Advertisement

The Assessment and Management of Hypotension and Shock in the Poisoned Patient

  • Florian Eyer
Reference work entry

Abstract

While several large-scaled multicenter studies have changed the approach to the diagnosis and treatment of hypotension and shock in septic patients in recent years, the evidence base for the appropriate management of circulatory failure in poisoned patients is much more precarious. Toxicological research is often limited to case reports, small case series, or animal studies and most clinical recommendations or treatment guidelines are based on expert consensus or even personal experience rather than on criteria of evidence-based medicine [1]. Additionally, there may be a significant reporting bias from positive cases responding to different treatments, including extraordinary resuscitation measures. However, given the infrequency of many of these poisoning events, the likelihood of confirmatory randomized controlled trials to prove effectiveness will be low [2].

References

  1. 1.
    Givens ML, O'Connell E. Toxicologic issues during cardiopulmonary resuscitation. Curr Opin Crit Care. 2007;13(3):287–93.PubMedCrossRefGoogle Scholar
  2. 2.
    Gunja N, Graudins A. Management of cardiac arrest following poisoning. Emerg Med Australas. 2011;23(1):16–22.PubMedCrossRefGoogle Scholar
  3. 3.
    Dellinger RP, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34(1):17–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Dellinger RP, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637.PubMedCrossRefGoogle Scholar
  5. 5.
    Rivers E, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.PubMedCrossRefGoogle Scholar
  6. 6.
    Investigators A, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–506.CrossRefGoogle Scholar
  7. 7.
    Pro CI, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.CrossRefGoogle Scholar
  8. 8.
    Bronstein AC, et al. 2011 Annual report of the American Association of Poison Control Centers' National Poison Data System (NPDS): 29th Annual Report. Clin Toxicol (Phila). 2012;50(10):911–1164.CrossRefGoogle Scholar
  9. 9.
    CDC. WISQARS leading causes of death reports, 1999–2007. 2007. Available from: http://webappa.cdc.gov/sasweb/ncipc
  10. 10.
    Jang DH, et al. Toxin-induced cardiovascular failure. Emerg Med Clin North Am. 2014;32(1):79–102.PubMedCrossRefGoogle Scholar
  11. 11.
    Manini AF, et al. Incidence of adverse cardiovascular events in adults following drug overdose. Acad Emerg Med. 2012;19(7):843–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Henry JA, Cassidy SL. Membrane stabilising activity: a major cause of fatal poisoning. Lancet. 1986;1(8495):1414–7.PubMedCrossRefGoogle Scholar
  13. 13.
    DeWitt CR, Waksman JC. Pharmacology, pathophysiology and management of calcium channel blocker and beta-blocker toxicity. Toxicol Rev. 2004;23(4):223–38.PubMedCrossRefGoogle Scholar
  14. 14.
    Barber AE, Shires GT. Cell damage after shock. New Horiz. 1996;4(2):161–7.PubMedGoogle Scholar
  15. 15.
    Dunser MW, et al. Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care. 2013;17(5):326.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lima A, et al. The relation of near-infrared spectroscopy with changes in peripheral circulation in critically ill patients. Crit Care Med. 2011;39(7):1649–54.PubMedCrossRefGoogle Scholar
  17. 17.
  18. 18.
    Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Duval A, Pouchot J. Livedo: from pathophysiology to diagnosis. Rev Med Interne. 2008;29(5):380–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Ait-Oufella H, et al. Mottling score predicts survival in septic shock. Intensive Care Med. 2011;37(5):801–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Ait-Oufella H, et al. Knee area tissue oxygen saturation is predictive of 14-day mortality in septic shock. Intensive Care Med. 2012;38(6):976–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Coudroy R, et al. Incidence and impact of skin mottling over the knee and its duration on outcome in critically ill patients. Intensive Care Med. 2015;41(3):452–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Puskarich MA, et al. Outcomes of patients undergoing early sepsis resuscitation for cryptic shock compared with overt shock. Resuscitation. 2011;82(10):1289–93.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Labovitz AJ, et al. Focused cardiac ultrasound in the emergent setting: a consensus statement of the American Society of Echocardiography and American College of Emergency Physicians. J Am Soc Echocardiogr. 2010;23(12):1225–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Levy B, et al. Relation between muscle Na + K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005;365(9462):871–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Muller S, et al. Vasopressin impairs brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia. Crit Care. 2008;12(1):R20.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Schwertz H, et al. Catecholamine therapy in cardiogenic shock: helpful, useless or dangerous? Dtsch Med Wochenschr. 2004;129(37):1925–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Jansen TC, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182(6):752–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Torgersen C, et al. Hemodynamic variables and mortality in cardiogenic shock: a retrospective cohort study. Crit Care. 2009;13(5):R157.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hasdai D, et al. Cardiogenic shock complicating acute myocardial infarction: predictors of death. GUSTO Investigators. Global utilization of streptokinase and tissue-plasminogen activator for occluded coronary arteries. Am Heart J. 1999;138(1 Pt 1):21–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Tan LB, Littler WA. Measurement of cardiac reserve in cardiogenic shock: implications for prognosis and management. Br Heart J. 1990;64(2):121–8.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pearse RM, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311(21):2181–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Joosten A, et al. Goal-directed fluid therapy with closed-loop assistance during moderate risk surgery using noninvasive cardiac output monitoring: a pilot study. Br J Anaesth. 2015;114(6):886–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Connolly PT, Harris C. Unusual ECG findings mimicking complete heart block in an unrecognised calcium antagonist overdose. Resuscitation. 2006;68(3):429–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Shah MR, et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294(13):1664–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Rajaram SS, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013;2:CD003408.Google Scholar
  37. 37.
    Saugel B, Reuter DA. Are we ready for the age of non-invasive haemodynamic monitoring? Br J Anaesth. 2014;113(3):340–3.PubMedCrossRefGoogle Scholar
  38. 38.
    Ferrer R, et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009;180(9):861–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Bouferrache K, et al. Initial resuscitation guided by the surviving sepsis campaign recommendations and early echocardiographic assessment of hemodynamics in intensive care unit septic patients: a pilot study. Crit Care Med. 2012;40(10):2821–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Magder S. Fluid status and fluid responsiveness. Curr Opin Crit Care. 2010;16(4):289–96.PubMedCrossRefGoogle Scholar
  41. 41.
    Boyd JH, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.PubMedCrossRefGoogle Scholar
  42. 42.
    Jones AE, Kline JA. Use of goal-directed therapy for severe sepsis and septic shock in academic emergency departments. Crit Care Med. 2005;33(8):1888–9; author reply 1889–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Schmidt GA. Counterpoint: adherence to early goal-directed therapy: does it really matter? No. Both risks and benefits require further study. Chest. 2010;138(3):480–3; discussion 483–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Weil MH, Shubin H. The "VIP" approach to the bedside management of shock. JAMA. 1969;207(2):337–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Yagami T. Differential coupling of glucagon and beta-adrenergic receptors with the small and large forms of the stimulatory G protein. Mol Pharmacol. 1995;48(5):849–54.PubMedGoogle Scholar
  46. 46.
    Pichon N, et al. Extracorporeal albumin dialysis in three cases of acute calcium channel blocker poisoning with life-threatening refractory cardiogenic shock. Ann Emerg Med. 2012;59(6):540–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Wittebole X, Hantson P. Use of the molecular adsorbent recirculating system (MARS) for the management of acute poisoning with or without liver failure. Clin Toxicol (Phila). 2011;49(9):782–93.CrossRefGoogle Scholar
  48. 48.
    Brunkhorst FM, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.PubMedCrossRefGoogle Scholar
  49. 49.
    Guidet B, et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care. 2012;16(3):R94.Google Scholar
  50. 50.
    Perner A, et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Myburgh JA, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.PubMedCrossRefGoogle Scholar
  52. 52.
    Annane D, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310(17):1809–17.PubMedCrossRefGoogle Scholar
  53. 53.
    Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(13):1243–51.PubMedCrossRefGoogle Scholar
  54. 54.
    Torgersen C, et al. Current approach to the haemodynamic management of septic shock patients in European intensive care units: a cross-sectional, self-reported questionnaire-based survey. Eur J Anaesthesiol. 2011;28(4):284–90.PubMedGoogle Scholar
  55. 55.
    Marik PE, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Cavallaro F, et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010;36(9):1475–83.PubMedCrossRefGoogle Scholar
  57. 57.
    Jozwiak M, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41(2):472–80.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang Z, Lu B, Ni H. Prognostic value of extravascular lung water index in critically ill patients: a systematic review of the literature. J Crit Care. 2012;27(4):420 e1–e18.CrossRefGoogle Scholar
  59. 59.
    Zhang Z, Ni H, Qian Z. Effectiveness of treatment based on PiCCO parameters in critically ill patients with septic shock and/or acute respiratory distress syndrome: a randomized controlled trial. Intensive Care Med. 2015;41(3):444–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Boulain T, Cecconi M. Can one size fit all? The fine line between fluid overload and hypovolemia. Intensive Care Med. 2015;41(3):544–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Berger MM, et al. Targets of perioperative fluid therapy and their effects on postoperative outcome: a systematic review and meta-analysis. Minerva Anestesiol. 2015;81(7):794–808.PubMedGoogle Scholar
  62. 62.
    Annane D, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet. 2007;370(9588):676–84.PubMedCrossRefGoogle Scholar
  63. 63.
    Bourgoin A, et al. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 2005;33(4):780–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Dunser MW, Dunser WR. Surviving Sepsis Campaign guidelines 2008: revisiting vasopressor recommendations. Crit Care Med. 2008;36(8):2488; author reply 2488–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Asfar P, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–93.PubMedCrossRefGoogle Scholar
  66. 66.
    Leone M, et al. Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature. Crit Care. 2015;19:101.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Dunser MW, et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care. 2009;13(6):R181.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Dunser MW, et al. Arterial blood pressure during early sepsis and outcome. Intensive Care Med. 2009;35(7):1225–33.PubMedCrossRefGoogle Scholar
  69. 69.
    Beale RJ, et al. Vasopressor and inotropic support in septic shock: an evidence-based review. Crit Care Med. 2004;32(11 Suppl):S455–65.PubMedCrossRefGoogle Scholar
  70. 70.
    Scher AM. Mechanism of autoregulation of renal blood flow. Nature. 1959;184 Suppl 17:1322–3.PubMedCrossRefGoogle Scholar
  71. 71.
    Deruddre S, et al. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;33(9):1557–62.PubMedCrossRefGoogle Scholar
  72. 72.
    De Backer D, et al. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis*. Crit Care Med. 2012;40(3):725–30.PubMedCrossRefGoogle Scholar
  73. 73.
    De Backer D, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.PubMedCrossRefGoogle Scholar
  74. 74.
    Dunser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24(5):293–316.PubMedCrossRefGoogle Scholar
  75. 75.
    Schmittinger CA, et al. Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med. 2012;38(6):950–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Power I, Kam P. Cardiovascular physiology. In: Power I, Kamp P, editors. Principles in physiology for the anesthetist. London: Arnold; 2001. p. 99–165.Google Scholar
  77. 77.
    Polito A, et al. Vasopressin for treatment of vasodilatory shock: an ESICM systematic review and meta-analysis. Intensive Care Med. 2012;38(1):9–19.PubMedCrossRefGoogle Scholar
  78. 78.
    Teba L, et al. Beneficial effect of norepinephrine in the treatment of circulatory shock caused by tricyclic antidepressant overdose. Am J Emerg Med. 1988;6(6):566–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Brubacher J. Beta-adrenergic antagonists. In: Goldfrank LR, Flomenbaum NE, Lewin NA, editors. Goldfrank’s toxicologic emergencies. 8th ed. New York: McGraw-Hill; 2006. p. 924–41.Google Scholar
  80. 80.
    Cole JB, et al. A blinded, randomized, controlled trial of three doses of high-dose insulin in poison-induced cardiogenic shock. Clin Toxicol (Phila). 2013;51(4):201–7.CrossRefGoogle Scholar
  81. 81.
    Engebretsen KM, et al. High-dose insulin therapy in beta-blocker and calcium channel-blocker poisoning. Clin Toxicol (Phila). 2011;49(4):277–83.CrossRefGoogle Scholar
  82. 82.
    Guidelines for cardiopulmonary resuscitation and emergency cardiac care. Emergency Cardiac Care Committee and Subcommittees, American Heart Association. Part III. Adult advanced cardiac life support. JAMA. 1992;268(16):2199–241.Google Scholar
  83. 83.
    Albertson TE, et al. TOX-ACLS: toxicologic-oriented advanced cardiac life support. Ann Emerg Med. 2001;37(4 Suppl):S78–90.PubMedCrossRefGoogle Scholar
  84. 84.
    Kalman S, Berg S, Lisander B. Combined overdose with verapamil and atenolol: treatment with high doses of adrenergic agonists. Acta Anaesthesiol Scand. 1998;42(3):379–82.PubMedCrossRefGoogle Scholar
  85. 85.
    Knudsen K, Abrahamsson J. Effects of epinephrine and norepinephrine on hemodynamic parameters and arrhythmias during a continuous infusion of amitriptyline in rats. J Toxicol Clin Toxicol. 1993;31(3):461–71.PubMedCrossRefGoogle Scholar
  86. 86.
    Toet AE, et al. Reduced survival after isoprenaline/dopamine in d, l-propranolol intoxicated rats. Hum Exp Toxicol. 1996;15(2):120–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Appelbaum A, et al. Afterload reduction and cardiac output in patients after mitral valve surgery. Thorac Cardiovasc Surg. 1980;28(6):414–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Graudins A, Wong KK. Comparative hemodynamic effects of levosimendan alone and in conjunction with 4-aminopyridine or calcium chloride in a rodent model of severe verapamil poisoning. J Med Toxicol. 2010;6(2):85–93.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Magdalan J. New treatment methods in verapamil poisoning: experimental studies. Pol J Pharmacol. 2003;55(3):425–32.PubMedGoogle Scholar
  90. 90.
    St-Onge M, et al. Treatment for calcium channel blocker poisoning: a systematic review. Clin Toxicol (Phila). 2014;52(9):926–44.CrossRefGoogle Scholar
  91. 91.
    Magdalan J, et al. Successful treatment by 4-aminopyridine of three cases of severe verapamil poisoning. Przegl Lek. 2003;60(4):271–3.PubMedGoogle Scholar
  92. 92.
    King AM, et al. 4-aminopyridine toxicity: a case report and review of the literature. J Med Toxicol. 2012;8(3):314–21.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Agoston S, et al. Effective treatment of verapamil intoxication with 4-aminopyridine in the cat. J Clin Invest. 1984;73(5):1291–6.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Tuncok Y, et al. The effects of 4-aminopyridine and Bay K 8644 on verapamil-induced cardiovascular toxicity in anesthetized rats. J Toxicol Clin Toxicol. 1998;36(4):301–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Wood DM, et al. Metaraminol (Aramine) in the management of a significant amlodipine overdose. Hum Exp Toxicol. 2005;24(7):377–81.PubMedCrossRefGoogle Scholar
  96. 96.
    Kee VR. Hemodynamic pharmacology of intravenous vasopressors. Crit Care Nurse. 2003;23(4):79–82.PubMedGoogle Scholar
  97. 97.
    Unverzagt S, et al. Inotropic agents and vasodilator strategies for acute myocardial infarction complicated by cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev. 2014;1:CD009669.Google Scholar
  98. 98.
    Rognoni A, et al. Levosimendan: from basic science to clinical trials. Recent Pat Cardiovasc Drug Discov. 2011;6(1):9–15.PubMedCrossRefGoogle Scholar
  99. 99.
    Petersen JW, Felker GM. Inotropes in the management of acute heart failure. Crit Care Med. 2008;36(1 Suppl):S106–11.PubMedCrossRefGoogle Scholar
  100. 100.
    Landmesser U, Drexler H. Update on inotropic therapy in the management of acute heart failure. Curr Treat Options Cardiovasc Med. 2007;9(6):443–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Abraham WT, et al. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol. 2005;46(1):57–64.PubMedCrossRefGoogle Scholar
  102. 102.
    Yamani MH, et al. Comparison of dobutamine-based and milrinone-based therapy for advanced decompensated congestive heart failure: hemodynamic efficacy, clinical outcome, and economic impact. Am Heart J. 2001;142(6):998–1002.PubMedCrossRefGoogle Scholar
  103. 103.
    Burger AJ, et al. Effect of nesiritide (B-type natriuretic peptide) and dobutamine on ventricular arrhythmias in the treatment of patients with acutely decompensated congestive heart failure: the PRECEDENT study. Am Heart J. 2002;144(6):1102–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Salmenpera M, Eriksson H. Levosimendan in perioperative and critical care patients. Curr Opin Anaesthesiol. 2009;22(4):496–501.PubMedCrossRefGoogle Scholar
  105. 105.
    Landoni G, et al. Effects of levosimendan on mortality and hospitalization. A meta-analysis of randomized controlled studies. Crit Care Med. 2012;40(2):634–46.PubMedCrossRefGoogle Scholar
  106. 106.
    Morelli A, et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med. 2005;31(5):638–44.PubMedCrossRefGoogle Scholar
  107. 107.
    Coates J. BET 1: levosimendan in septic shock. Emerg Med J. 2014;31(6):508–10.PubMedGoogle Scholar
  108. 108.
    Fuhrmann JT, et al. Levosimendan is superior to enoximone in refractory cardiogenic shock complicating acute myocardial infarction. Crit Care Med. 2008;36(8):2257–66.PubMedCrossRefGoogle Scholar
  109. 109.
    De Santis V, et al. Use of levosimendan for cardiogenic shock in a patient with the apical ballooning syndrome. Ann Intern Med. 2008;149(5):365–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Cleland JG, et al. Clinical trials update from the American Heart Association: REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE, and PROACTIVE. Eur J Heart Fail. 2006;8(1):105–10.PubMedCrossRefGoogle Scholar
  111. 111.
    Varpula T, et al. Treatment of serious calcium channel blocker overdose with levosimendan, a calcium sensitizer. Anesth Analg. 2009;108(3):790–2.PubMedCrossRefGoogle Scholar
  112. 112.
    Osthoff M, et al. Levosimendan as treatment option in severe verapamil intoxication: a case report and review of the literature. Case Rep Med. 2010. pii: 546904. doi:10.1155/2010/546904.Google Scholar
  113. 113.
    Abraham MK, et al. Levosimendan does not improve survival time in a rat model of verapamil toxicity. J Med Toxicol. 2009;5(1):3–7.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Graudins A, Najafi J, Rur SM. Treatment of experimental verapamil poisoning with levosimendan utilizing a rodent model of drug toxicity. Clin Toxicol (Phila). 2008;46(1):50–6.CrossRefGoogle Scholar
  115. 115.
    Kalam Y, Graudins A. Levosimendan does not improve cardiac output or blood pressure in a rodent model of propranolol toxicity when administered using various dosing regimens. Int J Toxicol. 2012;31(2):166–74.PubMedCrossRefGoogle Scholar
  116. 116.
    Kalam Y, Graudins A. Levosimendan infusion improves cardiac output but not blood pressure in a rodent model of severe metoprolol toxicity. Hum Exp Toxicol. 2012;31(9):955–63.PubMedCrossRefGoogle Scholar
  117. 117.
    Dunser MW, Westphal M. Arginine vasopressin in vasodilatory shock: effects on metabolism and beyond. Curr Opin Anaesthesiol. 2008;21(2):122–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part 1–receptor physiology. Crit Care. 2003;7(6):427–34.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Russell JA, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.PubMedCrossRefGoogle Scholar
  120. 120.
    Ertmer C, Rehberg S, Westphal M. Vasopressin analogues in the treatment of shock states: potential pitfalls. Best Pract Res Clin Anaesthesiol. 2008;22(2):393–406.PubMedCrossRefGoogle Scholar
  121. 121.
    Patel BM, et al. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96(3):576–82.PubMedCrossRefGoogle Scholar
  122. 122.
    Dunser MW, Hasibeder WR, Wenzel V. Vasopressin in septic shock. N Engl J Med. 2008;358(25):2736; author reply 2737–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Luckner G, et al. Arginine vasopressin in 316 patients with advanced vasodilatory shock. Crit Care Med. 2005;33(11):2659–66.PubMedCrossRefGoogle Scholar
  124. 124.
    Luckner G, et al. Comparison of two dose regimens of arginine vasopressin in advanced vasodilatory shock. Crit Care Med. 2007;35(10):2280–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Serpa Neto A, et al. Vasopressin and terlipressin in adult vasodilatory shock: a systematic review and meta-analysis of nine randomized controlled trials. Crit Care. 2012;16(4):R154.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Barry JD, et al. Vasopressin treatment of verapamil toxicity in the porcine model. J Toxicol Clin Toxicol. 2003;41(5):694.Google Scholar
  127. 127.
    Sztajnkrycer MD, et al. Use of vasopressin in a canine model of severe verapamil poisoning: a preliminary descriptive study. Acad Emerg Med. 2004;11(12):1253–61.PubMedCrossRefGoogle Scholar
  128. 128.
    Goenen M, et al. Treatment of severe verapamil poisoning with combined amrinone-isoproterenol therapy. Am J Cardiol. 1986;58(11):1142–3.PubMedCrossRefGoogle Scholar
  129. 129.
    Leone M, et al. Terlipressin: a new therapeutic for calcium-channel blockers overdose. J Crit Care. 2005;20(1):114–5.PubMedCrossRefGoogle Scholar
  130. 130.
    McNamee JJ, Trainor D, Michalek P. Terlipressin for refractory hypotension following angiotensin-II receptor antagonist overdose. Anaesthesia. 2006;61(4):408–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Westphal M, et al. Arginine vasopressin compromises gut mucosal microcirculation in septic rats. Crit Care Med. 2004;32(1):194–200.PubMedCrossRefGoogle Scholar
  132. 132.
    Perner A, Jorgensen VL, Waldau T. Terlipressin increased the concentration of l-lactate in the rectal lumen in a patient with septic shock. Acta Anaesthesiol Scand. 2004;48(8):1054–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Filep J, Rosenkranz B. Mechanism of vasopressin-induced platelet aggregation. Thromb Res. 1987;45(1):7–15.PubMedCrossRefGoogle Scholar
  134. 134.
    Dunser MW, et al. Does arginine vasopressin influence the coagulation system in advanced vasodilatory shock with severe multiorgan dysfunction syndrome? Anesth Analg. 2004;99(1):201–6.PubMedCrossRefGoogle Scholar
  135. 135.
    Luckner G, et al. Cutaneous vascular reactivity and flow motion response to vasopressin in advanced vasodilatory shock and severe postoperative multiple organ dysfunction syndrome. Crit Care. 2006;10(2):R40.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Cave G, Harvey M. Intravenous lipid emulsion as antidote beyond local anesthetic toxicity: a systematic review. Acad Emerg Med. 2009;16(9):815–24.PubMedCrossRefGoogle Scholar
  137. 137.
    Neal JM, et al. American Society of Regional Anesthesia and Pain Medicine checklist for managing local anesthetic systemic toxicity: 2012 version. Reg Anesth Pain Med. 2012;37(1):16–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Vanden Hoek TL, et al. Part 12: cardiac arrest in special situations: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):S829–61.PubMedCrossRefGoogle Scholar
  139. 139.
    Cao D, et al. Intravenous lipid emulsion in the emergency department: a systematic review of recent literature. J Emerg Med. 2015;48(3):387–97.PubMedCrossRefGoogle Scholar
  140. 140.
    French D, et al. Partition constant and volume of distribution as predictors of clinical efficacy of lipid rescue for toxicological emergencies. Clin Toxicol (Phila). 2011;49(9):801–9.CrossRefGoogle Scholar
  141. 141.
    Weinberg GL, et al. Bupivacaine inhibits acylcarnitine exchange in cardiac mitochondria. Anesthesiology. 2000;92(2):523–8.PubMedCrossRefGoogle Scholar
  142. 142.
    Huang JM, Xian H, Bacaner M. Long-chain fatty acids activate calcium channels in ventricular myocytes. Proc Natl Acad Sci U S A. 1992;89(14):6452–6.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Lee HM, et al. What are the adverse effects associated with the combined use of intravenous lipid emulsion and extracorporeal membrane oxygenation in the poisoned patient? Clin Toxicol (Phila). 2015;53(3):145–50.CrossRefGoogle Scholar
  144. 144.
    Downes M, Page C, Isbister G. Response to "use of lipid emulsion in the resuscitation of a patient with prolonged cardiovascular collapse after overdose of bupropion and lamotrigine". Ann Emerg Med. 2008;51(6):794–5; author reply 795.PubMedCrossRefGoogle Scholar
  145. 145.
    Shepherd G, Klein-Schwartz W. High-dose insulin therapy for calcium-channel blocker overdose. Ann Pharmacother. 2005;39(5):923–30.PubMedCrossRefGoogle Scholar
  146. 146.
    Holger JS, Engebretsen KM, Marini JJ. High dose insulin in toxic cardiogenic shock. Clin Toxicol (Phila). 2009;47(4):303–7.CrossRefGoogle Scholar
  147. 147.
    Greene SL, et al. Relative safety of hyperinsulinaemia/euglycaemia therapy in the management of calcium channel blocker overdose: a prospective observational study. Intensive Care Med. 2007;33(11):2019–24.PubMedCrossRefGoogle Scholar
  148. 148.
    Holger JS, et al. High-dose insulin: a consecutive case series in toxin-induced cardiogenic shock. Clin Toxicol (Phila). 2011;49(7):653–8.CrossRefGoogle Scholar
  149. 149.
    Stellpflug SJ, et al. Cardiotoxic overdose treated with intravenous fat emulsion and high-dose insulin in the setting of hypertrophic cardiomyopathy. J Med Toxicol. 2011;7(2):151–3.PubMedCrossRefGoogle Scholar
  150. 150.
    Clerk LH, et al. The vasodilatory actions of insulin on resistance and terminal arterioles and their impact on muscle glucose uptake. Diabetes Metab Res Rev. 2004;20(1):3–12.PubMedCrossRefGoogle Scholar
  151. 151.
    Vincent MA, et al. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004;53(6):1418–23.PubMedCrossRefGoogle Scholar
  152. 152.
    Kline JA, et al. Insulin is a superior antidote for cardiovascular toxicity induced by verapamil in the anesthetized canine. J Pharmacol Exp Ther. 1993;267(2):744–50.PubMedGoogle Scholar
  153. 153.
    Seger D. Premises, premises (poisoning-induced cardiogenic shock and high-dose insulin). Clin Toxicol (Phila). 2013;51(4):199–200.CrossRefGoogle Scholar
  154. 154.
    Levine M, et al. Assessment of hyperglycemia after calcium channel blocker overdoses involving diltiazem or verapamil. Crit Care Med. 2007;35(9):2071–5.PubMedCrossRefGoogle Scholar
  155. 155.
    Coulibaly B, et al. Strong gametocytocidal effect of methylene blue-based combination therapy against falciparum malaria: a randomised controlled trial. PLoS One. 2009;4(5):e5318.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Jang DH, Nelson LS, Hoffman RS. Methylene blue in the treatment of refractory shock from an amlodipine overdose. Ann Emerg Med. 2011;58(6):565–7.PubMedCrossRefGoogle Scholar
  157. 157.
    Paciullo CA, et al. Methylene blue for the treatment of septic shock. Pharmacotherapy. 2010;30(7):702–15.PubMedCrossRefGoogle Scholar
  158. 158.
    Evora PR. Should methylene blue be the drug of choice to treat vasoplegias caused by cardiopulmonary bypass and anaphylactic shock? J Thorac Cardiovasc Surg. 2000;119(3):632–4.PubMedCrossRefGoogle Scholar
  159. 159.
    Clifton 2nd J, Leikin JB. Methylene blue. Am J Ther. 2003;10(4):289–91.PubMedCrossRefGoogle Scholar
  160. 160.
    Lo JC, Darracq MA, Clark RF. A review of methylene blue treatment for cardiovascular collapse. J Emerg Med. 2014;46(5):670–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Evora PR, Viaro F. The guanylyl cyclase inhibition by MB as vasoplegic circulatory shock therapeutical target. Curr Drug Targets. 2006;7(9):1195–204.PubMedCrossRefGoogle Scholar
  162. 162.
    Park BK, et al. The effects of methylene blue on hemodynamic parameters and cytokine levels in refractory septic shock. Korean J Intern Med. 2005;20(2):123–8.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Preiser JC, et al. Methylene blue administration in septic shock: a clinical trial. Crit Care Med. 1995;23(2):259–64.PubMedCrossRefGoogle Scholar
  164. 164.
    Kirov MY, et al. Infusion of methylene blue in human septic shock: a pilot, randomized, controlled study. Crit Care Med. 2001;29(10):1860–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Memis D, et al. The influence of methylene blue infusion on cytokine levels during severe sepsis. Anaesth Intensive Care. 2002;30(6):755–62.PubMedGoogle Scholar
  166. 166.
    Shanmugam G, et al. Serotonin syndrome following cardiac surgery. Interact Cardiovasc Thorac Surg. 2008;7(4):656–7.PubMedCrossRefGoogle Scholar
  167. 167.
    Gachot B, et al. Short-term effects of methylene blue on hemodynamics and gas exchange in humans with septic shock. Intensive Care Med. 1995;21(12):1027–31.PubMedCrossRefGoogle Scholar
  168. 168.
    Fischer M, Hossmann KA. No-reflow after cardiac arrest. Intensive Care Med. 1995;21(2):132–41.PubMedCrossRefGoogle Scholar
  169. 169.
    Axelsson C, et al. Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of out-of-hospital cardiac arrest-a pilot study. Resuscitation. 2006;71(1):47–55.PubMedCrossRefGoogle Scholar
  170. 170.
    Hightower D, et al. Decay in quality of closed-chest compressions over time. Ann Emerg Med. 1995;26(3):300–3.PubMedCrossRefGoogle Scholar
  171. 171.
    Rubertsson S, et al. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the LINC randomized trial. JAMA. 2014;311(1):53–61.PubMedCrossRefGoogle Scholar
  172. 172.
    Wik L, et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation. 2014;85(6):741–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Brooks SC, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2011;(1):CD007260.Google Scholar
  174. 174.
    Fischer M, et al. Mechanical resuscitation assist devices. Anaesthesist. 2014;63(3):186–97.PubMedCrossRefGoogle Scholar
  175. 175.
    Agostinucci JM, et al. Out-of-hospital use of an automated chest compression device: facilitating access to extracorporeal life support or non-heart-beating organ procurement. Am J Emerg Med. 2011;29(9):1169–72.PubMedCrossRefGoogle Scholar
  176. 176.
    Deakin CD, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation. 2010;81(10):1305–52.PubMedCrossRefGoogle Scholar
  177. 177.
    Piacentini A, et al. Successful prolonged mechanical CPR in a severely poisoned hypothermic patient: a case report. Case Rep Emerg Med. 2012:381798. doi:10.1155/2012/381798.Google Scholar
  178. 178.
    Gillart T, et al. Resuscitation after three hours of cardiac arrest with severe hypothermia following a toxic coma. Ann Fr Anesth Reanim. 2008;27(6):510–3.PubMedCrossRefGoogle Scholar
  179. 179.
    Bednarczyk JM, et al. Resuscitative extracorporeal membrane oxygenation for in hospital cardiac arrest: a Canadian observational experience. Resuscitation. 2014;85(12):1713–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Thiagarajan RR, et al. Extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in adults. Ann Thorac Surg. 2009;87(3):778–85.PubMedCrossRefGoogle Scholar
  181. 181.
    Masson R, et al. A comparison of survival with and without extracorporeal life support treatment for severe poisoning due to drug intoxication. Resuscitation. 2012;83(11):1413–7.PubMedCrossRefGoogle Scholar
  182. 182.
    Johnson NJ, et al. A review of emergency cardiopulmonary bypass for severe poisoning by cardiotoxic drugs. J Med Toxicol. 2013;9(1):54–60.PubMedCrossRefGoogle Scholar
  183. 183.
    Daubin C, et al. Extracorporeal life support in severe drug intoxication: a retrospective cohort study of seventeen cases. Crit Care. 2009;13(4):R138.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Massetti M, et al. Back from irreversibility: extracorporeal life support for prolonged cardiac arrest. Ann Thorac Surg. 2005;79(1):178–83; discussion 183–4.PubMedCrossRefGoogle Scholar
  185. 185.
    ECC Committee, Subcommittees and Task Forces of the American Heart Association. American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2005;112(24 Suppl):IV1–203.Google Scholar
  186. 186.
    Orr DA, Bramble MG. Tricyclic antidepressant poisoning and prolonged external cardiac massage during asystole. Br Med J (Clin Res Ed). 1981;283(6299):1107–8.CrossRefGoogle Scholar
  187. 187.
    Holzer M, et al. Successful resuscitation of a verapamil-intoxicated patient with percutaneous cardiopulmonary bypass. Crit Care Med. 1999;27(12):2818–23.PubMedCrossRefGoogle Scholar
  188. 188.
    Maclaren G, et al. Treatment of polypharmacy overdose with multimodality extracorporeal life support. Anaesth Intensive Care. 2005;33(1):120–3.PubMedGoogle Scholar
  189. 189.
    Purkayastha S, et al. Treatment of poisoning induced cardiac impairment using cardiopulmonary bypass: a review. Emerg Med J. 2006;23(4):246–50.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Megarbane B, et al. Emergency feasibility in medical intensive care unit of extracorporeal life support for refractory cardiac arrest. Intensive Care Med. 2007;33(5):758–64.PubMedCrossRefGoogle Scholar
  191. 191.
    Freedman MD, Gal J, Freed CR. Extracorporeal pump assistance – novel treatment for acute lidocaine poisoning. Eur J Clin Pharmacol. 1982;22(2):129–35.PubMedCrossRefGoogle Scholar
  192. 192.
    Martin TG, et al. Extracorporeal life support versus thumper after lethal desipramine overdose. Vet Hum Toxicol. 1990;32(4):349.Google Scholar
  193. 193.
    Larkin GL, Graeber GM, Hollingsed MJ. Experimental amitriptyline poisoning: treatment of severe cardiovascular toxicity with cardiopulmonary bypass. Ann Emerg Med. 1994;23(3):480–6.PubMedCrossRefGoogle Scholar
  194. 194.
    Thiele H, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96.PubMedCrossRefGoogle Scholar
  195. 195.
    Shub C, et al. The management of acute quinidine intoxication. Chest. 1978;73(2):173–8.PubMedCrossRefGoogle Scholar
  196. 196.
    Lane AS, Woodward AC, Goldman MR. Massive propranolol overdose poorly responsive to pharmacologic therapy: use of the intra-aortic balloon pump. Ann Emerg Med. 1987;16(12):1381–3.PubMedCrossRefGoogle Scholar
  197. 197.
    Gillard P, Laurent M. Dextropropoxyphene-induced cardiogenic shock: treatment with intra-aortic balloon pump and milrinone. Intensive Care Med. 1999;25(3):335.PubMedCrossRefGoogle Scholar
  198. 198.
    Freedberg RS, et al. Cardiogenic shock due to antihistamine overdose. Reversal with intra-aortic balloon counterpulsation. JAMA. 1987;257(5):660–1.PubMedCrossRefGoogle Scholar
  199. 199.
    Frierson J, et al. Refractory cardiogenic shock and complete heart block after unsuspected verapamil-SR and atenolol overdose. Clin Cardiol. 1991;14(11):933–5.PubMedCrossRefGoogle Scholar
  200. 200.
    Kamijo Y, et al. A case of serious organophosphate poisoning treated by percutaneus cardiopulmonary support. Vet Hum Toxicol. 1999;41(5):326–8.PubMedGoogle Scholar
  201. 201.
    Baud FJ, et al. Clinical review: aggressive management and extracorporeal support for drug-induced cardiotoxicity. Crit Care. 2007;11(2):207.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Durward A, et al. Massive diltiazem overdose treated with extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2003;4(3):372–6.PubMedCrossRefGoogle Scholar
  203. 203.
    Fitzpatrick AJ, et al. Aconite poisoning managed with a ventricular assist device. Anaesth Intensive Care. 1994;22(6):714–7.PubMedGoogle Scholar
  204. 204.
    Hendren WG, Schieber RS, Garrettson LK. Extracorporeal bypass for the treatment of verapamil poisoning. Ann Emerg Med. 1989;18(9):984–7.PubMedCrossRefGoogle Scholar
  205. 205.
    Babatasi G, et al. Severe intoxication with cardiotoxic drugs: value of emergency percutaneous cardiocirculatory assistance. Arch Mal Coeur Vaiss. 2001;94(12):1386–92.PubMedGoogle Scholar
  206. 206.
    Massetti M, et al. Cardiopulmonary bypass and severe drug intoxication. J Thorac Cardiovasc Surg. 2000;120(2):424–5.PubMedCrossRefGoogle Scholar
  207. 207.
    Peek GJ, et al. Randomised controlled trial and parallel economic evaluation of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR). Health Technol Assess. 2010;14(35):1–46.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Clinical ToxicologyKlinikum rechts der Isar – Technical University of MunichMunichGermany

Personalised recommendations