Skip to main content

The Assessment and Management of Hypotension and Shock in the Poisoned Patient

  • Reference work entry
  • First Online:
Critical Care Toxicology
  • 498 Accesses

Abstract

While several large-scaled multicenter studies have changed the approach to the diagnosis and treatment of hypotension and shock in septic patients in recent years, the evidence base for the appropriate management of circulatory failure in poisoned patients is much more precarious. Toxicological research is often limited to case reports, small case series, or animal studies and most clinical recommendations or treatment guidelines are based on expert consensus or even personal experience rather than on criteria of evidence-based medicine [1]. Additionally, there may be a significant reporting bias from positive cases responding to different treatments, including extraordinary resuscitation measures. However, given the infrequency of many of these poisoning events, the likelihood of confirmatory randomized controlled trials to prove effectiveness will be low [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 338.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Givens ML, O'Connell E. Toxicologic issues during cardiopulmonary resuscitation. Curr Opin Crit Care. 2007;13(3):287–93.

    Article  PubMed  Google Scholar 

  2. Gunja N, Graudins A. Management of cardiac arrest following poisoning. Emerg Med Australas. 2011;23(1):16–22.

    Article  PubMed  Google Scholar 

  3. Dellinger RP, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34(1):17–60.

    Article  PubMed  Google Scholar 

  4. Dellinger RP, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637.

    Article  PubMed  Google Scholar 

  5. Rivers E, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    Article  CAS  PubMed  Google Scholar 

  6. Investigators A, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–506.

    Article  CAS  Google Scholar 

  7. Pro CI, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.

    Article  CAS  Google Scholar 

  8. Bronstein AC, et al. 2011 Annual report of the American Association of Poison Control Centers' National Poison Data System (NPDS): 29th Annual Report. Clin Toxicol (Phila). 2012;50(10):911–1164.

    Article  Google Scholar 

  9. CDC. WISQARS leading causes of death reports, 1999–2007. 2007. Available from: http://webappa.cdc.gov/sasweb/ncipc

  10. Jang DH, et al. Toxin-induced cardiovascular failure. Emerg Med Clin North Am. 2014;32(1):79–102.

    Article  PubMed  Google Scholar 

  11. Manini AF, et al. Incidence of adverse cardiovascular events in adults following drug overdose. Acad Emerg Med. 2012;19(7):843–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Henry JA, Cassidy SL. Membrane stabilising activity: a major cause of fatal poisoning. Lancet. 1986;1(8495):1414–7.

    Article  CAS  PubMed  Google Scholar 

  13. DeWitt CR, Waksman JC. Pharmacology, pathophysiology and management of calcium channel blocker and beta-blocker toxicity. Toxicol Rev. 2004;23(4):223–38.

    Article  CAS  PubMed  Google Scholar 

  14. Barber AE, Shires GT. Cell damage after shock. New Horiz. 1996;4(2):161–7.

    CAS  PubMed  Google Scholar 

  15. Dunser MW, et al. Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care. 2013;17(5):326.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lima A, et al. The relation of near-infrared spectroscopy with changes in peripheral circulation in critically ill patients. Crit Care Med. 2011;39(7):1649–54.

    Article  PubMed  Google Scholar 

  17. Gaieski D. Shock in adults: types, presentation, and diagnostic approach. 2015. Available from: http://www.uptodate.com/contents/shock-in-adults-types-presentation-and-diagnostic-approach?source=search_result&search=Shock+in+Adults&selectedTitle=1%7E150

  18. Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726–34.

    Article  CAS  PubMed  Google Scholar 

  19. Duval A, Pouchot J. Livedo: from pathophysiology to diagnosis. Rev Med Interne. 2008;29(5):380–92.

    Article  CAS  PubMed  Google Scholar 

  20. Ait-Oufella H, et al. Mottling score predicts survival in septic shock. Intensive Care Med. 2011;37(5):801–7.

    Article  CAS  PubMed  Google Scholar 

  21. Ait-Oufella H, et al. Knee area tissue oxygen saturation is predictive of 14-day mortality in septic shock. Intensive Care Med. 2012;38(6):976–83.

    Article  CAS  PubMed  Google Scholar 

  22. Coudroy R, et al. Incidence and impact of skin mottling over the knee and its duration on outcome in critically ill patients. Intensive Care Med. 2015;41(3):452–9.

    Article  PubMed  Google Scholar 

  23. Puskarich MA, et al. Outcomes of patients undergoing early sepsis resuscitation for cryptic shock compared with overt shock. Resuscitation. 2011;82(10):1289–93.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Labovitz AJ, et al. Focused cardiac ultrasound in the emergent setting: a consensus statement of the American Society of Echocardiography and American College of Emergency Physicians. J Am Soc Echocardiogr. 2010;23(12):1225–30.

    Article  PubMed  Google Scholar 

  25. Levy B, et al. Relation between muscle Na + K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005;365(9462):871–5.

    Article  CAS  PubMed  Google Scholar 

  26. Muller S, et al. Vasopressin impairs brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia. Crit Care. 2008;12(1):R20.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schwertz H, et al. Catecholamine therapy in cardiogenic shock: helpful, useless or dangerous? Dtsch Med Wochenschr. 2004;129(37):1925–30.

    Article  CAS  PubMed  Google Scholar 

  28. Jansen TC, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182(6):752–61.

    Article  PubMed  Google Scholar 

  29. Torgersen C, et al. Hemodynamic variables and mortality in cardiogenic shock: a retrospective cohort study. Crit Care. 2009;13(5):R157.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hasdai D, et al. Cardiogenic shock complicating acute myocardial infarction: predictors of death. GUSTO Investigators. Global utilization of streptokinase and tissue-plasminogen activator for occluded coronary arteries. Am Heart J. 1999;138(1 Pt 1):21–31.

    Article  CAS  PubMed  Google Scholar 

  31. Tan LB, Littler WA. Measurement of cardiac reserve in cardiogenic shock: implications for prognosis and management. Br Heart J. 1990;64(2):121–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pearse RM, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311(21):2181–90.

    Article  CAS  PubMed  Google Scholar 

  33. Joosten A, et al. Goal-directed fluid therapy with closed-loop assistance during moderate risk surgery using noninvasive cardiac output monitoring: a pilot study. Br J Anaesth. 2015;114(6):886–92.

    Article  CAS  PubMed  Google Scholar 

  34. Connolly PT, Harris C. Unusual ECG findings mimicking complete heart block in an unrecognised calcium antagonist overdose. Resuscitation. 2006;68(3):429–32.

    Article  CAS  PubMed  Google Scholar 

  35. Shah MR, et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294(13):1664–70.

    Article  CAS  PubMed  Google Scholar 

  36. Rajaram SS, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013;2:CD003408.

    Google Scholar 

  37. Saugel B, Reuter DA. Are we ready for the age of non-invasive haemodynamic monitoring? Br J Anaesth. 2014;113(3):340–3.

    Article  CAS  PubMed  Google Scholar 

  38. Ferrer R, et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009;180(9):861–6.

    Article  CAS  PubMed  Google Scholar 

  39. Bouferrache K, et al. Initial resuscitation guided by the surviving sepsis campaign recommendations and early echocardiographic assessment of hemodynamics in intensive care unit septic patients: a pilot study. Crit Care Med. 2012;40(10):2821–7.

    Article  PubMed  Google Scholar 

  40. Magder S. Fluid status and fluid responsiveness. Curr Opin Crit Care. 2010;16(4):289–96.

    Article  PubMed  Google Scholar 

  41. Boyd JH, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.

    Article  PubMed  Google Scholar 

  42. Jones AE, Kline JA. Use of goal-directed therapy for severe sepsis and septic shock in academic emergency departments. Crit Care Med. 2005;33(8):1888–9; author reply 1889–90.

    Article  PubMed  Google Scholar 

  43. Schmidt GA. Counterpoint: adherence to early goal-directed therapy: does it really matter? No. Both risks and benefits require further study. Chest. 2010;138(3):480–3; discussion 483–4.

    Article  PubMed  Google Scholar 

  44. Weil MH, Shubin H. The "VIP" approach to the bedside management of shock. JAMA. 1969;207(2):337–40.

    Article  CAS  PubMed  Google Scholar 

  45. Yagami T. Differential coupling of glucagon and beta-adrenergic receptors with the small and large forms of the stimulatory G protein. Mol Pharmacol. 1995;48(5):849–54.

    CAS  PubMed  Google Scholar 

  46. Pichon N, et al. Extracorporeal albumin dialysis in three cases of acute calcium channel blocker poisoning with life-threatening refractory cardiogenic shock. Ann Emerg Med. 2012;59(6):540–4.

    Article  PubMed  Google Scholar 

  47. Wittebole X, Hantson P. Use of the molecular adsorbent recirculating system (MARS) for the management of acute poisoning with or without liver failure. Clin Toxicol (Phila). 2011;49(9):782–93.

    Article  CAS  Google Scholar 

  48. Brunkhorst FM, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.

    Article  CAS  PubMed  Google Scholar 

  49. Guidet B, et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care. 2012;16(3):R94.

    Google Scholar 

  50. Perner A, et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.

    Article  CAS  PubMed  Google Scholar 

  51. Myburgh JA, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.

    Article  CAS  PubMed  Google Scholar 

  52. Annane D, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310(17):1809–17.

    Article  CAS  PubMed  Google Scholar 

  53. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(13):1243–51.

    Article  CAS  PubMed  Google Scholar 

  54. Torgersen C, et al. Current approach to the haemodynamic management of septic shock patients in European intensive care units: a cross-sectional, self-reported questionnaire-based survey. Eur J Anaesthesiol. 2011;28(4):284–90.

    PubMed  Google Scholar 

  55. Marik PE, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.

    Article  PubMed  Google Scholar 

  56. Cavallaro F, et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010;36(9):1475–83.

    Article  PubMed  Google Scholar 

  57. Jozwiak M, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41(2):472–80.

    Article  PubMed  Google Scholar 

  58. Zhang Z, Lu B, Ni H. Prognostic value of extravascular lung water index in critically ill patients: a systematic review of the literature. J Crit Care. 2012;27(4):420 e1–e18.

    Article  Google Scholar 

  59. Zhang Z, Ni H, Qian Z. Effectiveness of treatment based on PiCCO parameters in critically ill patients with septic shock and/or acute respiratory distress syndrome: a randomized controlled trial. Intensive Care Med. 2015;41(3):444–51.

    Article  CAS  PubMed  Google Scholar 

  60. Boulain T, Cecconi M. Can one size fit all? The fine line between fluid overload and hypovolemia. Intensive Care Med. 2015;41(3):544–6.

    Article  PubMed  Google Scholar 

  61. Berger MM, et al. Targets of perioperative fluid therapy and their effects on postoperative outcome: a systematic review and meta-analysis. Minerva Anestesiol. 2015;81(7):794–808.

    CAS  PubMed  Google Scholar 

  62. Annane D, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet. 2007;370(9588):676–84.

    Article  CAS  PubMed  Google Scholar 

  63. Bourgoin A, et al. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 2005;33(4):780–6.

    Article  CAS  PubMed  Google Scholar 

  64. Dunser MW, Dunser WR. Surviving Sepsis Campaign guidelines 2008: revisiting vasopressor recommendations. Crit Care Med. 2008;36(8):2488; author reply 2488–9.

    Article  PubMed  Google Scholar 

  65. Asfar P, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–93.

    Article  CAS  PubMed  Google Scholar 

  66. Leone M, et al. Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature. Crit Care. 2015;19:101.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dunser MW, et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care. 2009;13(6):R181.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dunser MW, et al. Arterial blood pressure during early sepsis and outcome. Intensive Care Med. 2009;35(7):1225–33.

    Article  PubMed  Google Scholar 

  69. Beale RJ, et al. Vasopressor and inotropic support in septic shock: an evidence-based review. Crit Care Med. 2004;32(11 Suppl):S455–65.

    Article  PubMed  Google Scholar 

  70. Scher AM. Mechanism of autoregulation of renal blood flow. Nature. 1959;184 Suppl 17:1322–3.

    Article  PubMed  Google Scholar 

  71. Deruddre S, et al. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;33(9):1557–62.

    Article  PubMed  Google Scholar 

  72. De Backer D, et al. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis*. Crit Care Med. 2012;40(3):725–30.

    Article  PubMed  CAS  Google Scholar 

  73. De Backer D, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.

    Article  PubMed  Google Scholar 

  74. Dunser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24(5):293–316.

    Article  PubMed  Google Scholar 

  75. Schmittinger CA, et al. Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med. 2012;38(6):950–8.

    Article  CAS  PubMed  Google Scholar 

  76. Power I, Kam P. Cardiovascular physiology. In: Power I, Kamp P, editors. Principles in physiology for the anesthetist. London: Arnold; 2001. p. 99–165.

    Google Scholar 

  77. Polito A, et al. Vasopressin for treatment of vasodilatory shock: an ESICM systematic review and meta-analysis. Intensive Care Med. 2012;38(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  78. Teba L, et al. Beneficial effect of norepinephrine in the treatment of circulatory shock caused by tricyclic antidepressant overdose. Am J Emerg Med. 1988;6(6):566–8.

    Article  CAS  PubMed  Google Scholar 

  79. Brubacher J. Beta-adrenergic antagonists. In: Goldfrank LR, Flomenbaum NE, Lewin NA, editors. Goldfrank’s toxicologic emergencies. 8th ed. New York: McGraw-Hill; 2006. p. 924–41.

    Google Scholar 

  80. Cole JB, et al. A blinded, randomized, controlled trial of three doses of high-dose insulin in poison-induced cardiogenic shock. Clin Toxicol (Phila). 2013;51(4):201–7.

    Article  CAS  Google Scholar 

  81. Engebretsen KM, et al. High-dose insulin therapy in beta-blocker and calcium channel-blocker poisoning. Clin Toxicol (Phila). 2011;49(4):277–83.

    Article  CAS  Google Scholar 

  82. Guidelines for cardiopulmonary resuscitation and emergency cardiac care. Emergency Cardiac Care Committee and Subcommittees, American Heart Association. Part III. Adult advanced cardiac life support. JAMA. 1992;268(16):2199–241.

    Google Scholar 

  83. Albertson TE, et al. TOX-ACLS: toxicologic-oriented advanced cardiac life support. Ann Emerg Med. 2001;37(4 Suppl):S78–90.

    Article  CAS  PubMed  Google Scholar 

  84. Kalman S, Berg S, Lisander B. Combined overdose with verapamil and atenolol: treatment with high doses of adrenergic agonists. Acta Anaesthesiol Scand. 1998;42(3):379–82.

    Article  CAS  PubMed  Google Scholar 

  85. Knudsen K, Abrahamsson J. Effects of epinephrine and norepinephrine on hemodynamic parameters and arrhythmias during a continuous infusion of amitriptyline in rats. J Toxicol Clin Toxicol. 1993;31(3):461–71.

    Article  CAS  PubMed  Google Scholar 

  86. Toet AE, et al. Reduced survival after isoprenaline/dopamine in d, l-propranolol intoxicated rats. Hum Exp Toxicol. 1996;15(2):120–8.

    Article  CAS  PubMed  Google Scholar 

  87. Appelbaum A, et al. Afterload reduction and cardiac output in patients after mitral valve surgery. Thorac Cardiovasc Surg. 1980;28(6):414–9.

    Article  CAS  PubMed  Google Scholar 

  88. Graudins A, Wong KK. Comparative hemodynamic effects of levosimendan alone and in conjunction with 4-aminopyridine or calcium chloride in a rodent model of severe verapamil poisoning. J Med Toxicol. 2010;6(2):85–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Magdalan J. New treatment methods in verapamil poisoning: experimental studies. Pol J Pharmacol. 2003;55(3):425–32.

    CAS  PubMed  Google Scholar 

  90. St-Onge M, et al. Treatment for calcium channel blocker poisoning: a systematic review. Clin Toxicol (Phila). 2014;52(9):926–44.

    Article  CAS  Google Scholar 

  91. Magdalan J, et al. Successful treatment by 4-aminopyridine of three cases of severe verapamil poisoning. Przegl Lek. 2003;60(4):271–3.

    PubMed  Google Scholar 

  92. King AM, et al. 4-aminopyridine toxicity: a case report and review of the literature. J Med Toxicol. 2012;8(3):314–21.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Agoston S, et al. Effective treatment of verapamil intoxication with 4-aminopyridine in the cat. J Clin Invest. 1984;73(5):1291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tuncok Y, et al. The effects of 4-aminopyridine and Bay K 8644 on verapamil-induced cardiovascular toxicity in anesthetized rats. J Toxicol Clin Toxicol. 1998;36(4):301–7.

    Article  CAS  PubMed  Google Scholar 

  95. Wood DM, et al. Metaraminol (Aramine) in the management of a significant amlodipine overdose. Hum Exp Toxicol. 2005;24(7):377–81.

    Article  CAS  PubMed  Google Scholar 

  96. Kee VR. Hemodynamic pharmacology of intravenous vasopressors. Crit Care Nurse. 2003;23(4):79–82.

    PubMed  Google Scholar 

  97. Unverzagt S, et al. Inotropic agents and vasodilator strategies for acute myocardial infarction complicated by cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev. 2014;1:CD009669.

    Google Scholar 

  98. Rognoni A, et al. Levosimendan: from basic science to clinical trials. Recent Pat Cardiovasc Drug Discov. 2011;6(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  99. Petersen JW, Felker GM. Inotropes in the management of acute heart failure. Crit Care Med. 2008;36(1 Suppl):S106–11.

    Article  CAS  PubMed  Google Scholar 

  100. Landmesser U, Drexler H. Update on inotropic therapy in the management of acute heart failure. Curr Treat Options Cardiovasc Med. 2007;9(6):443–9.

    Article  PubMed  Google Scholar 

  101. Abraham WT, et al. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol. 2005;46(1):57–64.

    Article  PubMed  Google Scholar 

  102. Yamani MH, et al. Comparison of dobutamine-based and milrinone-based therapy for advanced decompensated congestive heart failure: hemodynamic efficacy, clinical outcome, and economic impact. Am Heart J. 2001;142(6):998–1002.

    Article  CAS  PubMed  Google Scholar 

  103. Burger AJ, et al. Effect of nesiritide (B-type natriuretic peptide) and dobutamine on ventricular arrhythmias in the treatment of patients with acutely decompensated congestive heart failure: the PRECEDENT study. Am Heart J. 2002;144(6):1102–8.

    Article  CAS  PubMed  Google Scholar 

  104. Salmenpera M, Eriksson H. Levosimendan in perioperative and critical care patients. Curr Opin Anaesthesiol. 2009;22(4):496–501.

    Article  PubMed  Google Scholar 

  105. Landoni G, et al. Effects of levosimendan on mortality and hospitalization. A meta-analysis of randomized controlled studies. Crit Care Med. 2012;40(2):634–46.

    Article  CAS  PubMed  Google Scholar 

  106. Morelli A, et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med. 2005;31(5):638–44.

    Article  PubMed  Google Scholar 

  107. Coates J. BET 1: levosimendan in septic shock. Emerg Med J. 2014;31(6):508–10.

    PubMed  Google Scholar 

  108. Fuhrmann JT, et al. Levosimendan is superior to enoximone in refractory cardiogenic shock complicating acute myocardial infarction. Crit Care Med. 2008;36(8):2257–66.

    Article  CAS  PubMed  Google Scholar 

  109. De Santis V, et al. Use of levosimendan for cardiogenic shock in a patient with the apical ballooning syndrome. Ann Intern Med. 2008;149(5):365–7.

    Article  PubMed  Google Scholar 

  110. Cleland JG, et al. Clinical trials update from the American Heart Association: REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE, and PROACTIVE. Eur J Heart Fail. 2006;8(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  111. Varpula T, et al. Treatment of serious calcium channel blocker overdose with levosimendan, a calcium sensitizer. Anesth Analg. 2009;108(3):790–2.

    Article  PubMed  Google Scholar 

  112. Osthoff M, et al. Levosimendan as treatment option in severe verapamil intoxication: a case report and review of the literature. Case Rep Med. 2010. pii: 546904. doi:10.1155/2010/546904.

    Google Scholar 

  113. Abraham MK, et al. Levosimendan does not improve survival time in a rat model of verapamil toxicity. J Med Toxicol. 2009;5(1):3–7.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Graudins A, Najafi J, Rur SM. Treatment of experimental verapamil poisoning with levosimendan utilizing a rodent model of drug toxicity. Clin Toxicol (Phila). 2008;46(1):50–6.

    Article  CAS  Google Scholar 

  115. Kalam Y, Graudins A. Levosimendan does not improve cardiac output or blood pressure in a rodent model of propranolol toxicity when administered using various dosing regimens. Int J Toxicol. 2012;31(2):166–74.

    Article  CAS  PubMed  Google Scholar 

  116. Kalam Y, Graudins A. Levosimendan infusion improves cardiac output but not blood pressure in a rodent model of severe metoprolol toxicity. Hum Exp Toxicol. 2012;31(9):955–63.

    Article  CAS  PubMed  Google Scholar 

  117. Dunser MW, Westphal M. Arginine vasopressin in vasodilatory shock: effects on metabolism and beyond. Curr Opin Anaesthesiol. 2008;21(2):122–7.

    Article  PubMed  Google Scholar 

  118. Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part 1–receptor physiology. Crit Care. 2003;7(6):427–34.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Russell JA, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.

    Article  CAS  PubMed  Google Scholar 

  120. Ertmer C, Rehberg S, Westphal M. Vasopressin analogues in the treatment of shock states: potential pitfalls. Best Pract Res Clin Anaesthesiol. 2008;22(2):393–406.

    Article  CAS  PubMed  Google Scholar 

  121. Patel BM, et al. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96(3):576–82.

    Article  CAS  PubMed  Google Scholar 

  122. Dunser MW, Hasibeder WR, Wenzel V. Vasopressin in septic shock. N Engl J Med. 2008;358(25):2736; author reply 2737–8.

    Article  PubMed  Google Scholar 

  123. Luckner G, et al. Arginine vasopressin in 316 patients with advanced vasodilatory shock. Crit Care Med. 2005;33(11):2659–66.

    Article  CAS  PubMed  Google Scholar 

  124. Luckner G, et al. Comparison of two dose regimens of arginine vasopressin in advanced vasodilatory shock. Crit Care Med. 2007;35(10):2280–5.

    Article  CAS  PubMed  Google Scholar 

  125. Serpa Neto A, et al. Vasopressin and terlipressin in adult vasodilatory shock: a systematic review and meta-analysis of nine randomized controlled trials. Crit Care. 2012;16(4):R154.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Barry JD, et al. Vasopressin treatment of verapamil toxicity in the porcine model. J Toxicol Clin Toxicol. 2003;41(5):694.

    Google Scholar 

  127. Sztajnkrycer MD, et al. Use of vasopressin in a canine model of severe verapamil poisoning: a preliminary descriptive study. Acad Emerg Med. 2004;11(12):1253–61.

    Article  PubMed  Google Scholar 

  128. Goenen M, et al. Treatment of severe verapamil poisoning with combined amrinone-isoproterenol therapy. Am J Cardiol. 1986;58(11):1142–3.

    Article  CAS  PubMed  Google Scholar 

  129. Leone M, et al. Terlipressin: a new therapeutic for calcium-channel blockers overdose. J Crit Care. 2005;20(1):114–5.

    Article  PubMed  Google Scholar 

  130. McNamee JJ, Trainor D, Michalek P. Terlipressin for refractory hypotension following angiotensin-II receptor antagonist overdose. Anaesthesia. 2006;61(4):408–9.

    Article  CAS  PubMed  Google Scholar 

  131. Westphal M, et al. Arginine vasopressin compromises gut mucosal microcirculation in septic rats. Crit Care Med. 2004;32(1):194–200.

    Article  CAS  PubMed  Google Scholar 

  132. Perner A, Jorgensen VL, Waldau T. Terlipressin increased the concentration of l-lactate in the rectal lumen in a patient with septic shock. Acta Anaesthesiol Scand. 2004;48(8):1054–7.

    Article  CAS  PubMed  Google Scholar 

  133. Filep J, Rosenkranz B. Mechanism of vasopressin-induced platelet aggregation. Thromb Res. 1987;45(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  134. Dunser MW, et al. Does arginine vasopressin influence the coagulation system in advanced vasodilatory shock with severe multiorgan dysfunction syndrome? Anesth Analg. 2004;99(1):201–6.

    Article  PubMed  CAS  Google Scholar 

  135. Luckner G, et al. Cutaneous vascular reactivity and flow motion response to vasopressin in advanced vasodilatory shock and severe postoperative multiple organ dysfunction syndrome. Crit Care. 2006;10(2):R40.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Cave G, Harvey M. Intravenous lipid emulsion as antidote beyond local anesthetic toxicity: a systematic review. Acad Emerg Med. 2009;16(9):815–24.

    Article  PubMed  Google Scholar 

  137. Neal JM, et al. American Society of Regional Anesthesia and Pain Medicine checklist for managing local anesthetic systemic toxicity: 2012 version. Reg Anesth Pain Med. 2012;37(1):16–8.

    Article  PubMed  Google Scholar 

  138. Vanden Hoek TL, et al. Part 12: cardiac arrest in special situations: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):S829–61.

    Article  PubMed  Google Scholar 

  139. Cao D, et al. Intravenous lipid emulsion in the emergency department: a systematic review of recent literature. J Emerg Med. 2015;48(3):387–97.

    Article  PubMed  Google Scholar 

  140. French D, et al. Partition constant and volume of distribution as predictors of clinical efficacy of lipid rescue for toxicological emergencies. Clin Toxicol (Phila). 2011;49(9):801–9.

    Article  CAS  Google Scholar 

  141. Weinberg GL, et al. Bupivacaine inhibits acylcarnitine exchange in cardiac mitochondria. Anesthesiology. 2000;92(2):523–8.

    Article  CAS  PubMed  Google Scholar 

  142. Huang JM, Xian H, Bacaner M. Long-chain fatty acids activate calcium channels in ventricular myocytes. Proc Natl Acad Sci U S A. 1992;89(14):6452–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lee HM, et al. What are the adverse effects associated with the combined use of intravenous lipid emulsion and extracorporeal membrane oxygenation in the poisoned patient? Clin Toxicol (Phila). 2015;53(3):145–50.

    Article  CAS  Google Scholar 

  144. Downes M, Page C, Isbister G. Response to "use of lipid emulsion in the resuscitation of a patient with prolonged cardiovascular collapse after overdose of bupropion and lamotrigine". Ann Emerg Med. 2008;51(6):794–5; author reply 795.

    Article  PubMed  Google Scholar 

  145. Shepherd G, Klein-Schwartz W. High-dose insulin therapy for calcium-channel blocker overdose. Ann Pharmacother. 2005;39(5):923–30.

    Article  CAS  PubMed  Google Scholar 

  146. Holger JS, Engebretsen KM, Marini JJ. High dose insulin in toxic cardiogenic shock. Clin Toxicol (Phila). 2009;47(4):303–7.

    Article  CAS  Google Scholar 

  147. Greene SL, et al. Relative safety of hyperinsulinaemia/euglycaemia therapy in the management of calcium channel blocker overdose: a prospective observational study. Intensive Care Med. 2007;33(11):2019–24.

    Article  CAS  PubMed  Google Scholar 

  148. Holger JS, et al. High-dose insulin: a consecutive case series in toxin-induced cardiogenic shock. Clin Toxicol (Phila). 2011;49(7):653–8.

    Article  CAS  Google Scholar 

  149. Stellpflug SJ, et al. Cardiotoxic overdose treated with intravenous fat emulsion and high-dose insulin in the setting of hypertrophic cardiomyopathy. J Med Toxicol. 2011;7(2):151–3.

    Article  PubMed  Google Scholar 

  150. Clerk LH, et al. The vasodilatory actions of insulin on resistance and terminal arterioles and their impact on muscle glucose uptake. Diabetes Metab Res Rev. 2004;20(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  151. Vincent MA, et al. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004;53(6):1418–23.

    Article  CAS  PubMed  Google Scholar 

  152. Kline JA, et al. Insulin is a superior antidote for cardiovascular toxicity induced by verapamil in the anesthetized canine. J Pharmacol Exp Ther. 1993;267(2):744–50.

    CAS  PubMed  Google Scholar 

  153. Seger D. Premises, premises (poisoning-induced cardiogenic shock and high-dose insulin). Clin Toxicol (Phila). 2013;51(4):199–200.

    Article  CAS  Google Scholar 

  154. Levine M, et al. Assessment of hyperglycemia after calcium channel blocker overdoses involving diltiazem or verapamil. Crit Care Med. 2007;35(9):2071–5.

    Article  CAS  PubMed  Google Scholar 

  155. Coulibaly B, et al. Strong gametocytocidal effect of methylene blue-based combination therapy against falciparum malaria: a randomised controlled trial. PLoS One. 2009;4(5):e5318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Jang DH, Nelson LS, Hoffman RS. Methylene blue in the treatment of refractory shock from an amlodipine overdose. Ann Emerg Med. 2011;58(6):565–7.

    Article  PubMed  Google Scholar 

  157. Paciullo CA, et al. Methylene blue for the treatment of septic shock. Pharmacotherapy. 2010;30(7):702–15.

    Article  CAS  PubMed  Google Scholar 

  158. Evora PR. Should methylene blue be the drug of choice to treat vasoplegias caused by cardiopulmonary bypass and anaphylactic shock? J Thorac Cardiovasc Surg. 2000;119(3):632–4.

    Article  CAS  PubMed  Google Scholar 

  159. Clifton 2nd J, Leikin JB. Methylene blue. Am J Ther. 2003;10(4):289–91.

    Article  PubMed  Google Scholar 

  160. Lo JC, Darracq MA, Clark RF. A review of methylene blue treatment for cardiovascular collapse. J Emerg Med. 2014;46(5):670–9.

    Article  PubMed  Google Scholar 

  161. Evora PR, Viaro F. The guanylyl cyclase inhibition by MB as vasoplegic circulatory shock therapeutical target. Curr Drug Targets. 2006;7(9):1195–204.

    Article  CAS  PubMed  Google Scholar 

  162. Park BK, et al. The effects of methylene blue on hemodynamic parameters and cytokine levels in refractory septic shock. Korean J Intern Med. 2005;20(2):123–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Preiser JC, et al. Methylene blue administration in septic shock: a clinical trial. Crit Care Med. 1995;23(2):259–64.

    Article  CAS  PubMed  Google Scholar 

  164. Kirov MY, et al. Infusion of methylene blue in human septic shock: a pilot, randomized, controlled study. Crit Care Med. 2001;29(10):1860–7.

    Article  CAS  PubMed  Google Scholar 

  165. Memis D, et al. The influence of methylene blue infusion on cytokine levels during severe sepsis. Anaesth Intensive Care. 2002;30(6):755–62.

    CAS  PubMed  Google Scholar 

  166. Shanmugam G, et al. Serotonin syndrome following cardiac surgery. Interact Cardiovasc Thorac Surg. 2008;7(4):656–7.

    Article  PubMed  Google Scholar 

  167. Gachot B, et al. Short-term effects of methylene blue on hemodynamics and gas exchange in humans with septic shock. Intensive Care Med. 1995;21(12):1027–31.

    Article  CAS  PubMed  Google Scholar 

  168. Fischer M, Hossmann KA. No-reflow after cardiac arrest. Intensive Care Med. 1995;21(2):132–41.

    Article  CAS  PubMed  Google Scholar 

  169. Axelsson C, et al. Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of out-of-hospital cardiac arrest-a pilot study. Resuscitation. 2006;71(1):47–55.

    Article  PubMed  Google Scholar 

  170. Hightower D, et al. Decay in quality of closed-chest compressions over time. Ann Emerg Med. 1995;26(3):300–3.

    Article  CAS  PubMed  Google Scholar 

  171. Rubertsson S, et al. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the LINC randomized trial. JAMA. 2014;311(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  172. Wik L, et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation. 2014;85(6):741–8.

    Article  PubMed  Google Scholar 

  173. Brooks SC, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2011;(1):CD007260.

    Google Scholar 

  174. Fischer M, et al. Mechanical resuscitation assist devices. Anaesthesist. 2014;63(3):186–97.

    Article  CAS  PubMed  Google Scholar 

  175. Agostinucci JM, et al. Out-of-hospital use of an automated chest compression device: facilitating access to extracorporeal life support or non-heart-beating organ procurement. Am J Emerg Med. 2011;29(9):1169–72.

    Article  PubMed  Google Scholar 

  176. Deakin CD, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation. 2010;81(10):1305–52.

    Article  PubMed  Google Scholar 

  177. Piacentini A, et al. Successful prolonged mechanical CPR in a severely poisoned hypothermic patient: a case report. Case Rep Emerg Med. 2012:381798. doi:10.1155/2012/381798.

    Google Scholar 

  178. Gillart T, et al. Resuscitation after three hours of cardiac arrest with severe hypothermia following a toxic coma. Ann Fr Anesth Reanim. 2008;27(6):510–3.

    Article  CAS  PubMed  Google Scholar 

  179. Bednarczyk JM, et al. Resuscitative extracorporeal membrane oxygenation for in hospital cardiac arrest: a Canadian observational experience. Resuscitation. 2014;85(12):1713–9.

    Article  PubMed  Google Scholar 

  180. Thiagarajan RR, et al. Extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in adults. Ann Thorac Surg. 2009;87(3):778–85.

    Article  PubMed  Google Scholar 

  181. Masson R, et al. A comparison of survival with and without extracorporeal life support treatment for severe poisoning due to drug intoxication. Resuscitation. 2012;83(11):1413–7.

    Article  PubMed  Google Scholar 

  182. Johnson NJ, et al. A review of emergency cardiopulmonary bypass for severe poisoning by cardiotoxic drugs. J Med Toxicol. 2013;9(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  183. Daubin C, et al. Extracorporeal life support in severe drug intoxication: a retrospective cohort study of seventeen cases. Crit Care. 2009;13(4):R138.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Massetti M, et al. Back from irreversibility: extracorporeal life support for prolonged cardiac arrest. Ann Thorac Surg. 2005;79(1):178–83; discussion 183–4.

    Article  PubMed  Google Scholar 

  185. ECC Committee, Subcommittees and Task Forces of the American Heart Association. American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2005;112(24 Suppl):IV1–203.

    Google Scholar 

  186. Orr DA, Bramble MG. Tricyclic antidepressant poisoning and prolonged external cardiac massage during asystole. Br Med J (Clin Res Ed). 1981;283(6299):1107–8.

    Article  CAS  Google Scholar 

  187. Holzer M, et al. Successful resuscitation of a verapamil-intoxicated patient with percutaneous cardiopulmonary bypass. Crit Care Med. 1999;27(12):2818–23.

    Article  CAS  PubMed  Google Scholar 

  188. Maclaren G, et al. Treatment of polypharmacy overdose with multimodality extracorporeal life support. Anaesth Intensive Care. 2005;33(1):120–3.

    CAS  PubMed  Google Scholar 

  189. Purkayastha S, et al. Treatment of poisoning induced cardiac impairment using cardiopulmonary bypass: a review. Emerg Med J. 2006;23(4):246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Megarbane B, et al. Emergency feasibility in medical intensive care unit of extracorporeal life support for refractory cardiac arrest. Intensive Care Med. 2007;33(5):758–64.

    Article  PubMed  Google Scholar 

  191. Freedman MD, Gal J, Freed CR. Extracorporeal pump assistance – novel treatment for acute lidocaine poisoning. Eur J Clin Pharmacol. 1982;22(2):129–35.

    Article  CAS  PubMed  Google Scholar 

  192. Martin TG, et al. Extracorporeal life support versus thumper after lethal desipramine overdose. Vet Hum Toxicol. 1990;32(4):349.

    Google Scholar 

  193. Larkin GL, Graeber GM, Hollingsed MJ. Experimental amitriptyline poisoning: treatment of severe cardiovascular toxicity with cardiopulmonary bypass. Ann Emerg Med. 1994;23(3):480–6.

    Article  CAS  PubMed  Google Scholar 

  194. Thiele H, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96.

    Article  CAS  PubMed  Google Scholar 

  195. Shub C, et al. The management of acute quinidine intoxication. Chest. 1978;73(2):173–8.

    Article  CAS  PubMed  Google Scholar 

  196. Lane AS, Woodward AC, Goldman MR. Massive propranolol overdose poorly responsive to pharmacologic therapy: use of the intra-aortic balloon pump. Ann Emerg Med. 1987;16(12):1381–3.

    Article  CAS  PubMed  Google Scholar 

  197. Gillard P, Laurent M. Dextropropoxyphene-induced cardiogenic shock: treatment with intra-aortic balloon pump and milrinone. Intensive Care Med. 1999;25(3):335.

    Article  CAS  PubMed  Google Scholar 

  198. Freedberg RS, et al. Cardiogenic shock due to antihistamine overdose. Reversal with intra-aortic balloon counterpulsation. JAMA. 1987;257(5):660–1.

    Article  CAS  PubMed  Google Scholar 

  199. Frierson J, et al. Refractory cardiogenic shock and complete heart block after unsuspected verapamil-SR and atenolol overdose. Clin Cardiol. 1991;14(11):933–5.

    Article  CAS  PubMed  Google Scholar 

  200. Kamijo Y, et al. A case of serious organophosphate poisoning treated by percutaneus cardiopulmonary support. Vet Hum Toxicol. 1999;41(5):326–8.

    CAS  PubMed  Google Scholar 

  201. Baud FJ, et al. Clinical review: aggressive management and extracorporeal support for drug-induced cardiotoxicity. Crit Care. 2007;11(2):207.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Durward A, et al. Massive diltiazem overdose treated with extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2003;4(3):372–6.

    Article  PubMed  Google Scholar 

  203. Fitzpatrick AJ, et al. Aconite poisoning managed with a ventricular assist device. Anaesth Intensive Care. 1994;22(6):714–7.

    CAS  PubMed  Google Scholar 

  204. Hendren WG, Schieber RS, Garrettson LK. Extracorporeal bypass for the treatment of verapamil poisoning. Ann Emerg Med. 1989;18(9):984–7.

    Article  CAS  PubMed  Google Scholar 

  205. Babatasi G, et al. Severe intoxication with cardiotoxic drugs: value of emergency percutaneous cardiocirculatory assistance. Arch Mal Coeur Vaiss. 2001;94(12):1386–92.

    CAS  PubMed  Google Scholar 

  206. Massetti M, et al. Cardiopulmonary bypass and severe drug intoxication. J Thorac Cardiovasc Surg. 2000;120(2):424–5.

    Article  CAS  PubMed  Google Scholar 

  207. Peek GJ, et al. Randomised controlled trial and parallel economic evaluation of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR). Health Technol Assess. 2010;14(35):1–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Eyer .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Eyer, F. (2017). The Assessment and Management of Hypotension and Shock in the Poisoned Patient. In: Brent, J., et al. Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-17900-1_55

Download citation

Publish with us

Policies and ethics