in patients with malignant hyperthermia: application to diagnosis. Anesthesiology. 1998;88:96–107.PubMedCrossRefGoogle Scholar
  48. 48.
    Brandt A, Schleithoff L, Jurkat-Rott K, et al. Screening of the ryanodine receptor gene in 105 malignant hyperthermia families: novel mutations and concordance with the in vitro contracture test. Hum Mol Genet. 1999;8:2055–62.PubMedCrossRefGoogle Scholar
  49. 49.
    Deufel T, Sudbrak R, Feist Y, et al. Discordance, in a malignant hyperthermia pedigree, between in vitro contracture-test phenotypes and haplotypes for the MHS1 region on chromosome 19q12–13.2, comprising the C1840T transition in the RYR1 gene. Am J Hum Genet. 1995;56:1334–42.PubMedPubMedCentralGoogle Scholar
  50. 50.
    MacLennan DH. Discordance between phenotype and genotype in malignant hyperthermia. Curr Opin Neurol. 1995;8:397–401.PubMedCrossRefGoogle Scholar
  51. 51.
    Serfas KD, Bose D, Patel L, et al. Comparison of the segregation of the RYR1 C1840T mutation with segregation of the caffeine/halothane contracture test results for malignant hyperthermia susceptibility in a large Manitoba Mennonite family. Anesthesiology. 1996;84:322–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Fagerlund TH, Ording H, Bendixen D, et al. Discordance between malignant hyperthermia susceptibility and RYR1 mutation C1840T in two Scandinavian MH families exhibiting this mutation. Clin Genet. 1997;52:416–21.PubMedCrossRefGoogle Scholar
  53. 53.
    Fortunato G, Carsana A, Tinto N, et al. A case of discordance between genotype and phenotype in a malignant hyperthermia family. Eur J Hum Genet. 1999;7:415–20.PubMedCrossRefGoogle Scholar
  54. 54.
    Quane KA, Healy JM, Keating KE, et al. Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat Genet. 1993;5:51–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang Y, Chen HS, Khanna VK, et al. A mutation in the human ryanodine receptor gene associated with central core disease. Nat Genet. 1993;5:46–50.PubMedCrossRefGoogle Scholar
  56. 56.
    Monnier N, Procaccio V, Stieglitz P, et al. Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium channel receptor in skeletal muscle. Am J Hum Genet. 1997;60:1316–25.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hopkins PMRH, Snoeck MM, Girar T, Glahn KPE, Ellis FR, Muller CR, et al. The European Malignant Hyperthermia Group Guidelines for the investigation of malignant hyperthermia susceptibility. Br J Anaesth. 2015;115(4):531–9.PubMedCrossRefGoogle Scholar
  58. 58.
    European Malignant Hyperpyrexia Group. A protocol for the investigation of malignant hyperpyrexia. Br J Anaesth. 1984;56:1267–9.CrossRefGoogle Scholar
  59. 59.
    Larach MG, for the North American Malignant Hyperthermia Group. Standardization of the caffeine halothane muscle contracture test. Anesth Analg. 1989;69:511–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Maehara Y, Mukaida K, Hiyama E, et al. Genetic analysis with calcium-induced calcium release test in Japanese malignant hyperthermia susceptible (MHS) families. Hiroshima J Med Sci. 1999;48:9–15.PubMedGoogle Scholar
  61. 61.
    Ording H, Glahn K, Gardi T, et al. 4-Chloro-m-cresol test – a possible supplementary test for diagnosis of malignant hyperthermia susceptibility. Acta Anaesthesiol Scand. 1997;41:967–72.PubMedCrossRefGoogle Scholar
  62. 62.
    Adnet P, Bortlein ML, Tavernier B, et al. Caffeine skinned fiber tension test: application to the diagnosis of susceptibility to malignant hyperthermia. Ann Fr Anesth Reanim. 1999;18:624–30.PubMedCrossRefGoogle Scholar
  63. 63.
    De Cauwer H, Heytens L, Lubke U, et al. Discordant light microscopic, electron microscopic, and in vitro contracture study findings in a family with central core disease. Clin Neuropathol. 1997;16:237–42.PubMedGoogle Scholar
  64. 64.
    Mezin P, Payen JF, Bosson JL, et al. Histological support for the difference between malignant hyperthermia susceptible (MHS), equivocal (MHE) and negative (MHN) muscle biopsies. Br J Anaesth. 1997;79:327–31.PubMedCrossRefGoogle Scholar
  65. 65.
    Sambuughin N, Holley H, Muldoon S, Brandom BW, de Bantel AM, Tobin JR, Nelson TE, Goldfarb LG. Screening of the entire ryanodine receptor type 1 coding region for sequence variants associated with malignant hyperthermia susceptibility in the North American population. Anesthesiology. 2005;102(3):515–21.PubMedCrossRefGoogle Scholar
  66. 66.
    Gillies RL, Bjorksten AR, Du Sart D, Hockey BM. Analysis of the entire ryanodine receptor type 1 and alpha 1 subunit of the dihydropyridine receptor (CACNA1S) coding regions for variants associated with malignant hyperthermia in Australian families. Anaesth Intensive Care. 2015;43(2):157–66.PubMedGoogle Scholar
  67. 67.
    Anetseder M, Hager M, Muller CR, et al. Diagnosis of susceptibility to malignant hyperthermia by use of a metabolic test. Lancet. 2002;359:1579–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Bina S, Capacchione J, Munkhuu B, Muldoon S, Buenger R. Is lymphocyte adenosine a diagnostic marker of clinical malignant hyperthermia? A pilot study. Crit Care Med. 2015;43(3):584–93.PubMedCrossRefGoogle Scholar
  69. 69.
    Litman RS, Flood CD, Kaplan RF, Kim YL, Tobin JR. Postoperative malignant hyperthermia: an analysis of cases from the North American Malignant Hyperthermia Registry. Anesthesiology. 2008;109(5):825–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Larach MG, Brandom BW, Allen GC, Gronert GA, Lehman EB. Malignant hyperthermia deaths related to inadequate temperature monitoring, 2007–2012: a report from the North American malignant hyperthermia registry of the malignant hyperthermia association of the United States. Anesth Analg. 2014;119(6):1359–66.PubMedCrossRefGoogle Scholar
  71. 71.
    Relton JE, Creighton RE, Conn AW, et al. Generalized muscular hypertonicity associated with general anaesthesia: a suggested anaesthetic management. Can Anaesth Soc J. 1967;14:22–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Donlon JV, Newfield P, Sreter F, et al. Implications of masseter spasm after succinylcholine. Anesthesiology. 1978;49:298–301.PubMedCrossRefGoogle Scholar
  73. 73.
    Schwartz L, Rockoff MA, Koka BV. Masseter spasm with anesthesia: incidence and implications. Anesthesiology. 1984;61:772–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Lazzell VA, Carr AS, Lerman J, et al. The incidence of masseter muscle rigidity after succinylcholine in infants and children. Can J Anaesth. 1994;41:475–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Rosenberg H. Succinylcholine and trismus. Anesthesiology. 1989;70:162–163.CrossRefGoogle Scholar
  76. 76.
    Litman RS, Rosenberg H. Malignant hyperthermia. Update on susceptibility testing. JAMA. 2005;239:2918–24.CrossRefGoogle Scholar
  77. 77.
    Ryan JF, Kagen LJ, Hyman AI. Myoglobinemia after a single dose of succinylcholine. N Engl J Med. 1971;285(15):824–827.PubMedCrossRefGoogle Scholar
  78. 78.
    Airaksinen MM, Tammisto T. Myoglobinuria after intermittent administration of succinylcholine during halothane anesthesia. Clin Pharmacol Ther. 1966;7:583–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Ziser A, Friedhoff RJ, Rose SH. Prone position: visceral hypoperfusion and rhabdomyolysis. Anesth Analg. 1996;82:412–5.PubMedGoogle Scholar
  80. 80.
    Alterman I, Sidi A, Azamfirei L, Copotoiu S, Ezri T. Rhabdomyolysis: another complication after prolonged surgery. J Clin Anesth. 2007;19(1):64–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Joshi PR, Deschauer M, Zierz S. Carnitine palmitoyltransferase II (CPT II) deficiency: genotype-phenotype analysis of 50 patients. J Neurol Sci. 2014;338(1–2):107–11.PubMedCrossRefGoogle Scholar
  82. 82.
    Harwood TN, Nelson TE. Massive postoperative rhabdomyolysis after uneventful surgery: a case report of subclinical malignant hyperthermia. Anesthesiology. 1998;88:265–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Larach MG, Rosenberg H, Gronert GA, et al. Hyperkalemic cardiac arrest during anesthesia in infants and children with occult myopathies. Clin Pediatr (Phila). 1997;36:9–16.CrossRefGoogle Scholar
  84. 84.
    Amburgey K, Beiley A, Hwang JH, et al. Genotype-phenotype correlations in recessive RYR1-related myopathies. Orphanet J Rare Dis. 2013;8:117.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Horstick EJ, Linsley JW, Dowling JJ, et al. Stac3 is a component of the excitation-contraction coupling machinery and mutated in native American myopathy. Nat Commun. 2013;4:1952.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ogletree JW, Antognini JF, Gronert GA. Postexercise muscle cramping associated with positive malignant hyperthermia contracture testing. Am J Sports Med. 1996;24:49–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Gronert GA, Thompson RL, Onofrio BM. Human malignant hyperthermia: awake episodes and correction by dantrolene. Anesth Analg. 1980;59:377–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Hunter SL, Rosenberg H, Tuttle GH, et al. Malignant hyperthermia in a college football player. Phys Sportsmed. 1987;15:77–84.CrossRefGoogle Scholar
  89. 89.
    Denborough MA. Heat stroke and malignant hyperpyrexia. Med J Aust. 1982;1:204–5.PubMedGoogle Scholar
  90. 90.
    Hopkins PM, Ellis FR, Halsall PJ. Evidence for related myopathies in exertional heat stroke and malignant hyperthermia. Lancet. 1991;338:1491–2.PubMedCrossRefGoogle Scholar
  91. 91.
    Kochling A, Wappler F, Winkler G, et al. Rhabdomyolysis following severe physical exercise in a patient with predisposition to malignant hyperthermia. Anaesth Intensive Care. 1998;26:315–8.PubMedGoogle Scholar
  92. 92.
    Britt BA. Combined anesthetic- and stress-induced malignant hyperthermia in two offspring of malignant hyperthermic-susceptible parents. Anesth Analg. 1988;67:393–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Molenaar JP, et al. Fever-induced recurrent rhabdomyolysis due to a novel mutation in the ryanodine receptor type 1 gene. Intern Med J. 2014.Google Scholar
  94. 94.
    Dlamini N, et al. Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul Disord. 2013;23:540–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Ciofolo MJ, Clergue F, Devilliers C, et al. Changes in ventilation, oxygen uptake, and carbon dioxide output during recovery from isoflurane anesthesia. Anesthesiology. 1989;70:737–41.PubMedCrossRefGoogle Scholar
  96. 96.
    Halsall PJ, Ellis FR. Does postoperative pyrexia indicate malignant hyperthermia susceptibility? Br J Anaesth. 1992;68:209–10.PubMedCrossRefGoogle Scholar
  97. 97.
    Christiaens F, Gepts E, D’Haese J, et al. Malignant hyperthermia suggestive hypermetabolic syndrome at emergence from anesthesia. Acta Anaesthesiol Belg. 1995;46:93–7.PubMedGoogle Scholar
  98. 98.
    Sato N, Brum JM, Mitsumoto H, et al. Effect of cocaine on the contracture response to 1% halothane in patients undergoing diagnostic muscle biopsy for malignant hyperthermia. Can J Anaesth. 1995;42:158–62.PubMedCrossRefGoogle Scholar
  99. 99.
    Flewellen EH, Nelson TE. Is theophylline, aminophylline, or caffeine (methylxanthines) contraindicated in malignant hyperthermia susceptible patients? Anesth Analg. 1983;62:115–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Wingard DW, Bobko S. Failure of lidocaine to trigger porcine malignant hyperthermia. Anesth Analg. 1979;58:99–103.PubMedCrossRefGoogle Scholar
  101. 101.
    Brownell AKW. Counseling of malignant hyperthermia susceptible individuals. In: Britt BA, editor. Malignant hyperthermia. Boston: Martinus Nijhoff; 1987. p. 309–23.CrossRefGoogle Scholar
  102. 102.
    Berkowitz A, Rosenberg H. Femoral block with mepivacaine for muscle biopsy in malignant hyperthermia patients. Anesthesiology. 1985;62:651–2.PubMedCrossRefGoogle Scholar
  103. 103.
    Vladutiu G, Isackson P, Kaufman K, et al. Genetic risk for malignant hyperthermia in non-anesthesia-induced myopathies. Mol Genet Metab. 2011;104:167–73.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Wappler F, Scholz J, Fiege M, et al. 4-chloro-m-cresol is a trigger of malignant hyperthermia in susceptible swine. Anesthesiology. 1999;90:1733–40.PubMedCrossRefGoogle Scholar
  105. 105.
    Iaizzo PA, Johnson BA, Nagao K, et al. 4-chloro-m-cresol triggers malignant hyperthermia in susceptible swine at doses greatly exceeding those found in drug preparations. Anesthesiology. 1999;90:1723–32.PubMedCrossRefGoogle Scholar
  106. 106.
    Caroff SN, Rosenberg H, Fletcher JE, et al. Malignant hyperthermia susceptibility in neuroleptic malignant syndrome. Anesthesiology. 1987;67:20–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Bello N, Adnet P, Saulnier F, et al. Lack of sensitivity to per-anesthetic malignant hyperthermia in 32 patients who developed neuroleptic malignant syndrome. Ann Fr Anesth Reanim. 1994;13:663–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Pawar S, Rosenberg H, Adamson R, Chamberlain R. Dantrolene for the treatment of malignant hyperthermia and other malignant hyperthermia-like syndromes: a multicenter 5 year cohort study. American Society of Anesthesiologists Annual Meeting; San Francisco, October, 2013.Google Scholar
  109. 109.
    Top WMC, Gillman PK, et al. Fatal methylene blue associated serotonin toxicity. Neth J Med. 2014;72:179–81.PubMedGoogle Scholar
  110. 110.
    Musley SK, Beebe DS, Komanduri V, et al. Hemodynamic and metabolic manifestations of acute endotoxin infusion in pigs with and without the malignant hyperthermia mutation. Anesthesiology. 1999;91:833–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Strecker G, Adnet P, Forget AP, et al. Malignant hyperthermia and appendicular sepsis: can they be differentiated during surgical procedure? Ann Fr Anesth Reanim. 1997;16:234–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Bendahan D, Kozak-Ribbens G, Confort-Gouny S. A noninvasive investigation of muscle energetics supports similarities between exertional heat stroke and malignant hyperthermia. Anesth Analg. 2001;93(3):683–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Tobin JR, Jason DR, Nelson TE, et al. Malignant hyperthermia and apparent heat stroke. JAMA. 2001;286(2):168–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Green JH, Ellis FR, Halsall PJ, et al. Thermoregulation, plasma catecholamine and metabolite levels during submaximal work in individuals susceptible to malignant hyperpyrexia. Acta Anaesthesiol Scand. 1987;31:122–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Hackl W, Winkler M, Mauritz W, et al. Muscle biopsy for diagnosis of malignant hyperthermia susceptibility in two patients with severe exercise-induced myolysis. Br J Anaesth. 1991;66:138–40.PubMedCrossRefGoogle Scholar
  116. 116.
    Wappler F, Feige M, Steinfath M, et al. Evidence for susceptibility to malignant hyperthermia in patients with stress-induced rhabdomyolysis. Anesthesiology. 2001;94:95–100.PubMedCrossRefGoogle Scholar
  117. 117.
    Corona BT, et al. Eccentric contractions do not induce rhabdomyolysis in malignant hyperthermia susceptible mice. J Appl Physiol. 2008;105(5):1542–53.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Yuen B, et al. Mice expressing T4826I-RYR1 are viable but exhibit sex and genotype dependent susceptibility to malignant hyperthermia and muscle damage. FASEB J. 2012;26(3):1311–22.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ryan JF, Tedeschi LG. Sudden unexplained death in a patient with a family history of malignant hyperthermia. J Clin Anesth. 1997;9:66–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Francoise M, Francois C, Sandre D, et al. Hemorrhagic shock with encephalopathy syndrome or major hyperthermia syndrome? Pediatrie. 1993;48:792–5.PubMedGoogle Scholar
  121. 121.
    Itaya K, Takahata O, Mamiya K, et al. Anesthetic management of two patients with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Masui. 1995;44:710–2.PubMedGoogle Scholar
  122. 122.
    Allen GC, Rosenberg H. Phaeochromocytoma presenting as acute malignant hyperthermia – a diagnostic challenge. Can J Anaesth. 1990;37:593–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Gillman PK. CNS toxicity involving methylene blue: the exemplar for understanding and predicting drug interactions that precipitate serotonin toxicity. J Psychopharmacol. 2010;25:1–8.Google Scholar
  124. 124.
    Nisijima K, et al. Potent serotonin (5-HT)2A receptor antagonists completely prevent the development of hyperthermia in an animal model of the 5-HT syndrome. Brain Res. 2001;890:23–31.PubMedCrossRefGoogle Scholar
  125. 125.
    Larach MG, Localio AR, Allen GC, et al. A clinical grading scale to predict malignant hyperthermia susceptibility. Anesthesiology. 1994;80:771–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Schuette JK, Becker S, Burmester S, et al. Comparison of the therapeutic effectiveness of a dantrolene sodium solution and a novel nanocrystalline suspension of dantrolene sodium in malignant hyperthermia normal and susceptible pigs. Eur J Anaesthesiol. 2011;28(4):256–64.Google Scholar
  127. 127.
    Kim TW, Nemergut ME. Preparation of modern anesthesia workstations for malignant hyperthermia-susceptible patients. Anesthesiology. 2011;114:205–12.PubMedCrossRefGoogle Scholar
  128. 128.
    Birgenheier N, Orr J, Westenskow D. Activated charcoal effectively removes inhaled anesthetics from modern anesthesia machines. Anesth Analg. 2011;112:1363–70.PubMedCrossRefGoogle Scholar
  129. 129.
    Bilmen JG, Gillies RI. Clarifying the role of activated charcoal filters in preparing an anaesthetic workstation for malignant hyperthermia-susceptible patients. Anaesth Intensive Care. 2014;42:51–8.PubMedGoogle Scholar
  130. 130.
    Orr J, Sakata D. Manufacturer's response to Bilmen and Gillies' manuscript entitled "clarifying the role of activated charcoal filters in preparing an anaesthetic workstation for malignant hyperthermia-susceptible patients". Anaesth Intensive Care. 2014;42(6):801–2.PubMedGoogle Scholar
  131. 131.
    Roden DM, Knollmann BC. Dantrolene: from better bacon to a treatment for ventricular fibrillation. Circulation. 2014;129(8):834–6.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Schütte JK, Becker S, Burmester S, et al. Comparison of the therapeutic effectiveness of a dantrolene sodium solution and a novel nanocrystalline suspension of dantrolene sodium in malignant hyperthermia normal and susceptible pigs. Eur J Anaesthesiol. 2011;28(4):256–64.PubMedGoogle Scholar
  133. 133.
    Riazi S, Green Larach M, Hu C, et al. Malignant hyperthermia in Canada: characteristics of index anesthetics in 129 malignant hyperthermia susceptible probands. Anesth Analg. 2014;118:381–7.PubMedCrossRefGoogle Scholar
  134. 134.
    Visoiu M, Young MC, Wieland K, et al. Anesthetic drugs and onset of malignant hyperthermia. Anesth Analg. 2014;118:388–96.PubMedCrossRefGoogle Scholar
  135. 135.
    Brandom BW, Larach MG, Chen MS, et al. Complications associated with the administration of dantrolene 1987 to 2006: a report from the North American Malignant Hyperthermia Registry of the Malignant Hyperthermia Association of the United States. Anesth Analg. 2011;112(5):1115–23.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Larach MG, Dirksen SJ, Belani KG, et al. Special article: creation of a guide for the transfer of care of the malignant hyperthermia patient from ambulatory surgery centers to receiving hospital facilities. Anesth Analg. 2012;114(1):94–100.PubMedCrossRefGoogle Scholar
  137. 137.
    Ranganathan P, Phillips JH, Attaallah AF, et al. The use of cognitive aid checklist leading to successful treatment of malignant hyperthermia in an infant undergoing cranioplasty. Anesth Analg. 2014;118(6):1387.PubMedCrossRefGoogle Scholar
  138. 138.
    Gardi T, Christensen UC, Jacobsen J, et al. How do anaesthesiologists treat malignant hyperthermia in a full-scale anaesthesia simulator? Acta Anaesthesiol Scand. 2001;45(8):1032–5.CrossRefGoogle Scholar
  139. 139.
    De Waard MC, Biermann H, Brinckman SL, et al. Automated peritoneal lavage: an extremely rapid and safe way to induce hypothermia in post-resuscitation patients. Crit Care. 2013;17(1):R31.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Yoganathan T, Casthely PA, Lamprou M. Dantrolene-induced hyperkalemia in a patient treated with diltiazem and metoprolol. J Cardiothorac Anesth. 1988;2(3):363–4.PubMedCrossRefGoogle Scholar
  141. 141.
    McLean SA, Paul ID, Spector PS. Lidocaine-induced conduction disturbance in patients with systemic hyperkalemia. Ann Emerg Med. 2000;36(6):615–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Henry Rosenberg
    • 1
  • Dorothea Hall
    • 2
  • Harvey Rosenbaum
    • 2
  1. 1.Department of Medical Education and Clinical ResearchSaint Barnabas Medical CenterLivingstonUSA
  2. 2.Department of Anesthesiology and Perioperative MedicineUCLA, David Geffen School of MedicineLos AngelesUSA

Personalised recommendations