Advertisement

Post-Resuscitation Management of the Poisoned Patient

  • Michael Lynch
  • Jon C. Rittenberger
Reference work entry

Abstract

The care of patients by protocol following cardiac arrest has been associated with significant improvement in survival to hospital discharge in recent years, with studies citing >50% survival in patients suffering pulseless ventricular tachycardia or ventricular fibrillation cardiac arrests [1–3]. Survival improvements have been suggested but are less clear following cardiac arrest with an initial rhythm of asystole or pulseless electrical activity [4]. Management of cardiac arrest as a result of poisoning as well as subsequent postarrest care present unique challenges to providers. Concepts applied to postarrest care in all patients, including aggressive temperature management, maintenance of end-organ perfusion, oxygenation and ventilation, and correction of metabolic derangements, are likely to be transferrable to a poisoned patient population. However, the etiology and necessary interventions required to manage the arrest and postarrest sequelae vary greatly among poisoned patients and are distinct from patients suffering cardiac arrest as a result of underlying cardiopulmonary disease. At the same time, underlying disease must continue to be considered as a contributor and complicating factor of acute poisoning. Depending upon the inciting agent, management may include specific antidotal therapy, serum and/or urinary alkalinization, and/or rescue therapy such as extracorporeal membrane oxygenation (ECMO) in addition to standard advanced cardiac life support. Treatment modalities geared toward specific agents will be addressed in corresponding chapters.

Keywords

Cardiac arrest Extracorporeal membrane oxygenation Hypoxemia Carbon monoxide Cardiac output Reperfusion injury Mean arterial pressure Vasopressors Epinephrine Phenylephrine Norepinephrine Dopamine Insulin Intravenous lipid emulsion Cardiopulmonary bypass Extracorporeal life support Therapeutic hypothermia Targeted temperature management Seizures Electroencephalogram 

References

  1. 1.
    Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge JF, Hingston CD, Juffermans NP, Koopmans M, Køber L, Langørgen J, Lilja G, Møller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H, TTM Trial Investigators. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369:2197–206.CrossRefPubMedGoogle Scholar
  2. 2.
    Daya MR, Schmicker RH, Zive DM, Rea TD, Nichol G, Buick J, Brooks S, Christenson J, MacPhee R, Craig A, Rittenberger JC, Davis DP, May S, Wigginton J, Wang H. Out-of-hospital cardiac arrest survival improving over time: results from the Resuscitation Outcomes Consortium. Resuscitation. 2015;91:108–15.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Girotray S, Nallamothu BK, Spertus JA, et al. Trends in survival after in-hospital cardiac arrest. N Engl J Med. 2012;367:1912–20.CrossRefGoogle Scholar
  4. 4.
    Polderman KH. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet. 2008;371:1955–69.CrossRefPubMedGoogle Scholar
  5. 5.
    Elmer J, Lynch MJ, Kristan J, Morgan P, Gerstel S, Callaway DW, Rittenberger JC. Recreational drug overdose-related cardiac arrests: break on through to the other side. Resuscitation. 2015;89:177–81.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Salcido D, Koller A, Torres C, Orkin A, Schmicker R, Morrison L, Nichol G, Stephens S, Menegazzi J, Resuscitation Outcomes Consortium Investigators. Regional incidence and outcome of out of hospital cardiac arrest associated with overdose. Circulation. 2014;130:A236. Abstract 236.Google Scholar
  7. 7.
    Katz A, Grossestreuer A, Gaieski D, Abella B, Kumar V, Perrone J. Outcomes of patients resuscitated from cardiac arrest in the setting of drug overdose. Resuscitation. 2015;94:23–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Rittenberger JC, Tisherman SA, Holm MB, Guyette FX, Callaway CW. An early, novel illness severity score to predict outcome after cardiac arrest. Resuscitation. 2011;82(11):1399–404.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Coppler PJ, Ahmed S, Sabedra A, Doshi A, Callaway CW, Rittenberger JC, Dezfulian C. 534: validation of the Pittsburgh post-arrest illness severity score. Crit Care Med. 2012;40:1–328.CrossRefGoogle Scholar
  10. 10.
    Kennedy M, Kiloh N. Drugs and brain death. Drug Saf. 1996;14(3):171–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Hollenbeck RD, McPherson JA, Mooney MR, Unger BT, Patel NC, McMullan PW, Hsu CH, Seder DB, Kern KB. Early cardiac catheterization is associated with improved survival in comatose survivors of cardiac arrest without STEMI. Resuscitation. 2014;85(1):88–95.CrossRefPubMedGoogle Scholar
  12. 12.
    Reynolds JC, Rittenberger JC, Toma C, Callaway CW. Risk-adjusted outcome prediction with initial post-cardiac arrest illness severity for cardiac arrest survivors being considered for early invasive strategy. Resuscitation. 2014;85(9):1232–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Donnino MW, Rittenberger JC, Gaieski D, et al. The development and implementation of cardiac arrest centers. Resuscitation. 2011;82:974–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang CH, Chang WT, Huang CH, et al. The effect of hyperoxia on survival following adult cardiac arrest: a systematic review and meta-analysis of observational studies. Resuscitation. 2014;85:1142.CrossRefPubMedGoogle Scholar
  15. 15.
    Buckley NA, Juurlink DN, Isbister G, Bennett MH, Lavonas EJ. Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev. 2011;13(4):CD002041.Google Scholar
  16. 16.
    Gaieski DF, Band RA, Abella BS, et al. Early goal-directed hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation. 2009;80:418.CrossRefPubMedGoogle Scholar
  17. 17.
    Bisschops LL, Hoedemaekers CW, Simons KS, van der Hoeven JG. Preserved metabolic coupling and cerebrovascular reactivity during mild hypothermia after cardiac arrest. Crit Care Med. 2010;38:1542.CrossRefPubMedGoogle Scholar
  18. 18.
    Buunk G, van der Hoeven JG, Meinders AE. Cerebrovascular reactivity in comatose patients resuscitated from a cardiac arrest. Stroke. 1997;28:1569.CrossRefPubMedGoogle Scholar
  19. 19.
    Aufderheide TP, Lurie KG. Death by hyperventilation: a common and life-threatening problem during cardiopulmonary resuscitation. Crit Care Med. 2004;32:S345.CrossRefPubMedGoogle Scholar
  20. 20.
    Peberdy MA, Callaway CW, Neumar RW, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S768.CrossRefPubMedGoogle Scholar
  21. 21.
    Mullner M, Sterz F, Binder M, et al. Arterial blood pressure after human cardiac arrest and neurologic recovery. Stroke. 1996;27(1):59–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Neumar RW, Nolan JP, Adrie C, et al. Post-cardiac arrest syndrome. Circulation. 2008;118(23):2452–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Nishizawa H, Kudoh I. Cerebral autoregulation is impaired in patients resuscitated after cardiac arrest. Acta Anaesthesiol Scand. 1996;40(9):1149–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Sundgreen C, Larsen FS, Herzog TM, et al. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke. 2001;32(1):128–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Schaafsma A, de Jong BM, Bams JL, et al. Cerebral perfusion and metabolism in resuscitated patients with severe post-hypoxic encephalopathy. J Neurol Sci. 2003;210(1):2330.Google Scholar
  26. 26.
    Bjork RJ, Snyder BD, Campion BC, Loewenson RB. Medical complications of cardiopulmonary arrest. Arch Intern Med. 1982;142:500.CrossRefPubMedGoogle Scholar
  27. 27.
    Havel C, Arrich J, Losert H, Gamper G, Mullner M, Herkner H. Vasopressors for hypotensive shock. Cochrane Database Syst Rev. 2011;(5):CD003709.Google Scholar
  28. 28.
    Jentzer JC, Coons JC, Link CB, Schmidhofer M. Pharmacotherapy update on the use of vasopressors and inotropes in the intensive care unit. J Cardiovasc Pharmacol Ther. 2015;20(3):249–60.CrossRefPubMedGoogle Scholar
  29. 29.
    Levine M, Curry SC, Padilla-Jones A, Ruha AM. Critical care management of verapamil and diltiazem overdose with a focus on vasopressors: a 25-year experience at a single center. Ann Emerg Med. 2013;62(3):252–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Engebretsen KM, Kaczmarek KM, Morgan J, Holder JS. High-dose insulin therapy in beta-blocker and calcium channel-blocker poisoning. Clin Toxicol. 2011;49(4):277–83.CrossRefGoogle Scholar
  31. 31.
    St. Onge M, Dube PA, Gosselin S, Guimont C, Godwin J, Achambault PM, Chauny JM, Frenette AJ, Darveau M, Le Sage N, Poitras J, Provencher J, Juurlink DN, Blais R. Treatment for calcium channel blocker poisoning: a systematic review. Clin Toxicol. 2014;52(9):926–44.CrossRefGoogle Scholar
  32. 32.
    Kline JA, Leonova E, Raymond RM. Beneficial myocardial metabolic effects of insulin during verapamil toxicity in the anesthetized canine. Crit Care Med. 1995;23(7):1251–63.CrossRefPubMedGoogle Scholar
  33. 33.
    Skrifvars MB, Pettilä V, Rosenberg PH, Castrén M. A multiple logistic regression analysis of in-hospital factors related to survival at six months in patients resuscitated from out-of-hospital ventricular fibrillation. Resuscitation. 2003;59:319.CrossRefPubMedGoogle Scholar
  34. 34.
    King A, Menke NB, Abesamis MG. Volume overload from Institution of high dose insulin therapy for calcium channel blocker toxicity. Clin Toxicol. 2013;51(7):575–724, Abstract #91.CrossRefGoogle Scholar
  35. 35.
    Laskey D, Vadlapatla R, Hart K. 16 units/mL is a stable and practical solution for administration of high dose insulin for treatment of beta blocker and calcium channel blocker toxicity. Abstract #23 2015 Annual meeting of the North American Congress of Clinical Toxicology (NACCT). Clin Toxicol. 53(7):639–777.Google Scholar
  36. 36.
    Corman SL, Skledar SJ. Use of lipid emulsion to reverse local anesthetic-induced toxicity. Ann Pharmacother. 2007;41(11):1873–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Ozcan MS, Weinberg G. Intravenous lipid emulsion for the treatment of drug toxicity. J Intensive Care Med. 2014;29(2):59–70.CrossRefPubMedGoogle Scholar
  38. 38.
    Neal JM, Mulroy MF, Weinberg GL, American Society of Regional Anesthesia and Pain Medicine. American Society of Regional Anesthesia and Pain Medicine checklist for managing local anesthetic systemic toxicity: 2012 version. Reg Anesth Pain Med. 2012;37:16–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Cao D, Heard K, Foran M, Koyfman A. Intravenous lipid emulsion in the emergency department: a systematic review of recent literature. J Emerg Med. 2015;48(3):387–97.CrossRefPubMedGoogle Scholar
  40. 40.
    Levine M, Skolnik AB, Ruha AM, Bosak A, Menke N, Pizon AF. Complications following antidotal use of intravenous lipid emulsion therapy. J Med Toxicol. 2014;10(1):10–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Geib AJ, Liebelt E, Manini AF, On Behalf of the Toxicology Investigators’ Consortium (ToxIC). Clinical experience with intravenous lipid emulsion for drug-induced cardiovascular collapse. J Med Toxicol. 2012;8:10–4.CrossRefPubMedGoogle Scholar
  42. 42.
    Rodriguez B, Wilhelm A, Kokko KE. Lipid emulsion use precluding renal replacement therapy. J Emerg Med. 2014;47(6):635–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Lee HM, Archer JR, Dargan PI, Wood DM. What are the adverse effects associated with the combined use of intravenous lipid emulsion and extracorporeal membrane oxygenation in the poisoned patient? Clin Toxicol. 2015;53(3):145–50.CrossRefGoogle Scholar
  44. 44.
    Damitz R, Chauhan A. Parental emulsions and liposomes to treat drug overdose. Adv Drug Deliv Rev. 2015. pii: S0169-409X(15)00116-7.Google Scholar
  45. 45.
    Extracorporeal Life Support Organization(ELSO) Guidelines. http://www.elso.org/resources/Guidelines.aspx. Accessed 22 July 2015.
  46. 46.
    Pellegrino V, Hockings LE, Davies A. Veno-arterial extracorporeal membrane oxygenation for adult cardiovascular failure. Curr Opin Crit Care. 2014;20(5):484–92.CrossRefPubMedGoogle Scholar
  47. 47.
    Cave DM, Gazmuri RJ, Otto CW, Nadkarni VM, Cheng A, Brooks SC, Daya M, Sutton RM, Branson R, Hazinski MF. Part 7: CPR techniques and devices: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18 Suppl 3):S720–8.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    de Lange DW, Sikma MA, Meulenbelt J. Extracorporeal membrane oxygenation in the treatment of poisoned patients. Clin Toxicol. 2013;51(5):385–93.CrossRefGoogle Scholar
  49. 49.
    Masson R, Colas V, Parienti JJ, Lehoux P, Massetti M, Charbonneau P, Saulnier F, Daubin C. A comparison of survival with and without extracorporeal life support treatment for severe poisoning due to drug intoxication. Resuscitation. 2012;83(11):1413–7.CrossRefPubMedGoogle Scholar
  50. 50.
    St-Onge M, Fan E, Megarbane B, Hancock-Howard R, Coyte PC. Venoarterial extracorporeal membrane oxygenation for patients in shock or cardiac arrest secondary to cardiotoxicant poisoning: a cost-effectiveness analysis. J Crit Care. 2015;30(2):437.e7–14.CrossRefPubMedGoogle Scholar
  51. 51.
    HACA. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:1756; Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.Google Scholar
  52. 52.
    Arrich J, Holzer M, Havel C, et al. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev. 2012;9:CD004128.Google Scholar
  53. 53.
    Rittenberger JC, Callaway CW. Temperature management and modern post-cardiac arrest care. N Engl J Med. 2013;369(23):2262–3.CrossRefPubMedGoogle Scholar
  54. 54.
    Polderman KH, Varon J. We should not abandon therapeutic cooling after cardiac arrest. Crit Care. 2014;18:130.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lopez-de-Sa E, Rey JR, Armada E, Salinas P, Viana-Tejedor A, Espinosa-Garcia S, Martinez-Moreno M, Corral E, Lopez-Sendon J. Hypothermia in comatose survivors from out-of-hospital cardiac arrest: pilot trial comparing 2 levels of target temperature. Circulation. 2012;126:2826–33.CrossRefPubMedGoogle Scholar
  56. 56.
    Gebhardt K, Guyette FX, Doshi AA, et al. Prevalence and effect of fever on outcome following resuscitation from cardiac arrest. Resuscitation. 2013;84:1062.CrossRefPubMedGoogle Scholar
  57. 57.
    Robinson J, Charlton J, Seal R, et al. Oesophageal, rectal, axillary, tympanic and pulmonary artery temperatures during cardiac surgery. Can J Anaesth. 1998;45:317.CrossRefPubMedGoogle Scholar
  58. 58.
    Metter RB, Rittenberger JC, Guyette FX, Callaway CW. Association between a quantitative CT scan measure of brain edema and outcome after cardiac arrest. Resuscitation. 2011;82:1180.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Seule MA, Muroi C, Mink S, et al. Therapeutic hypothermia in patients with aneurysmal subarachnoid hemorrhage, refractory intracranial hypertension, or cerebral vasospasm. Neurosurgery. 2009;64:86.CrossRefPubMedGoogle Scholar
  60. 60.
    Sadaka F, Veremakis C. Therapeutic hypothermia for the management of intracranial hypertension in severe traumatic brain injury: a systematic review. Brain Inj. 2012;26:899.CrossRefPubMedGoogle Scholar
  61. 61.
    Stravitz RT, Larsen FS. Therapeutic hypothermia for acute liver failure. Crit Care Med. 2009;37:S258.CrossRefPubMedGoogle Scholar
  62. 62.
    Schwab S, Schwarz S, Spranger M, et al. Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction. Stroke. 1998;29:2461.CrossRefPubMedGoogle Scholar
  63. 63.
    Corry JJ, Dhar R, Murphy T, Diringer MN. Hypothermia for refractory status epilepticus. Neurocrit Care. 2008;9:189.CrossRefPubMedGoogle Scholar
  64. 64.
    Kim F, Nichol G, Maynard C, et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA. 2014;311:45.CrossRefPubMedGoogle Scholar
  65. 65.
    Al-Senani FM, Graffagnino C, Grotta JC, et al. A prospective, multicenter pilot study to evaluate the feasibility and safety of using the CoolGard System and Icy catheter following cardiac arrest. Resuscitation. 2004;62:143.CrossRefPubMedGoogle Scholar
  66. 66.
    Tømte Ø, Drægni T, Mangschau A, et al. A comparison of intravascular and surface cooling techniques in comatose cardiac arrest survivors. Crit Care Med. 2011;39:443.CrossRefPubMedGoogle Scholar
  67. 67.
    Badjatia N, Strongilis E, Gordon E, et al. Metabolic impact of shivering during therapeutic temperature modulation: the bedside shivering assessment scale. Stroke. 2008;39:3242.CrossRefPubMedGoogle Scholar
  68. 68.
    Callaway CW, Elmer J, Guyette FX, Molyneaux BJ, Anderson KB, Empey PE, Gerstel SJ, Holquis K, Repine MJ, Rittenberger JC. Dexmedetomidine reduces shivering during mild hypothermia in waking subjects. PLoS One. 2015;10(8):e0129709.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Rittenberger JC, Polderman K. Post-arrest management. Emergency neurological life support course. http://protocols.enlscourse.org
  70. 70.
    Pedavally S, Fugate JE, Rabinstein AA. Serotonin syndrome in the intensive care unit: clinical presentations and precipitating medications. Neurocrit Care. 2014;21(1):108–13.CrossRefPubMedGoogle Scholar
  71. 71.
    Gillman PK. Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth. 2005;95(4):434–41.CrossRefPubMedGoogle Scholar
  72. 72.
    Nielsen N, Sunde K, Hovdenes J, et al. Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med. 2011;39:57.CrossRefPubMedGoogle Scholar
  73. 73.
    Rittenberger JC, Popescu A, Guyette FX, Callaway CW. Frequency and timing of nonconvulsive status epilepticus in comatose post-cardiac arrest subjects treated with hypothermia. Neurocrit Care. 2012;16:114–22.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Claassen J, Hirsch LJ, Emerson RG, Mayer SA. Treatment of refractory status epilepticus with pentobarbital, propofol, or midazolam: a systematic review. Epilepsia. 2002;43:146.CrossRefPubMedGoogle Scholar
  75. 75.
    Agarwal P, Kumar N, Chandra R, et al. Randomized study of intravenous valproate and phenytoin in status epilepticus. Seizure. 2007;16:527.CrossRefPubMedGoogle Scholar
  76. 76.
    Sharma AN, Hoffman RJ. Toxin-related seizures. Emerg Med Clin North Am. 2011;29(1):125–39.CrossRefPubMedGoogle Scholar
  77. 77.
    Hostler D, Zhou J, Tortorici MA, Bies RR, Rittenberger JC, Empey PE, Kochanek PM, Callaway CW, Poloyac SM. Mild hypothermia alters midazolam pharmacokinetics in normal healthy volunteers. Drug Metab Dispos. 2010;38(5):781–8.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Zhou J, Poloyac SM. The effect of therapeutic hypothermia on drug metabolism and drug response: cellular mechanisms to organ function. Expert Opin Drug Metab Toxicol. 2011;7(7):803–16.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Karnatovskaia LV, Wartenberg KE, Freeman WD. Therapeutic hypothermia for neuroprotection. Neurohospitalist. 2014;4(3):153–63.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Cueni-Villoz N, Devigili A, Delodder F, et al. Increased blood glucose variability during therapeutic hypothermia and outcome after cardiac arrest. Crit Care Med. 2011;39:2225.CrossRefPubMedGoogle Scholar
  81. 81.
    Sitzwohl C, Kettner SC, Reinprecht A, et al. The arterial to end-tidal carbon dioxide gradient increases with uncorrected but not with temperature-corrected PaCO2 determination during mild to moderate hypothermia. Anesth Analg. 1998;86:1131–6.CrossRefPubMedGoogle Scholar
  82. 82.
    Rittenberger JC, Guyette FX, Tisherman SA, et al. Outcomes of a hospital-wide plan to improve care of comatose survivors of cardiac arrest. Resuscitation. 2008;79:198.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Suehiro E, Ueda Y, Wei EP, et al. Posttraumatic hypothermia followed by slow rewarming protects the cerebral microcirculation. J Neurotrauma. 2003;20:381.CrossRefPubMedGoogle Scholar
  84. 84.
    Amorim E, Rittenberger JC, Baldwin ME, Callaway CW, Popescu A. Malignant EEG patterns in cardiac arrest patients treated with temperature management who survive to hospital discharge. Resuscitation. 2015;90:127–32.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kamps MJ, Horn J, Oddo M, Fugate JE, Storm C, Cronberg T, Wijman CA, Wu O, Binnekade JM, Hoedemaekers CW. Prognostication of neurologic outcome in cardiac arrest patients after mild therapeutic hypothermia: a meta-analysis of the current literature. Intensive Care Med. 2013;39(10):1671–82.CrossRefPubMedGoogle Scholar
  86. 86.
    Meinitzer A, Marz W, Mangge H, Halwachs-Baumann G. More reliable brain death diagnosis with chromatographic analysis of midazolam, diazepam, thiopentone, and active metabolites. J Anal Toxicol. 2006;30(3):196–201.CrossRefPubMedGoogle Scholar
  87. 87.
    Corbett D, Larsen J, Langdon KD. Diazepam delays the death of hippocampal CA1 neurons following global ischemia. Exp Neurol. 2008;214(2):309–14.CrossRefPubMedGoogle Scholar
  88. 88.
    Kuklin V. Survival rate in patients after sudden cardiac arrest at the university hospital of northern Norway treated with or without opioids: a retrospective evaluation. Saudi J Anaesth. 2013;7(3):310–4.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of PittsburghPittsburghUSA

Personalised recommendations