The Critically Poisoned Worker

  • Michael G. HollandEmail author
Reference work entry


Exposures to toxicants in the workplace can cause severe illness and death similar to intentional poisonings and overdoses. In some cases, without a careful occupational history, the relationship between the job and the illness may be missed. Prolonged exposure to an insoluble gas, such as nitrogen dioxide after arc welding in a confined space, can cause a delayed pulmonary injury and acute respiratory distress syndrome (ARDS) that occurs one day later, when the link may go unnoticed. Careful questioning about the particular sequence of events is important when an illness occurs after performance of a common task. An example is exposure to phosgene gas after torch-cutting or welding metal that had been recently degreased with a chlorinated hydrocarbon solvent. Alternatively, a worker may experience a delayed illness such as metal fume fever (MFF) if he or she is welding on galvanized metal or had been working in close proximity to someone doing so. It is important to ask not only about the job of the ill worker but also about the nature of the workplace and the other processes being performed there.


Nitrogen dioxide Acute respiratory distress syndrome ARDS Metal fume fever Occupational asthma Work-Exacerbated Asthma Sensitizer-induced asthma Reactive airways dysfunction syndrome RADS Carbon monoxide Nitrogen oxides Chlorine Corticosteroids Inhalational fevers Extrinsic allergic alveolitis Hypersensitivity pneumonitis Polymer fume fever Humidifier fever Pontiac fever Legionella Legionaire’s disease Toxic encephalopathy Hemolysis Seizures Rhabdomyolysis Myocardial Infarction Carbon disulfide Organophosphates Carbamates Halogenated hydrocarbons Solvents Carbon tetrachloride Acute renal failure Trichloroethylene Cadmium Toluene Leukoencephalopathy Methylene chloride Cyanide Organochlorine insecticides DDT Cyclodienes Chlordecone Lindane Manganese Mercury Methylmercury Minamata disease Peripheral neuropathy Methemoglobinemia 


  1. 1.
  2. 2.
  3. 3.
    Takala J, Hämäläinen P, Saarela KL, Yun LY, et al. Global estimates of the burden of injury and illness at work in 2012. J Occup Environ Hyg. 2014;11(5):326–37.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Henneberger PK, Redlich CA, Callahan DB, Harber P, Lemière C, Martin J, Tarlo SM, Vandenplas O, Torén K, ATS Ad Hoc Committee on Work-Exacerbated Asthma. An official American Thoracic Society statement: work-exacerbated asthma. Am J Respir Crit Care Med. 2011;184(3):368–78.CrossRefPubMedGoogle Scholar
  5. 5.
    Banks DE, Wang ML, editors. Occupational asthma. Occup Med State Art Rev. 2000;15:335–484.Google Scholar
  6. 6.
    Tarlo SB, Leung K, Broder I, et al. Asthmatic subjects symptomatically worse at work: prevalence and characterization among a general asthma clinic population. Chest. 2000;118:1309–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Shusterman DJ. Polymer fume fever and other fluorocarbon pyrolysis-related syndromes. Occup Med. 1993;8(3):519–31. Review. PubMed PMID: 8272977.Google Scholar
  8. 8.
    Balmes J, Becklake M, Blanc P, Henneberger P, Kreiss K, Mapp C, Milton D, Schwartz D, Toren K, Viegi G, et al. American Thoracic Society statement: occupational contribution to the burden of airway disease. Am J Respir Crit Care Med. 2003;167:787–97.CrossRefPubMedGoogle Scholar
  9. 9.
    Rabatin JT, Cowl CT. A guide to the diagnosis and treatment of occupational asthma. Mayo Clin Proc. 2001;76:633–40.CrossRefPubMedGoogle Scholar
  10. 10.
    Rom WN, editor. Environmental and occupational medicine. 4th ed. Philadelphia: Lippincott- Williams & Wilkins; 2007.Google Scholar
  11. 11.
    Zenz C, editor. Occupational medicine. 3rd ed. St. Louis: Mosby; 1994.Google Scholar
  12. 12.
    National Library of Medicine. Hazardous substances database (HSDB). Available at: Accessed Oct 2015.
  13. 13.
    NIOSH pocket guide to chemical hazards. Available at: Accessed 26 Oct 2015.
  14. 14.
    NIOSH international chemical safety cards. Available at: Accessed Oct 2015.
  15. 15.
    New Jersey Department of Health and Senior Services. Right to know hazardous substance fact sheets. Available at: Oct 2015.
  16. 16.
    Smith DC. Acute inhalation injury. Clin Pulm Med. 1999;6:224–35.CrossRefGoogle Scholar
  17. 17.
    Taylor AJN. Occupational lung disease: 5. Respiratory irritants encountered at work. Thorax. 1996;51:541–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    The dangers of cellulose nitrate film, published by the British Health and Safety Executive. Available at: Accessed 26 Oct 2015.
  19. 19.
    Karlson-Stiber C, Höjer J, Sjöholm A, Bluhm G, Salmonson H. Nitrogen dioxide pneumonitis in ice hockey players. J Intern Med. 1996;239(5):451–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Beauchamp RO Jr, Bus JS, Popp JA, Boreiko CJ, Goldberg L. A critical review of the literature on carbon disulfide toxicity. Crit Rev Toxicol. 1983;11(3):169–278.Google Scholar
  21. 21.
    Douglas WW, Hepper NG, Colby TV. Silo-filler’s disease. Mayo Clin Proc. 1989;64(3):291–304.CrossRefPubMedGoogle Scholar
  22. 22.
    Brent J. Of paradigms and paradoxes: unraveling the basis of chlorine toxicity. Clin Toxicol. 2008;46:352.Google Scholar
  23. 23.
    Gorguner M, Aslan S, Inandi T, Cakir Z. Reactive airways dysfunction syndrome in housewives due to a bleach-hydrochloric acid mixture. Inhal Toxicol. 2004;16(2):87–91.CrossRefPubMedGoogle Scholar
  24. 24.
    Brooks SM, Weiss MA, Bernstein IL. Reactive airways dysfunction syndrome (RADS). Persistent asthma syndrome after high level irritant exposures. Chest. 1985;88(3):376–84.CrossRefPubMedGoogle Scholar
  25. 25.
    Shakeri MS, Dick FD, Ayres JG. Which agents cause reactive airways dysfunction syndrome (RADS)? A systematic review. Occup Med (Lond). 2008;58(3):205–11.CrossRefGoogle Scholar
  26. 26.
    Brooks SM. Reactive airways dysfunction syndrome and considerations of irritant-induced asthma. J Occup Environ Med. 2013;55(9):1118–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Alberts WM, Brooks SM. Advances in occupational asthma. Clin Chest Med. 1992;13(2):281–302.PubMedGoogle Scholar
  28. 28.
    Boulet L-P. Asymptomatic airway hyperresponsiveness. Am J Respir Crit Care Med. 2003;167:371–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Hewitt DJ. Interpretation of the “positive” methacholine challenge. Am J Ind Med. 2008;51(10):769–81.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang J, Winskog C, Edston E, Walther SM. Inhaled and intravenous corticosteroids both attenuate chlorine gas-induced lung injury in pigs. Acta Anaesthesiol Scand. 2005;49(2):183–90.CrossRefPubMedGoogle Scholar
  31. 31.
    Vinsel PJ. Treatment of acute chlorine gas inhalation with nebulized sodium bicarbonate. J Emerg Med. 1990;8(3):327–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Bosse GM. Nebulized sodium bicarbonate in the treatment of chlorine gas inhalation. J Toxicol Clin Toxicol. 1994;32(3):233–41.CrossRefPubMedGoogle Scholar
  33. 33.
    Cevik Y, Onay M, Akmaz I, Sezigen S. Mass casualties from acute inhalation of chlorine gas. South Med J. 2009;102(12):1209–13.CrossRefPubMedGoogle Scholar
  34. 34.
    Aslan S, Kandiş H, Akgun M, Cakir Z, Inandi T, Görgüner M. The effect of nebulized NaHCO3 treatment on “RADS” due to chlorine gas inhalation. Inhal Toxicol. 2006;18(11):895–900.CrossRefPubMedGoogle Scholar
  35. 35.
    Holland MG. Insecticides: organic chlorines, pyrethrins/pyrethroids, and insect repellents, Chapter 114. In: Goldfrank’s toxicologic emergencies. 10th ed. New York: McGraw-Hill; 2015.Google Scholar
  36. 36.
    Grutsch JF, Khasuwinah A. Signs and mechanisms of chlordane intoxication. Biomed Environ Sci. 1991;4:317–326.Google Scholar
  37. 37.
    Hayes WJ. Chlorinated hydrocarbon insecticides. In: Hayes WJ, Lawes ER, editors. Pesticides studied in man. San Diego: Academic; 1991.Google Scholar
  38. 38.
    Lee DC, Wiley 2nd JF, Synder 2nd JW. Treatment of inhalational exposure to hydrofluoric acid with nebulized calcium gluconate. J Occup Med. 1993;35(5):470.PubMedGoogle Scholar
  39. 39.
    ATSDR medical management guidelines for hydrogen fluoride. Available at: Accessed 30 Oct 2015.
  40. 40.
    Malo JL, Lemière C, Boulet LP. Reactive airways dysfunction syndrome and irritant-induced asthma, in UpToDate© Wolters Kluwer Health; 2015.Google Scholar
  41. 41.
    Lotti M, Moretto A. Organophosphate-induced delayed polyneuropathy. Toxicol Rev. 2005;24(1):37–49. Review. PubMed PMID: 16042503.Google Scholar
  42. 42.
    Lemière C, Malo JL, Boulet LP, Boutet M. Reactive airways dysfunction syndrome induced by exposure to a mixture containing isocyanate: functional and histopathologic behaviour. Allergy. 1996;51:262.CrossRefPubMedGoogle Scholar
  43. 43.
    Lemière C, Malo JL, Boutet M. Reactive airways dysfunction syndrome due to chlorine: sequential bronchial biopsies and functional assessment. Eur Respir J. 1997;10:241.CrossRefPubMedGoogle Scholar
  44. 44.
    ATSDR medical management guidelines for phosgene. Available at: Accessed 30 Oct 2015.
  45. 45.
    ATSDR medical management guidelines for nitrogen oxides. Available at: Accessed 30 Oct 2015.
  46. 46.
    Fine JM, Gordon T, Chen LC, et al. Characterization of clinical tolerance to inhaled zinc oxide in naïve subjects and sheet metal workers. J Occup Environ Med. 2000;42:1085–91.CrossRefPubMedGoogle Scholar
  47. 47.
    Gordon T, Fine JM. Metal fume fever. Occup Med. 1993;8:504–17.PubMedGoogle Scholar
  48. 48.
    Barceloux DG. Zinc. Clin Toxicol. 1999;37:279–92.Google Scholar
  49. 49.
    Pakulska D, Czerczak S. Hazardous effects of arsine: a short review. Int J Occup Med Environ Health. 2006;19(1):36–44. Review. PubMed PMID: 16881597.Google Scholar
  50. 50.
    Barceloux DG. Copper. Clin Toxicol. 1999;37:217–30.Google Scholar
  51. 51.
    Blandford TB, Seamon PJ, Hughes R, et al. A case of polytetrafluoroethylene poisoning in cockatiels accompanied by polymer fume fever in the owner. Vet Rec. 1975;96:175–8.CrossRefPubMedGoogle Scholar
  52. 52.
  53. 53.
  54. 54.
    Fang GD, Yu VL, Vickers RM. Disease due to Legionellaceae (other than Legionella pneumophila): historical, microbiological, clinical, and epidemiological review. Medicine. 1989;68:116–32.CrossRefPubMedGoogle Scholar
  55. 55.
    Fields BS, Haupt T, Davis JP, et al. Pontiac fever due to Legionella micdadei from a whirlpool spa: possible role of bacterial endotoxin. J Infect Dis. 2001;184:1289–92.CrossRefPubMedGoogle Scholar
  56. 56.
  57. 57.
    Von Essen S, Fryzek J, Nowakowski B, Wampler M. Respiratory symptoms and farming practices in farmers associated with an acute febrile illness after organic dust exposure. Chest. 1999;116:1452–8.CrossRefGoogle Scholar
  58. 58.
    Seifert SA, Von Essen S, Jacobitz K, Crouch R, Lintner CP. Organic dust toxic syndrome: a review. J Toxicol Clin Toxicol. 2003;41(2):185–93.CrossRefPubMedGoogle Scholar
  59. 59.
    Singh N, Davis GS. Review: occupational and environmental lung disease. Curr Opin Pulm Med. 2002;8:117–25.CrossRefPubMedGoogle Scholar
  60. 60.
    Depierre A, Dalphin JC, Pernet D, Dubiez A, Faucompré C, Breton JL. Epidemiological study of farmer’s lung in five districts of the French Doubs province. Thorax. 1988;43:429–35.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Spagnolo P, Rossi G, Cavazza A, Bonifazi M, et al. Hypersensitivity pneumonitis: a comprehensive review. J Investig Allergol Clin Immunol. 2015;25(4):237–50.PubMedGoogle Scholar
  62. 62.
    Cormier Y, Desmeules M. Treatment of hypersensitivity pneumonitis (HP): comparison between contact avoidance and corticosteroids. Can Respir J. 1994;1:223–8.CrossRefGoogle Scholar
  63. 63.
    Rom WN, editor. Environmental and occupational medicine. 3rd ed. Philadelphia: Lippincott-Raven; 1998.Google Scholar
  64. 64.
    National Library of Medicine. Hazardous substances database (HSDB). Available at: Accessed May 2002. New York.
  65. 65.
    LaDou J, editor. Occupational and environmental medicine. 5th ed. New York: McGraw-Hill Education; 2014.Google Scholar
  66. 66.
    Rodrıguez de Castro F, Carrillo T, Castillo R, Blanco C, Díaz F, Cuevas M. Relationships between characteristics of exposure to pigeon antigens. Clinical manifestations and humoral immune response. Chest. 1993;103:1059–63.CrossRefPubMedGoogle Scholar
  67. 67.
    Grunes D, Beasley MB. Hypersensitivity pneumonitis: a review and update of histologic findings. J Clin Pathol. 2013;66:888–95.CrossRefPubMedGoogle Scholar
  68. 68.
    Hodgson MJ, Parkinson DK, Karpf M. Chest X-rays in hypersensitivity pneumonitis: a metaanalysis of secular trend. Am J Ind Med. 1989;16:45–53.CrossRefPubMedGoogle Scholar
  69. 69.
    Lacasse Y, Cormier Y. Hypersensitivity pneumonitis. Orphanet J Rare Dis. 2006;1:25.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kokkarinen JI, Tukiainen HO, Terho EO. Effect of corticosteroid treatment on the recovery of pulmonary function in farmer’s lung. Am Rev Respir Dis. 1992;145:3–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Monkare S. Influence of corticosteroid treatment on the course of farmer’s lung. Eur J Respir Dis. 1983;64:283–93.PubMedGoogle Scholar
  72. 72.
    Beckett WS. Current concepts: occupational respiratory diseases. N Engl J Med. 2000;342:406–13.CrossRefPubMedGoogle Scholar
  73. 73.
    Jorens PG, Schepens PJC. Human pentachlorophenol poisoning. Hum Exp Toxicol. 1993;12:479–95.CrossRefPubMedGoogle Scholar
  74. 74.
    He F, Wang S, Liu L, et al. Clinical manifestations and diagnosis of acute pyrethroid poisoning. Arch Toxicol. 1989;63:54–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Gelbke HP, Göen T, Mäurer M, Sulsky SI. A review of health effects of carbon disulfide in viscose industry and a proposal for an occupational exposure limit. Crit Rev Toxicol. 2009;39 Suppl 2:1–126.CrossRefPubMedGoogle Scholar
  76. 76.
    Sulsky SI, Hooven FH, Burch MT, Mundt KA. Critical review of the epidemiological literature on the potential cardiovascular effects of occupational carbon disulfide exposure. Int Arch Occup Environ Health. 2002;75(6):365–80. Epub 13 Feb 2002.CrossRefPubMedGoogle Scholar
  77. 77.
    Kotseva K, Braeckman L, De Bacquer D, Bulat P, Vanhoorne M. Cardiovascular effects in viscose rayon workers exposed to carbon disulfide. Int J Occup Environ Health. 2001;7(1):7–13.CrossRefPubMedGoogle Scholar
  78. 78.
    Price AL. Heart disease and work. Heart. 2004;90(9):1077–84.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Zimmerman HJ, Lewis JH. Chemical- and toxin-induced hepatotoxicity. Gastroenterol Clin North Am. 1995;24:1027–45.PubMedGoogle Scholar
  80. 80.
    Batt AM, Ferrari L. Manifestations of chemically induced liver damage. Clin Chem. 1995;41:1882–7.PubMedGoogle Scholar
  81. 81.
    ATSDR case studies in environmental medicine: carbon tetrachloride toxicity. Am Fam Physician. 1992;46:1199–207.Google Scholar
  82. 82.
    Lemesh RA. Polychlorinated biphenyls: an overview of metabolic toxicologic and health consequences. Vet Hum Toxicol. 1992;34:256–60.PubMedGoogle Scholar
  83. 83.
    Lash LH, Parker JC. Hepatic and renal toxicities associated with perchloroethylene. Pharmacol Rev. 2001;53:177–208.PubMedGoogle Scholar
  84. 84.
    Zimmerman HJ. Hepatotoxicity. Dis Mon. 1993;39:675–787.PubMedGoogle Scholar
  85. 85.
    Harrison R, Letz G, Pasternak G, Blanc P. Fulminant hepatic failure after occupational exposure to 2-nitropropane. Ann Intern Med. 1987;107:466–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Baum SL, Surunda AJ. Toxic hepatitis from dimethylacetamide. Int J Occup Environ Health. 1997;3:1–4.CrossRefPubMedGoogle Scholar
  87. 87.
    Kennedy GL. Toxicology of dimethyl and monomethyl derivatives of acetamide and formamide: a second update. Crit Rev Toxicol. 2012;42(10):793–826.CrossRefPubMedGoogle Scholar
  88. 88.
    Spies GJ, Rhyne Jr RH, Evans RA, et al. Monitoring acrylic fiber workers for liver toxicity and exposure to dimethylacetamide: 2. Serum clinical chemistry results of dimethylacetamide-exposed workers. J Occup Environ Med. 1995;37:1102–7.CrossRefPubMedGoogle Scholar
  89. 89.
    Cotrim HP, Andrade ZA, Parana R, et al. Nonalcoholic steatohepatitis: a toxic liver disease in industrial workers. Liver. 1999;19:299–304.CrossRefPubMedGoogle Scholar
  90. 90.
    Lock EA. Mechanism of nephrotoxic action due to organohalogenated compounds. Toxicol Lett. 1989;46:93–106.CrossRefPubMedGoogle Scholar
  91. 91.
    Reisen E, Teicher A, Jaffe R, et al. Myoglobinuria and renal failure in toluene poisoning. Br J Ind Med. 1975;32:163–4.Google Scholar
  92. 92.
    Nelson NA, Robins TG, Port FK. Solvent nephrotoxicity in humans and experimental animals. Am J Nephrol. 1990;10:10–20.CrossRefPubMedGoogle Scholar
  93. 93.
    Green T, Dow J, et al. Biological monitoring of kidney function among workers occupationally exposed to trichloroethylene. Occup Environ Med. 2004;61(4):312–7.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    American Conference of Governmental Industrial Hygienists. Documentation of the TLVs and BEIs. 7th ed. Cincinnati: ACGIH Worldwide; 2008.Google Scholar
  95. 95.
    Brown CV, Rhee P, Chan L, Evans K, Demetriades D, Velmahos GC. Preventing renal failure in patients with rhabdomyolysis: do bicarbonate and mannitol make a difference? J Trauma. 2004;56(6):1191-6. PubMed PMID: 15211124.CrossRefPubMedGoogle Scholar
  96. 96.
    Wedeen RP, Lifen Q. Chromium-induced kidney disease. Environ Health Perspect. 1991;92:71–4.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Madden EF, Fowler BA. Mechanisms of nephrotoxicity from metal combinations: a review. Drug Chem Toxicol. 2000;23:1–12.CrossRefPubMedGoogle Scholar
  98. 98.
    Lauwerys R, Bernard A, Cardenas A. Monitoring of early nephrotoxic effects of industrial chemicals. Toxicol Lett. 1992;64/65:33–42.CrossRefGoogle Scholar
  99. 99.
    OSHA Cadmium Standard. Available at: Accessed 4 Dec 2015.
  100. 100.
    Albers JW, Berent S. Controversies in neurotoxicology. Neurol Clin. 2000;18:741–63.CrossRefPubMedGoogle Scholar
  101. 101.
    Tormoehlen LM, Tekulve KJ, Nañagas KA. Hydrocarbon toxicity: a review. Clin Toxicol (Phila). 2014;52(5):479–89.CrossRefGoogle Scholar
  102. 102.
    Centers for Disease Control and Prevention (CDC). Fatal exposure to methylene chloride among bathtub refinishers – United States, 2000–2011. MMWR Morb Mortal Wkly Rep. 2012;61(7):119–22.Google Scholar
  103. 103.
    Kopec KT, Brent J, Banner W, Ruha AM, Leikin JB. Management of cardiac dysrhythmias following hydrocarbon abuse: clinical toxicology teaching case from NACCT acute and intensive care symposium. J Toxicol Clin Toxicol. 2014;52:141–5.CrossRefGoogle Scholar
  104. 104.
    Barceloux DG. Manganese. Clin Toxicol. 1999;37:293–307.Google Scholar
  105. 105.
    Hu H. Exposure to metals. Prim Care. 2000;27:983–96.CrossRefPubMedGoogle Scholar
  106. 106.
    Walker B. Neurotoxicity in human beings. J Lab Clin Med. 2000;136:168–80.CrossRefPubMedGoogle Scholar
  107. 107.
    Nierenberg DW, Nordgren RE, Chang MB, et al. Delayed cerebellar disease and death after accidental exposure to dimethylmercury. N Engl J Med. 1998;338:1672–6.CrossRefPubMedGoogle Scholar
  108. 108.
    Keifer MC, Mahurin RK. Chronic neurologic effects of pesticide overexposure. Occup Med. 1997;12(2):291–304.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Emergency MedicineState University of New York, Upstate Medical UniversitySyracuseUSA

Personalised recommendations