Skip to main content

Methotrexate

  • Reference work entry
  • First Online:
Critical Care Toxicology
  • 748 Accesses

Abstract

Methotrexate (amethopterin, 4-amino-10-methyl-pteroglutamic acid) has been a widely used folate antagonist, initially as an antineoplastic agent, and later on as an anti-inflammatory and immunomodulation agent. Aminopterin was the first folate antagonist successfully used for induction of temporary remission in acute leukemia in children [1]. Methotrexate, a safer related agent of aminopterin, replaced it as an antileukemic drug [2]. Since then, methotrexate has been increasingly used as a monotherapy and in combination with other antineoplastic agents for a variety of hematologic and non-hematologic malignancies in children and adults. Its anti-inflammatory and immunomodulation properties were found to be also efficacious in a broad range of dermatologic, rheumatologic, and other disease states (e.g., ectopic pregnancy, graft vs. host disease). The main clinical applications of methotrexate are shown in Table 1 [3].

The chapter of the first edition was written by Mary Beth Hines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 338.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238(23):787–93. doi:10.1056/NEJM194806032382301.

    Article  CAS  PubMed  Google Scholar 

  2. Sacks MS, Bradford GT, Schoenach EB. The response of acute leukemia to the administration of the folic acid antagonists, aminopterin and a-methopterin; report of 14 cases. Ann Intern Med. 1950;32(1):80–115. illust.

    Article  CAS  PubMed  Google Scholar 

  3. Methotrexate. In: Drugdex, MICROMEDEX(R) Healthcare series, Vol. 167.1. Greenwood Village: Truven Health Analytics Inc; 2015.

    Google Scholar 

  4. Von Hoff DD, Penta JS, Helman LJ, Slavik M. Incidence of drug-related deaths secondary to high-dose methotrexate and citrovorum factor administration. Cancer Treat Rep. 1977;61(4):745–8. http://www.ncbi.nlm.nih.gov/pubmed/301783. Accessed 21 Sept 2015.

  5. Woods RL, Fox RM, Tattersall MH. Methotrexate treatment of squamous-cell head and neck cancers: dose–response evaluation. Br Med J (Clin Res Ed). 1981;282(6264):600–2. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1504451&tool=pmcentrez&rendertype=abstract. Accessed 21 Sept 2015.

  6. Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11(6):694–703. doi:10.1634/theoncologist.11-6-694.

    Article  CAS  PubMed  Google Scholar 

  7. Kivity S, Zafrir Y, Loebstein R, Pauzner R, Mouallem M, Mayan H. Clinical characteristics and risk factors for low dose methotrexate toxicity: a cohort of 28 patients. Autoimmun Rev. 2014;13(11):1109–13. doi:10.1016/j.autrev.2014.08.027.

    Article  CAS  PubMed  Google Scholar 

  8. Moisa A, Fritz P, Benz D, Wehner H-D. Iatrogenically-related, fatal methotrexate intoxication: a series of four cases. Forensic Sci Int. 2006;156(2–3):154–7. doi:10.1016/j.forsciint.2004.12.031.

    Article  CAS  PubMed  Google Scholar 

  9. LoVecchio F, Katz K, Watts D, Wood I. Four-year experience with methotrexate exposures. J Med Toxicol. 2008;4(3):149–50. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3550042&tool=pmcentrez&rendertype=abstract. Accessed 21 Sept 2015.

  10. Badurdeen S, Kang S-L, Saravanan M. Accidental methotrexate ingestion in a 19-month-old child. BMJ Case Rep. 2011; 2011. doi:10.1136/bcr.11.2010.3477

    Google Scholar 

  11. Mowry JB, Spyker DA, Brooks DE, McMillan N, Schauben JL. 2014 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 32nd annual report. Clin Toxicol. 2015;53(10):962–1147. doi:10.3109/15563650.2015.1102927.

    Article  CAS  Google Scholar 

  12. Widemann BC, Balis FM, Kempf-Bielack B, et al. High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer. 2004;100(10):2222–32. doi:10.1002/cncr.20255.

    Article  CAS  PubMed  Google Scholar 

  13. Romão VC, Lima A, Bernardes M, Canhão H, Fonseca JE. Three decades of low-dose methotrexate in rheumatoid arthritis: can we predict toxicity? Immunol Res. 2014;60(2–3):289–310. doi:10.1007/s12026-014-8564-6.

    Article  PubMed  CAS  Google Scholar 

  14. Hinken M, Halwachs S, Kneuer C, Honscha W. Subcellular localization and distribution of the reduced folate carrier in normal rat tissues. Eur J Histochem. 2011;55(1):e3. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3167344&tool=pmcentrez&rendertype=abstract. Accessed 21 Sept 2015.

  15. Petros WP, Evans EE. Anticancer agents. In: Burton ME, Shaw LM, Scentag JJ, Evans EE, editors. Applied pharmacokinetics & pharmacodynamics: principles of therapeutic drug monitoring. 4th ed. Baltimore: Lippincott Williams & Wilkins; 2006. p. 617–36.

    Google Scholar 

  16. Bleyer WA. The clinical pharmacology of methotrexate: new applications of an old drug. Cancer. 1978;41(1):36–51. http://www.ncbi.nlm.nih.gov/pubmed/342086. Accessed 29 Aug 2015.

  17. Roenigk HH, Auerbach R, Maibach H, Weinstein G, Lebwohl M. Methotrexate in psoriasis: consensus conference. J Am Acad Dermatol. 1998;38(3):478–85. http://www.ncbi.nlm.nih.gov/pubmed/9520032. Accessed 21 Sept 2015.

  18. Teresi ME, Crom WR, Choi KE, Mirro J, Evans WE. Methotrexate bioavailability after oral and intramuscular administration in children. J Pediatr. 1987;110(5):788–92. http://www.ncbi.nlm.nih.gov/pubmed/3471936. Accessed 21 Sept 2015.

  19. Balis FM, Savitch JL, Bleyer WA. Pharmacokinetics of oral methotrexate in children. Cancer Res. 1983;43(5):2342–5. http://www.ncbi.nlm.nih.gov/pubmed/6572562. Accessed 21 Sept 2015.

  20. Schmiegelow K. Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol. 2009;146(5):489–503. doi:10.1111/j.1365-2141.2009.07765.x.

    Article  CAS  PubMed  Google Scholar 

  21. Schmiegelow K. Maintenance chemotherapy of acute lymphoblastic leukemia in children. Dan Med Bull. 1998;45(5):510–32. http://www.ncbi.nlm.nih.gov/pubmed/9850812. Accessed 21 Sept 2015.

  22. Stephens MC, Baldassano RN, York A, et al. The bioavailability of oral methotrexate in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2005;40(4):445–9. http://www.ncbi.nlm.nih.gov/pubmed/15795592. Accessed 21 Sept 2015.

  23. Sonneveld P, Schultz FW, Nooter K, Hählen K. Pharmacokinetics of methotrexate and 7-hydroxy-methotrexate in plasma and bone marrow of children receiving low-dose oral methotrexate. Cancer Chemother Pharmacol. 1986;18(2):111–6. http://www.ncbi.nlm.nih.gov/pubmed/3791556. Accessed 21 Sept 2015.

  24. Stoller RG, Hande KR, Jacobs SA, Rosenberg SA, Chabner BA. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med. 1977;297(12):630–4. doi:10.1056/NEJM197709222971203.

    Article  CAS  PubMed  Google Scholar 

  25. Paci A, Veal G, Bardin C, et al. Review of therapeutic drug monitoring of anticancer drugs part 1 – cytotoxics. Eur J Cancer. 2014;50(12):2010–9. doi:10.1016/j.ejca.2014.04.014.

    Article  CAS  PubMed  Google Scholar 

  26. Joerger M, Huitema ADR, van den Bongard HJGD, et al. Determinants of the elimination of methotrexate and 7-hydroxy-methotrexate following high-dose infusional therapy to cancer patients. Br J Clin Pharmacol. 2006;62(1):71–80. doi:10.1111/j.1365-2125.2005.02513.x.

    Article  CAS  PubMed  Google Scholar 

  27. Shen DD, Azarnoff DL. Clinical pharmacokinetics of methotrexate. Clin Pharmacokinet. 1978;3(1):1–13. http://www.ncbi.nlm.nih.gov/pubmed/346283. Accessed 21 Sept 2015.

  28. Huffman DH, Wan SH, Azarnoff DL, Hogstraten B. Pharmacokinetics of methotrexate. Clin Pharmacol Ther. 1973;14(4):572–9. http://www.ncbi.nlm.nih.gov/pubmed/4723265. Accessed 12 Jan 2016.

  29. Evans WE, Stewart CF, Hutson PR, et al. Disposition of intermediate-dose methotrexate in children with acute lymphocytic leukemia. Drug Intell Clin Pharm. 1982;16(11):839–42. http://www.ncbi.nlm.nih.gov/pubmed/6959800. Accessed 21 Sept 2015.

  30. Leme PR, Creaven PJ, Allen LM, Berman M. Kinetic model for the disposition and metabolism of moderate and high-dose methotrexate (NSC-740) in man. Cancer Chemother Rep. 1975;59(4):811–7. http://www.ncbi.nlm.nih.gov/pubmed/1175171. Accessed 21 Sept 2015.

  31. Campbell MA, Perrier DG, Dorr RT, Alberts DS, Finley PR. Methotrexate: bioavailability and pharmacokinetics. Cancer Treat Rep. 1985;69(7–8):833–8. http://www.ncbi.nlm.nih.gov/pubmed/3893694. Accessed 21 Sept 2015.

  32. Hendel J, Nyfors A. Nonlinear renal elimination kinetics of methotrexate due to saturation of renal tubular reabsorption. Eur J Clin Pharmacol. 1984;26(1):121–4. http://www.ncbi.nlm.nih.gov/pubmed/6714284. Accessed 21 Sept 2015.

  33. Methotrexate Injection, USP (package insert) Hospira, Inc. Revised: Oct 2011. http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/011719s117lbl.pdf. Accessed 15 Jan 2016.

  34. Breithaupt H, Küenzlen E. Pharmacokinetics of methotrexate and 7-hydroxymethotrexate following infusions of high-dose methotrexate. Cancer Treat Rep. 1982;66(9):1733–41. http://www.ncbi.nlm.nih.gov/pubmed/6956440. Accessed 21 Sept 2015.

  35. Jacobs SA, Stoller RG, Chabner BA, Johns DG. Dose-dependent metabolism of methotrexate in man and rhesus monkeys. Cancer Treat Rep. 1977;61(4):651–6. http://www.ncbi.nlm.nih.gov/pubmed/406997. Accessed 21 Sept 2015.

  36. Fotoohi K, Jansen G, Assaraf YG, et al. Disparate mechanisms of antifolate resistance provoked by methotrexate and its metabolite 7-hydroxymethotrexate in leukemia cells: implications for efficacy of methotrexate therapy. Blood. 2004;104(13):4194–201. doi:10.1182/blood-2004-04-1493.

    Article  CAS  PubMed  Google Scholar 

  37. Fabre G, Goldman ID. Formation of 7-hydroxymethotrexate polyglutamyl derivatives and their cytotoxicity in human chronic myelogenous leukemia cells, in vitro. Cancer Res. 1985;45(1):80–5. http://www.ncbi.nlm.nih.gov/pubmed/2578101. Accessed 21 Sept 2015.

  38. Sholar PW, Baram J, Seither R, Allegra CJ. Inhibition of folate-dependent enzymes by 7-OH-methotrexate. Biochem Pharmacol. 1988;37(18):3531–4. http://www.ncbi.nlm.nih.gov/pubmed/2458733. Accessed 21 Sept 2015.

  39. Jacobs SA, Stoller RG, Chabner BA, Johns DG. 7-Hydroxymethotrexate as a urinary metabolite in human subjects and rhesus monkeys receiving high dose methotrexate. J Clin Invest. 1976;57(2):534–8. doi:10.1172/JCI108308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lankelma J, van der Klein E, Ramaekers F. The role of 7-hydroxymethotrexate during methotrexate anti-cancer therapy. Cancer Lett. 1980;9(2):133–42. http://www.ncbi.nlm.nih.gov/pubmed/7189691. Accessed 29 Aug 2015.

  41. Donehower RC, Hande KR, Drake JC, Chabner BA. Presence of 2,4-diamino-N10-methylpteroic acid after high-dose methotrexate. Clin Pharmacol Ther. 1979;26(1):63–72. http://www.ncbi.nlm.nih.gov/pubmed/445963. Accessed 21 Sept 2015.

  42. Comandone A, Passera R, Boglione A, Tagini V, Ferrari S, Cattel L. High dose methotrexate in adult patients with osteosarcoma: clinical and pharmacokinetic results. Acta Oncol. 2005;44(4):406–11. doi:10.1080/02841860510029770.

    Article  CAS  PubMed  Google Scholar 

  43. Bore P, Bruno R, Lena N, Favre R, Cano JP. Methotrexate and 7-hydroxy-methotrexate pharmacokinetics following intravenous bolus administration and high-dose infusion of methotrexate. Eur J Cancer Clin Oncol. 1987;23(9):1385–90. http://www.ncbi.nlm.nih.gov/pubmed/3500051. Accessed 21 Sept 2015.

  44. Evans WE, Crom WR, Abromowitch M, et al. Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia. Identification of a relation between concentration and effect. N Engl J Med. 1986;314(8):471–7. doi:10.1056/NEJM198602203140803.

    Article  CAS  PubMed  Google Scholar 

  45. Thompson PA, Murry DJ, Rosner GL, et al. Methotrexate pharmacokinetics in infants with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2007;59(6):847–53. doi:10.1007/s00280-006-0388-1.

    Article  CAS  PubMed  Google Scholar 

  46. Smith SW, Nelson LS. Case files of the New York City Poison Control Center: antidotal strategies for the management of methotrexate toxicity. J Med Toxicol. 2008;4(2):132–40. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3550133&tool=pmcentrez&rendertype=abstract. Accessed 21 Sept 2015.

  47. Bratlid D, Moe PJ. Pharmacokinetics of high-dose methotrexate treatment in children. Eur J Clin Pharmacol. 1978;14(2):143–7. http://www.ncbi.nlm.nih.gov/pubmed/720376. Accessed 15 Jan 2016.

  48. Pitman SW, Frei E. Weekly methotrexate-calcium leucovorin rescue: effect of alkalinization on nephrotoxicity; pharmacokinetics in the CNS; and use in CNS non-Hodgkin’s lymphoma. Cancer Treat Rep. 1977;61(4):695–701. http://www.ncbi.nlm.nih.gov/pubmed/18282. Accessed 15 Jan 2016.

  49. Freeman AI, Wang JJ, Sinks LF. High-dose methotrexate in acute lymphocytic leukemia. Cancer Treat Rep. 1977;61(4):727–31. http://www.ncbi.nlm.nih.gov/pubmed/267510. Accessed 15 Jan 2016.

  50. Millot F, Rubie H, Mazingue F, Mechinaud F, Thyss A. Cerebrospinal fluid drug levels of leukemic children receiving intravenous 5 g/m2 methotrexate. Leuk Lymphoma. 1994;14(1–2):141–4. doi:10.3109/10428199409049660.

    Article  CAS  PubMed  Google Scholar 

  51. Evans WE, Pratt CB. Effect of pleural effusion on high-dose methotrexate kinetics. Clin Pharmacol Ther. 1978;23(1):68–72. http://www.ncbi.nlm.nih.gov/pubmed/618710. Accessed 21 Sept 2015.

  52. Li J, Gwilt P. The effect of malignant effusions on methotrexate disposition. Cancer Chemother Pharmacol. 2002;50(5):373–82. doi:10.1007/s00280-002-0512-9.

    Article  CAS  PubMed  Google Scholar 

  53. Frei E, Jaffe N, Tattersall MH, Pitman S, Parker L. New approaches to cancer chemotherapy with methotrexate. N Engl J Med. 1975;292(16):846–51. doi:10.1056/NEJM197504172921607.

    Article  PubMed  Google Scholar 

  54. Breedveld P, Zelcer N, Pluim D, et al. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res. 2004;64(16):5804–11. doi:10.1158/0008-5472.CAN-03-4062.

    Article  CAS  PubMed  Google Scholar 

  55. Harned TM, Mascarenhas L. Severe methotrexate toxicity precipitated by intravenous radiographic contrast. J Pediatr Hematol Oncol. 2007;29(7):496–9. doi:10.1097/MPH.0b013e3180683c04.

    Article  CAS  PubMed  Google Scholar 

  56. Santucci R, Levêque D, Kemmel V, et al. Severe intoxication with methotrexate possibly associated with concomitant use of proton pump inhibitors. Anticancer Res. 2010;30(3):963–5. http://www.ncbi.nlm.nih.gov/pubmed/20393020. Accessed 21 Sept 2015.

  57. Relling MV, Fairclough D, Ayers D, et al. Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol. 1994;12(8):1667–72. http://www.ncbi.nlm.nih.gov/pubmed/8040679. Accessed 19 Aug 2015.

  58. Widemann BC, Schwartz S, Jayaprakash N, et al. Efficacy of glucarpidase (carboxypeptidase g2) in patients with acute kidney injury after high-dose methotrexate therapy. Pharmacotherapy. 2014;34(5):427–39. doi:10.1002/phar.1360.

    Article  CAS  PubMed  Google Scholar 

  59. Chabner BA, Young RC. Threshold methotrexate concentration for in vivo inhibition of DNA synthesis in normal and tumorous target tissues. J Clin Invest. 1973;52(8):1804–11. doi:10.1172/JCI107362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cronstein BN. The mechanism of action of methotrexate. Rheum Dis Clin North Am. 1997;23(4):739–55. http://www.ncbi.nlm.nih.gov/pubmed/9361153. Accessed 21 Sept 2015.

  61. Chan ESL, Cronstein BN. Mechanisms of action of methotrexate. Bull Hosp Jt Dis. 2013;71 Suppl 1:S5–8. http://www.ncbi.nlm.nih.gov/pubmed/24219035. Accessed 21 Sept 2015.

  62. Goldman ID, Matherly LH. The cellular pharmacology of methotrexate. Pharmacol Ther. 1985;28(1):77–102. http://www.ncbi.nlm.nih.gov/pubmed/2414788. Accessed 30 Aug 2015.

  63. Green MR, Chowdhary S, Lombardi KM, Chalmers LM, Chamberlain M. Clinical utility and pharmacology of high-dose methotrexate in the treatment of primary CNS lymphoma. Expert Rev Neurother. 2006;6(5):635–52. doi:10.1586/14737175.6.5.635.

    Article  CAS  PubMed  Google Scholar 

  64. Walling J. From methotrexate to pemetrexed and beyond. A review of the pharmacodynamic and clinical properties of antifolates. Invest New Drugs. 2006;24(1):37–77. doi:10.1007/s10637-005-4541-1.

    Article  PubMed  Google Scholar 

  65. Chabner BA, Allegra CJ, Curt GA, et al. Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Invest. 1985;76(3):907–12. doi:10.1172/JCI112088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gorlick R, Goker E, Trippett T, Waltham M, Banerjee D, Bertino JR. Intrinsic and acquired resistance to methotrexate in acute leukemia. N Engl J Med. 1996;335(14):1041–8. doi:10.1056/NEJM199610033351408.

    Article  CAS  PubMed  Google Scholar 

  67. Swerts K, De Moerloose B, Dhooge C, Laureys G, Benoit Y, Philippé J. Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. Eur J Cancer. 2006;42(3):295–309. doi:10.1016/j.ejca.2005.09.017.

    Article  CAS  PubMed  Google Scholar 

  68. Baugh CM, Krumdieck CL, Nair MG. Polygammaglutamyl metabolites of methotrexate. Biochem Biophys Res Commun. 1973;52(1):27–34. http://www.ncbi.nlm.nih.gov/pubmed/4197190. Accessed 21 Sept 2015.

  69. Fotoohi AK, Albertioni F. Mechanisms of antifolate resistance and methotrexate efficacy in leukemia cells. Leuk Lymphoma. 2008;49(3):410–26. doi:10.1080/10428190701824569.

    Article  CAS  PubMed  Google Scholar 

  70. Witte A, Whitehead VM, Rosenblatt DS, Vuchich MJ. Synthesis of methotrexate polyglutamates by bone marrow cells from patients with leukemia and lymphoma. Dev Pharmacol Ther. 1980;1(1):40–6. http://www.ncbi.nlm.nih.gov/pubmed/6160026. Accessed 21 Sept 2015.

  71. McGuire JJ, Hsieh P, Coward JK, Bertino JR. Enzymatic synthesis of folylpolyglutamates. Characterization of the reaction and its products. J Biol Chem. 1980;255(12):5776–88. http://www.ncbi.nlm.nih.gov/pubmed/6892914. Accessed 21 Sept 2015.

  72. Allegra CJ, Chabner BA, Drake JC, Lutz R, Rodbard D, Jolivet J. Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates. J Biol Chem. 1985;260(17):9720–6. http://www.ncbi.nlm.nih.gov/pubmed/2410416. Accessed 21 Sept 2015.

  73. Ackland SP, Schilsky RL. High-dose methotrexate: a critical reappraisal. J Clin Oncol. 1987;5(12):2017–31. http://www.ncbi.nlm.nih.gov/pubmed/3316519. Accessed 30 Aug 2015.

  74. Bleyer WA. Methotrexate: clinical pharmacology, current status and therapeutic guidelines. Cancer Treat Rev. 1977;4(2):87–101. http://www.ncbi.nlm.nih.gov/pubmed/329989. Accessed 3 Aug 2015.

  75. Vezmar S, Schüsseler P, Becker A, Bode U, Jaehde U. Methotrexate-associated alterations of the folate and methyl-transfer pathway in the CSF of ALL patients with and without symptoms of neurotoxicity. Pediatr Blood Cancer. 2009;52(1):26–32. doi:10.1002/pbc.21827.

    Article  PubMed  Google Scholar 

  76. Afshar M, Birnbaum D, Golden C. Review of dextromethorphan administration in 18 patients with subacute methotrexate central nervous system toxicity. Pediatr Neurol. 2014;50(6):625–9. doi:10.1016/j.pediatrneurol.2014.01.048.

    Article  PubMed  Google Scholar 

  77. Schrøder H, Fogh K. Methotrexate and its polyglutamate derivatives in erythrocytes during and after weekly low-dose oral methotrexate therapy of children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 1988;21(2):145–9. http://www.ncbi.nlm.nih.gov/pubmed/2450690. Accessed 21 Sept 2015.

  78. Jolivet J, Chabner BA. Intracellular pharmacokinetics of methotrexate polyglutamates in human breast cancer cells. Selective retention and less dissociable binding of 4-NH2-10-CH3-pteroylglutamate4 and 4-NH2-10-CH3-pteroylglutamate5 to dihydrofolate reductase. J Clin Invest. 1983;72(3):773–8. doi:10.1172/JCI111048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Treon SP, Chabner BA. Concepts in use of high-dose methotrexate therapy. Clin Chem. 1996;42(8 Pt 2):1322–9. http://www.ncbi.nlm.nih.gov/pubmed/8697606. Accessed 6 Aug 2015.

  80. Huang KC, Wenczak BA, Liu YK. Renal tubular transport of methotrexate in the rhesus monkey and dog. Cancer Res. 1979;39(12):4843–8. http://www.ncbi.nlm.nih.gov/pubmed/115582. Accessed 23 Sept 2015.

  81. Abelson HT, Fosburg MT, Beardsley GP, et al. Methotrexate-induced renal impairment: clinical studies and rescue from systemic toxicity with high-dose leucovorin and thymidine. J Clin Oncol. 1983;1(3):208–16. http://www.ncbi.nlm.nih.gov/pubmed/6607976. Accessed 23 Sept 2015.

  82. Stark AN, Jackson G, Carey PJ, Arfeen S, Proctor SJ. Severe renal toxicity due to intermediate-dose methotrexate. Cancer Chemother Pharmacol. 1989;24(4):243–5. http://www.ncbi.nlm.nih.gov/pubmed/2546688. Accessed 23 Sept 2015.

  83. Widemann BC, Balis FM, Murphy RF, et al. Carboxypeptidase-G2, thymidine, and leucovorin rescue in cancer patients with methotrexate-induced renal dysfunction. J Clin Oncol. 1997;15(5):2125–34. http://www.ncbi.nlm.nih.gov/pubmed/9164227. Accessed 21 Sept 2015.

  84. Sasaki K, Tanaka J, Fujimoto T. Theoretically required urinary flow during high-dose methotrexate infusion. Cancer Chemother Pharmacol. 1984;13(1):9–13. http://www.ncbi.nlm.nih.gov/pubmed/6733846. Accessed 29 Aug 2015.

  85. Buchen S, Ngampolo D, Melton RG, et al. Carboxypeptidase G2 rescue in patients with methotrexate intoxication and renal failure. Br J Cancer. 2005;92(3):480–7. doi:10.1038/sj.bjc.6602337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mir O, Ropert S, Babinet A, et al. Hyper-alkalinization without hyper-hydration for the prevention of high-dose methotrexate acute nephrotoxicity in patients with osteosarcoma. Cancer Chemother Pharmacol. 2010;66(6):1059–63. doi:10.1007/s00280-010-1259-3.

    Article  CAS  PubMed  Google Scholar 

  87. Jaksic W, Veljkovic D, Pozza C, Lewis I. Methotrexate-induced leukoencephalopathy reversed by aminophylline and high-dose folinic acid. Acta Haematol. 2004;111(4):230–2. doi:10.1159/000077573.

    Article  PubMed  Google Scholar 

  88. Bohanec Grabar P, Logar D, Lestan B, Dolzan V. Genetic determinants of methotrexate toxicity in rheumatoid arthritis patients: a study of polymorphisms affecting methotrexate transport and folate metabolism. Eur J Clin Pharmacol. 2008;64(11):1057–68. doi:10.1007/s00228-008-0521-7.

    Article  CAS  PubMed  Google Scholar 

  89. Faganel Kotnik B, Grabnar I, Bohanec Grabar P, Dolžan V, Jazbec J. Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol. 2011;67(10):993–1006. doi:10.1007/s00228-011-1046-z.

    Article  CAS  PubMed  Google Scholar 

  90. Lima A, Sousa H, Monteiro J, Azevedo R, Medeiros R, Seabra V. Genetic polymorphisms in low-dose methotrexate transporters: current relevance as methotrexate therapeutic outcome biomarkers. Pharmacogenomics. 2014;15(12):1611–35. doi:10.2217/pgs.14.116.

    Article  CAS  PubMed  Google Scholar 

  91. Shimasaki N, Mori T, Torii C, et al. Influence of MTHFR and RFC1 polymorphisms on toxicities during maintenance chemotherapy for childhood acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol. 2008;30(5):347–52. doi:10.1097/MPH.0b013e318165b25d.

    Article  CAS  PubMed  Google Scholar 

  92. Pakakasama S, Kanchanakamhaeng K, Kajanachumpol S, et al. Genetic polymorphisms of folate metabolic enzymes and toxicities of high dose methotrexate in children with acute lymphoblastic leukemia. Ann Hematol. 2007;86(8):609–11. doi:10.1007/s00277-007-0274-x.

    Article  PubMed  Google Scholar 

  93. Owen SA, Hider SL, Martin P, Bruce IN, Barton A, Thomson W. Genetic polymorphisms in key methotrexate pathway genes are associated with response to treatment in rheumatoid arthritis patients. Pharmacogenomics J. 2012;13(3):227–34. doi:10.1038/tpj.2012.7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bohanec Grabar P, Leandro-García LJ, Inglada-Pérez L, Logar D, Rodríguez-Antona C, Dolžan V. Genetic variation in the SLC19A1 gene and methotrexate toxicity in rheumatoid arthritis patients. Pharmacogenomics. 2012;13(14):1583–94. doi:10.2217/pgs.12.150.

    Article  CAS  PubMed  Google Scholar 

  95. Ranganathan P, Culverhouse R, Marsh S, et al. Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J Rheumatol. 2008;35(4):572–9. http://www.ncbi.nlm.nih.gov/pubmed/18381794. Accessed 12 Jan 2016.

  96. Plaza-Plaza JC, Aguilera M, Cañadas-Garre M, et al. Pharmacogenetic polymorphisms contributing to toxicity induced by methotrexate in the southern Spanish population with rheumatoid arthritis. OMICS J Integr Biol Radiol Oncol. 2012;16(11):589–95. doi:10.1089/omi.2011.0142.

    Article  CAS  Google Scholar 

  97. Stamp LK, Chapman PT, O’Donnell JL, et al. Polymorphisms within the folate pathway predict folate concentrations but are not associated with disease activity in rheumatoid arthritis patients on methotrexate. Pharmacogenet Genomics. 2010;20(6):367–76. doi:10.1097/FPC.0b013e3283398a71.

    Article  CAS  PubMed  Google Scholar 

  98. Davis LA, Polk B, Mann A, et al. Folic acid pathway single nucleotide polymorphisms associated with methotrexate significant adverse events in United States veterans with rheumatoid arthritis. Clin Exp Rheumatol. 2014;32(3):324–32. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4167828&tool=pmcentrez&rendertype=abstract. Accessed 12 Jan 2016.

  99. Jekic B, Lukovic L, Bunjevacki V, et al. Association of the TYMS 3G/3G genotype with poor response and GGH 354GG genotype with the bone marrow toxicity of the methotrexate in RA patients. Eur J Clin Pharmacol. 2013;69(3):377–83. doi:10.1007/s00228-012-1341-3.

    Article  CAS  PubMed  Google Scholar 

  100. Dervieux T, Greenstein N, Kremer J. Pharmacogenomic and metabolic biomarkers in the folate pathway and their association with methotrexate effects during dosage escalation in rheumatoid arthritis. Arthritis Rheum. 2006;54(10):3095–103. doi:10.1002/art.22129.

    Article  CAS  PubMed  Google Scholar 

  101. Koomdee N, Hongeng S, Apibal S, Pakakasama S. Association between polymorphisms of dihydrofolate reductase and gamma glutamyl hydrolase genes and toxicity of high dose methotrexate in children with acute lymphoblastic leukemia. Asian Pac J Cancer Prev. 2012;13(7):3461–4. http://www.ncbi.nlm.nih.gov/pubmed/22994778. Accessed 12 Jan 2016.

  102. Dulucq S, St-Onge G, Gagné V, et al. DNA variants in the dihydrofolate reductase gene and outcome in childhood ALL. Blood. 2008;111(7):3692–700. doi:10.1182/blood-2007-09-110593.

    Article  CAS  PubMed  Google Scholar 

  103. Ongaro A, De Mattei M, Della Porta MG, et al. Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival. Haematologica. 2009;94(10):1391–8. doi:10.3324/haematol.2009.008326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Milic V, Jekic B, Lukovic L, et al. Association of dihydrofolate reductase (DHFR) -317AA genotype with poor response to methotrexate in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2012;30(2):178–83. http://www.ncbi.nlm.nih.gov/pubmed/22324981. Accessed 12 Jan 2016.

  105. Erculj N, Kotnik BF, Debeljak M, Jazbec J, Dolzan V. The influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in children with non-Hodgkin malignant lymphoma. Radiol Oncol. 2014;48(3):289–92. doi:10.2478/raon-2013-0076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xiao H, Xu J, Zhou X, et al. Associations between the genetic polymorphisms of MTHFR and outcomes of methotrexate treatment in rheumatoid arthritis. Clin Exp Rheumatol. 2010;28(5):728–33. http://www.ncbi.nlm.nih.gov/pubmed/20863444. Accessed 13 Jan 2016.

  107. Weisman MH, Furst DE, Park GS, et al. Risk genotypes in folate-dependent enzymes and their association with methotrexate-related side effects in rheumatoid arthritis. Arthritis Rheum. 2006;54(2):607–12. doi:10.1002/art.21573.

    Article  CAS  PubMed  Google Scholar 

  108. Shimasaki N, Mori T, Samejima H, et al. Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol. 2006;28(2):64–8. doi:10.1097/01.mph.0000198269.61948.90.

    Article  CAS  PubMed  Google Scholar 

  109. Owen SA, Lunt M, Bowes J, et al. MTHFR gene polymorphisms and outcome of methotrexate treatment in patients with rheumatoid arthritis: analysis of key polymorphisms and meta-analysis of C677T and A1298C polymorphisms. Pharmacogenomics J. 2013;13(2):137–47. doi:10.1038/tpj.2011.42.

    Article  CAS  PubMed  Google Scholar 

  110. Lima A, Seabra V, Bernardes M, Azevedo R, Sousa H, Medeiros R. Role of key TYMS polymorphisms on methotrexate therapeutic outcome in portuguese rheumatoid arthritis patients. PLoS One. 2014;9(10):e108165. doi:10.1371/journal.pone.0108165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Grabar PB, Rojko S, Logar D, Dolzan V. Genetic determinants of methotrexate treatment in rheumatoid arthritis patients: a study of polymorphisms in the adenosine pathway. Ann Rheum Dis. 2010;69(5):931–2. doi:10.1136/ard.2009.111567.

    Article  CAS  PubMed  Google Scholar 

  112. Wessels JAM, Kooloos WM, De Jonge R, et al. Relationship between genetic variants in the adenosine pathway and outcome of methotrexate treatment in patients with recent-onset rheumatoid arthritis. Arthritis Rheum. 2006;54(9):2830–9. doi:10.1002/art.22032.

    Article  CAS  PubMed  Google Scholar 

  113. Berkun Y, Abou Atta I, Rubinow A, et al. 2756GG genotype of methionine synthase reductase gene is more prevalent in rheumatoid arthritis patients treated with methotrexate and is associated with methotrexate-induced nodulosis. J Rheumatol. 2007;34(8):1664–9. http://www.ncbi.nlm.nih.gov/pubmed/17611986. Accessed 13 Jan 2016.

  114. Huang L, Tissing WJE, de Jonge R, van Zelst BD, Pieters R. Polymorphisms in folate-related genes: association with side effects of high-dose methotrexate in childhood acute lymphoblastic leukemia. Leukemia. 2008;22(9):1798–800. doi:10.1038/leu.2008.66.

    Article  CAS  PubMed  Google Scholar 

  115. Nathan PC, Whitcomb T, Wolters PL, et al. Very high-dose methotrexate (33.6 g/m(2)) as central nervous system preventive therapy for childhood acute lymphoblastic leukemia: results of National Cancer Institute/Children’s Cancer Group trials CCG-191P, CCG-134P and CCG-144P. Leuk Lymphoma. 2006;47(12):2488–504. doi:10.1080/10428190600942769.

    Article  CAS  PubMed  Google Scholar 

  116. Skärby T, Jönsson P, Hjorth L, et al. High-dose methotrexate: on the relationship of methotrexate elimination time vs. renal function and serum methotrexate levels in 1164 courses in 264 Swedish children with acute lymphoblastic leukaemia (ALL). Cancer Chemother Pharmacol. 2003;51(4):311–20. doi:10.1007/s00280-002-0552-1.

    PubMed  Google Scholar 

  117. Cheng KK-F. Association of plasma methotrexate, neutropenia, hepatic dysfunction, nausea/vomiting and oral mucositis in children with cancer. Eur J Cancer Care (Engl). 2008;17(3):306–11. doi:10.1111/j.1365-2354.2007.00843.x.

    Article  Google Scholar 

  118. Sinicina I, Mayr B, Mall G, Keil W. Deaths following methotrexate overdoses by medical staff. J Rheumatol. 2005;32(10):2009–11. http://www.ncbi.nlm.nih.gov/pubmed/16206360. Accessed 30 Sept 2015.

  119. Yeoh S, Siderov J. Methotrexate misadventure: a case for counselling. Rheumatology (Oxford). 2001;40(2):230–2. http://www.ncbi.nlm.nih.gov/pubmed/11257167. Accessed 30 Sept 2015.

  120. Çaliskan E, Tunca M, Açikgöz G, Arca E, Akar A. Accidental high-dose methotrexate toxicity due to an electronic prescribing error. Indian J Dermatol Venereol Leprol. 2014;80(3):268–9. doi:10.4103/0378-6323.132264.

    Article  PubMed  Google Scholar 

  121. Chen K-E, Yang C-C, Yu-Yun Lee J, Sung J-M. Widespread skin necrosis due to methotrexate overdose in a patient with CKD. Kidney Int. 2014;85(3):716–7. doi:10.1038/ki.2013.319.

    Article  CAS  PubMed  Google Scholar 

  122. Brown MA, Corrigan AB. Pancytopenia after accidental overdose of methotrexate. A complication of low-dose therapy for rheumatoid arthritis. Med J Aust. 1991;155(7):493–4. http://www.ncbi.nlm.nih.gov/pubmed/1921823. Accessed 30 Sept 2015.

  123. Pruitt AW, Kinkade JM, Patterson JH. Accidental ingestion of methotrexate. J Pediatr. 1974;85(5):686–8. http://www.ncbi.nlm.nih.gov/pubmed/4547412. Accessed 30 Sept 2015.

  124. Gibbon BN, Manthey DE. Pediatric case of accidental oral overdose of methotrexate. Ann Emerg Med. 1999;34(1):98–100. http://www.ncbi.nlm.nih.gov/pubmed/10382002. Accessed 30 Sept 2015.

  125. Stephen M, Snook C, Bausher J. Pediatric methotrexate ingestion: a case report. (abstract). Vet Hum Toxicol. 1994;36(4):366.

    Google Scholar 

  126. Maiguma T, Hayashi Y, Ueshima S, et al. Relationship between oral mucositis and high-dose methotrexate therapy in pediatric acute lymphoblastic leukemia. Int J Clin Pharmacol Ther. 2008;46(11):584–90. http://www.ncbi.nlm.nih.gov/pubmed/19000557. Accessed 5 Oct 2015.

  127. Holmboe L, Andersen AM, Mørkrid L, Slørdal L, Hall KS. High dose methotrexate chemotherapy: pharmacokinetics, folate and toxicity in osteosarcoma patients. Br J Clin Pharmacol. 2012;73(1):106–14. doi:10.1111/j.1365-2125.2011.04054.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Saeter G, Alvegård TA, Elomaa I, Stenwig AE, Holmström T, Solheim OP. Treatment of osteosarcoma of the extremities with the T-10 protocol, with emphasis on the effects of preoperative chemotherapy with single-agent high-dose methotrexate: a Scandinavian Sarcoma Group study. J Clin Oncol. 1991;9(10):1766–75. http://www.ncbi.nlm.nih.gov/pubmed/1717666. Accessed 5 Oct 2015.

  129. Schwartz S, Borner K, Müller K, et al. Glucarpidase (carboxypeptidase g2) intervention in adult and elderly cancer patients with renal dysfunction and delayed methotrexate elimination after high-dose methotrexate therapy. Oncologist. 2007;12(11):1299–308. doi:10.1634/theoncologist.12-11-1299.

    Article  CAS  PubMed  Google Scholar 

  130. Green MR, Chamberlain MC. Renal dysfunction during and after high-dose methotrexate. Cancer Chemother Pharmacol. 2009;63(4):599–604. doi:10.1007/s00280-008-0772-0.

    Article  CAS  PubMed  Google Scholar 

  131. Hansen HH, Selawry OS, Holland JF, McCall CB. The variability of individual tolerance to methotrexate in cancer patients. Br J Cancer. 1971;25(2):298–305. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2008449&tool=pmcentrez&rendertype=abstract. Accessed 5 Oct 2015.

  132. Vezmar S, Becker A, Bode U, Jaehde U. Biochemical and clinical aspects of methotrexate neurotoxicity. Chemotherapy. 2003;49(1–2):92–104. doi:10.1159/000069773.

    Article  CAS  PubMed  Google Scholar 

  133. Bhojwani D, Sabin ND, Pei D, et al. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol. 2014;32(9):949–59. doi:10.1200/JCO.2013.53.0808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rubnitz JE, Relling MV, Harrison PL, et al. Transient encephalopathy following high-dose methotrexate treatment in childhood acute lymphoblastic leukemia. Leukemia. 1998;12(8):1176–81. http://www.ncbi.nlm.nih.gov/pubmed/9697870. Accessed 5 Oct 2015.

  135. Inaba H, Khan RB, Laningham FH, Crews KR, Pui C-H, Daw NC. Clinical and radiological characteristics of methotrexate-induced acute encephalopathy in pediatric patients with cancer. Ann Oncol. 2008;19(1):178–84. doi:10.1093/annonc/mdm466.

    Article  CAS  PubMed  Google Scholar 

  136. Jaffe N, Takaue Y, Anzai T, Robertson R. Transient neurologic disturbances induced by high-dose methotrexate treatment. Cancer. 1985;56(6):1356–60. http://www.ncbi.nlm.nih.gov/pubmed/3875390. Accessed 11 Oct 2015.

  137. Oka M, Terae S, Kobayashi R, et al. MRI in methotrexate-related leukoencephalopathy: disseminated necrotising leukoencephalopathy in comparison with mild leukoencephalopathy. Neuroradiology. 2003;45(7):493–7. doi:10.1007/s00234-003-0983-3.

    Article  CAS  PubMed  Google Scholar 

  138. Duffner PK, Armstrong FD, Chen L, et al. Neurocognitive and neuroradiologic central nervous system late effects in children treated on Pediatric Oncology Group (POG) P9605 (standard risk) and P9201 (lesser risk) acute lymphoblastic leukemia protocols (ACCL0131): a methotrexate consequence? A report from the Children’s Oncology Group. J Pediatr Hematol Oncol. 2014;36(1):8–15. doi:10.1097/MPH.0000000000000000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bell R, Sullivan JR, Burdon JG, Sinclair R. Toxic rash associated with high dose methotrexate therapy. Clin Exp Pharmacol Physiol Suppl. 1979;5:57–61. http://www.ncbi.nlm.nih.gov/pubmed/318498. Accessed 13 Jan 2016.

  140. Doyle LA, Berg C, Bottino G, Chabner B. Erythema and desquamation after high-dose methotrexate. Ann Intern Med. 1983;98(5 Pt 1):611–2. http://www.ncbi.nlm.nih.gov/pubmed/6601925. Accessed 13 Jan 2016.

  141. Stoller RG, Kaplan HG, Cummings FJ, Calabresi P. A clinical and pharmacological study of high-dose methotrexate with minimal leucovorin rescue. Cancer Res. 1979;39(3):908–12. http://www.ncbi.nlm.nih.gov/pubmed/311683. Accessed 5 Oct 2015.

  142. Shea B, Swinden MV, Ghogomu ET, et al. Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. J Rheumatol. 2014;41(6):1049–60. doi:10.3899/jrheum.130738.

    Article  CAS  PubMed  Google Scholar 

  143. Prey S, Paul C. Effect of folic or folinic acid supplementation on methotrexate-associated safety and efficacy in inflammatory disease: a systematic review. Br J Dermatol. 2009;160(3):622–8. doi:10.1111/j.1365-2133.2008.08876.x.

    Article  CAS  PubMed  Google Scholar 

  144. Salliot C, van der Heijde D. Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: a systematic literature research. Ann Rheum Dis. 2009;68(7):1100–4. doi:10.1136/ard.2008.093690.

    Article  CAS  PubMed  Google Scholar 

  145. Wollina U, Ständer K, Barta U. Toxicity of methotrexate treatment in psoriasis and psoriatic arthritis – short- and long-term toxicity in 104 patients. Clin Rheumatol. 2001;20(6):406–10. http://www.ncbi.nlm.nih.gov/pubmed/11771523. Accessed 30 Sept 2015.

  146. Visser K, van der Heijde DMFM. Risk and management of liver toxicity during methotrexate treatment in rheumatoid and psoriatic arthritis: a systematic review of the literature. Clin Exp Rheumatol. 2099;27(6):1017–25. http://www.ncbi.nlm.nih.gov/pubmed/20149325. Accessed 30 Sept 2015.

  147. Conway R, Low C, Coughlan RJ, O’Donnell MJ, Carey JJ. Risk of liver injury among methotrexate users: a meta-analysis of randomised controlled trials. Semin Arthritis Rheum. 2015;45(2):156–62. doi:10.1016/j.semarthrit.2015.05.003.

    Article  CAS  PubMed  Google Scholar 

  148. Curtis JR, Beukelman T, Onofrei A, et al. Elevated liver enzyme tests among patients with rheumatoid arthritis or psoriatic arthritis treated with methotrexate and/or leflunomide. Ann Rheum Dis. 2009;69(01):43–7. doi:10.1136/ard.2008.101378.

    Article  CAS  Google Scholar 

  149. Schmajuk G, Miao Y, Yazdany J, Boscardin WJ, Daikh DI, Steinman MA. Identification of risk factors for elevated transaminases in methotrexate users through an electronic health record. Arthritis Care Res (Hoboken). 2014;66(8):1159–66. doi:10.1002/acr.22294.

    Article  CAS  Google Scholar 

  150. Whiting-O’Keefe QE, Fye KH, Sack KD. Methotrexate and histologic hepatic abnormalities: a meta-analysis. Am J Med. 1991;90(6):711–6. http://www.ncbi.nlm.nih.gov/pubmed/1828327. Accessed 30 Sept 2015.

  151. Weidmann A, Foulkes AC, Kirkham N, Reynolds NJ. Methotrexate toxicity during treatment of chronic plaque psoriasis: a case report and review of the literature. Dermatol Ther (Heidelb). 2014;4(2):145–56. doi:10.1007/s13555-014-0056-z.

    Article  Google Scholar 

  152. Gutierrez-Ureña S, Molina JF, García CO, Cuéllar ML, Espinoza LR. Pancytopenia secondary to methotrexate therapy in rheumatoid arthritis. Arthritis Rheum. 1996;39(2):272–6. http://www.ncbi.nlm.nih.gov/pubmed/8849378. Accessed 30 Sept 2015.

  153. Weinblatt ME, Fraser P. Elevated mean corpuscular volume as a predictor of hematologic toxicity due to methotrexate therapy. Arthritis Rheum. 1989;32(12):1592–6. http://www.ncbi.nlm.nih.gov/pubmed/2597212. Accessed 30 Sept 2015.

  154. McLean-Tooke A, Aldridge C, Waugh S, Spickett GP, Kay L. Methotrexate, rheumatoid arthritis and infection risk: what is the evidence? Rheumatology (Oxford). 2009;48(8):867–71. doi:10.1093/rheumatology/kep101.

    Article  CAS  Google Scholar 

  155. Lopez-Olivo MA, Siddhanamatha HR, Shea B, Tugwell P, Wells GA, Suarez-Almazor ME. Methotrexate for treating rheumatoid arthritis. Cochrane Database Syst Rev. 2014;6:CD000957. doi:10.1002/14651858.CD000957.pub2.

    Google Scholar 

  156. Kaneko Y, Suwa A, Ikeda Y, Hirakata M. Pneumocystis jiroveci pneumonia associated with low-dose methotrexate treatment for rheumatoid arthritis: report of two cases and review of the literature. Mod Rheumatol. 2006;16(1):36–8. doi:10.1007/s10165-005-0443-5.

    Article  PubMed  Google Scholar 

  157. Wernick R, Smith DL. Central nervous system toxicity associated with weekly low-dose methotrexate treatment. Arthritis Rheum. 1989;32(6):770–5. http://www.ncbi.nlm.nih.gov/pubmed/2735964. Accessed 30 Sept 2015.

  158. González-Suárez I, Aguilar-Amat MJ, Trigueros M, Borobia AM, Cruz A, Arpa J. Leukoencephalopathy due to oral methotrexate. Cerebellum. 2014;13(1):178–83. doi:10.1007/s12311-013-0528-1.

    Article  PubMed  CAS  Google Scholar 

  159. Matsuda M, Kishida D, Kinoshita T, et al. Leukoencephalopathy induced by low-dose methotrexate in a patient with rheumatoid arthritis. Intern Med. 2011;50(19):2219–22. http://www.ncbi.nlm.nih.gov/pubmed/21963744. Accessed 30 Sept 2015.

  160. Verstappen SMM, Bakker MF, Heurkens AHM, et al. Adverse events and factors associated with toxicity in patients with early rheumatoid arthritis treated with methotrexate tight control therapy: the CAMERA study. Ann Rheum Dis. 2009;69(6):1044–8. doi:10.1136/ard.2008.106617.

    Article  PubMed  CAS  Google Scholar 

  161. Kremer JM, Petrillo GF, Hamilton RA. Pharmacokinetics and renal function in patients with rheumatoid arthritis receiving a standard dose of oral weekly methotrexate: association with significant decreases in creatinine clearance and renal clearance of the drug after 6 months of therapy. J Rheumatol. 1995;22(1):38–40. http://www.ncbi.nlm.nih.gov/pubmed/7699678. Accessed 30 Sept 2015.

  162. Boey O, Van Hooland S, Woestenburg A, Van der Niepen P, Verbeelen D. Methotrexate should not be used for patients with end-stage kidney disease. Acta Clin Belg. 2006;61(4):166–9. doi:10.1179/acb.2006.028.

    Article  CAS  PubMed  Google Scholar 

  163. Kremer JM, Alarcón GS, Weinblatt ME, et al. Clinical, laboratory, radiographic, and histopathologic features of methotrexate-associated lung injury in patients with rheumatoid arthritis: a multicenter study with literature review. Arthritis Rheum. 1997;40(10):1829–37. doi:10.1002/1529-0131(199710)40:10<1829::AID-ART16>3.0.CO;2-T.

    Article  CAS  PubMed  Google Scholar 

  164. Alarcón GS, Koopman WJ, McCarty MJ. Nonperipheral accelerated nodulosis in a methotrexate-treated rheumatoid arthritis patient. Arthritis Rheum. 1993;36(1):132–3. http://www.ncbi.nlm.nih.gov/pubmed/8424830. Accessed 5 Oct 2015.

  165. Walden PA, Mitchell-Weggs PF, Coppin C, Dent J, Bagshawe KD. Pleurisy and methotrexate treatment. Br Med J. 1977;2(6091):867. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1631669&tool=pmcentrez&rendertype=abstract. Accessed 5 Oct 2015.

  166. Primka EJ, Camisa C. Methotrexate-induced toxic epidermal necrolysis in a patient with psoriasis. J Am Acad Dermatol. 1997;36(5 Pt 2):815–8. http://www.ncbi.nlm.nih.gov/pubmed/9146556. Accessed 4 Oct 2015.

  167. Ozkol HU, Toptas T, Calka O, Akdeniz N. The efficiency of granulocyte colony-stimulating factor in hemorrhagic mucositis and febrile neutropenia resulted from methotrexate toxicity. Cutan Ocul Toxicol. 2015;34(2):173–5. doi:10.3109/15569527.2014.918139.

    Article  PubMed  CAS  Google Scholar 

  168. Schott JM, Rigby SP, McNally JD, Keat A, Higgens CS. Oral methotrexate: the hazard of different tablet strengths. Rheumatology (Oxford). 1999;38(4):382. http://www.ncbi.nlm.nih.gov/pubmed/10378725. Accessed 5 Oct 2015.

  169. Balit C, Daly F, Little M, Murray L. Oral methotrexate overdose (abstract). Clin Toxicol. 2006;44(4):411. doi:10.1080/15563650600671811.

    Google Scholar 

  170. Bebarta VS, Hensley MD, Borys DJ. Acute methotrexate ingestions in adults: a report of serious clinical effects and treatments. J Toxicol. 2014;2014:214574. doi:10.1155/2014/214574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. The effect of age and renal function on the efficacy and toxicity of methotrexate in rheumatoid arthritis. Rheumatoid Arthritis Clinical Trial Archive Group. J Rheumatol. 1995;22(2):218–23. http://www.ncbi.nlm.nih.gov/pubmed/7738941. Accessed 30 Sept 2015.

  172. Katchamart W, Trudeau J, Phumethum V, Bombardier C. Methotrexate monotherapy versus methotrexate combination therapy with non-biologic disease modifying anti-rheumatic drugs for rheumatoid arthritis. Cochrane Database Syst Rev. 2010;4:CD008495. doi:10.1002/14651858.CD008495.

    Google Scholar 

  173. Fotoohi K, Skärby T, Söderhäll S, Peterson C, Albertioni F. Interference of 7-hydroxymethotrexate with the determination of methotrexate in plasma samples from children with acute lymphoblastic leukemia employing routine clinical assays. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;817(2):139–44. doi:10.1016/j.jchromb.2004.11.037.

    Article  CAS  PubMed  Google Scholar 

  174. Widemann BC, Balis FM, Adamson PC. Dihydrofolate reductase enzyme inhibition assay for plasma methotrexate determination using a 96-well microplate reader. Clin Chem. 1999;45(2):223–8. http://www.ncbi.nlm.nih.gov/pubmed/9931044. Accessed 21 Sept 2015.

  175. den Boer E, Koch BCP, Huisman R, de Jonge R. Using fluorescence polarization immunoassay for determination of erythrocyte methotrexate polyglutamates, a quick and easy test? Ther Drug Monit. 2014;36(6):819–23. doi:10.1097/FTD.0000000000000085.

    Article  CAS  Google Scholar 

  176. Rattu MA, Shah N, Lee JM, Pham AQ, Marzella N. Glucarpidase (voraxaze), a carboxypeptidase enzyme for methotrexate toxicity. P T. 2013;38(12):732–44. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3875266&tool=pmcentrez&rendertype=abstract. Accessed 30 Sept 2015.

  177. Position statement and practice guidelines on the use of multi-dose activated charcoal in the treatment of acute poisoning. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol. 1999;37(6):731–51. http://www.ncbi.nlm.nih.gov/pubmed/10584586. Accessed 14 Jan 2016.

  178. Gadgil SD, Damle SR, Advani SH, Vaidya AB. Effect of activated charcoal on the pharmacokinetics of high-dose methotrexate. Cancer Treat Rep. 1982;66(5):1169–71. http://www.ncbi.nlm.nih.gov/pubmed/7083219. Accessed 14 Jan 2016.

  179. Proudfoot AT, Krenzelok EP, Vale JA. Position paper on urine alkalinization. J Toxicol Clin Toxicol. 2004;42(1):1–26. http://www.ncbi.nlm.nih.gov/pubmed/15083932. Accessed 14 Jan 2016.

  180. Christensen ML, Rivera GK, Crom WR, Hancock ML, Evans WE. Effect of hydration on methotrexate plasma concentrations in children with acute lymphocytic leukemia. J Clin Oncol. 1988;6(5):797–801. http://www.ncbi.nlm.nih.gov/pubmed/3163362. Accessed 14 Jan 2016.

  181. Sand TE, Jacobsen S. Effect of urine pH and flow on renal clearance of methotrexate. Eur J Clin Pharmacol. 1981;19(6):453–6. http://www.ncbi.nlm.nih.gov/pubmed/7250179. Accessed 14 Jan 2016.

  182. Kearney TE. Bicarbonate, sodium. In: Olson K, editor. Poisoning & drug overdose. 6th ed. New York: McGraw Hill Medical; 2012. p. 458–60.

    Google Scholar 

  183. Browman GP, Goodyear MD, Levine MN, Russell R, Archibald SD, Young JE. Modulation of the antitumor effect of methotrexate by low-dose leucovorin in squamous cell head and neck cancer: a randomized placebo-controlled clinical trial. J Clin Oncol. 1990;8(2):203–8. http://www.ncbi.nlm.nih.gov/pubmed/2405105. Accessed 12 Apr 2016.

  184. DeConti RC, Schoenfeld D. A randomized prospective comparison of intermittent methotrexate, methotrexate with leucovorin, and a methotrexate combination in head and neck cancer. Cancer. 1981;48(5):1061–72. http://www.ncbi.nlm.nih.gov/pubmed/7023649. Accessed 12 Apr 2016.

  185. Levitt M, Mosher MB, DeConti RC, et al. Improved therapeutic index of methotrexate with “leucovorin rescue”. Cancer Res. 1973;33(7):1729–34. http://www.ncbi.nlm.nih.gov/pubmed/4541737. Accessed 12 Apr 2016.

  186. Sterba J, Valík D, Bajciová V, Kadlecová V, Gregorová V, Mendelová D. High-dose methotrexate and/or leucovorin rescue for the treatment of children with lymphoblastic malignancies: do we really know why, when and how? Neoplasma. 2005;52(6):456–63. http://www.ncbi.nlm.nih.gov/pubmed/16284689. Accessed 14 Jan 2016.

  187. Cohen IJ, Wolff JE. How long can folinic acid rescue be delayed after high-dose methotrexate without toxicity? Pediatr Blood Cancer. 2014;61(1):7–10. doi:10.1002/pbc.24770.

    Article  CAS  PubMed  Google Scholar 

  188. Pinedo HM, Zaharko DS, Bull JM, Chabner BA. The reversal of methotrexate cytotoxicity to mouse bone marrow cells by leucovorin and nucleosides. Cancer Res. 1976;36(12):4418–24. http://www.ncbi.nlm.nih.gov/pubmed/1087180. Accessed 21 Sept 2015.

  189. Howland MA. Antidots in depth, folates: leucovorin (folinic acid) and folic acid. In: Hoffman RS, Howland MA, Lewin NA, Nelson LS, Goldfrank LR, editors. Goldfrank’s toxicologic emergencies. 10th ed. New York: McGraw Hill Education; 2015. p. 693–7.

    Google Scholar 

  190. Straw JA, Szapary D, Wynn WT. Pharmacokinetics of the diastereoisomers of leucovorin after intravenous and oral administration to normal subjects. Cancer Res. 1984;44(7):3114–9. http://www.ncbi.nlm.nih.gov/pubmed/6609768. Accessed 14 Jan 2016.

  191. Nahas A, Nixon PF, Bertino JR. Uptake and metabolism of N 5 -formyltetrahydrofolate by L1210 leukemia cells. Cancer Res. 1972;32(7):1416–21. http://www.ncbi.nlm.nih.gov/pubmed/5030574. Accessed 14 Jan 2016.

  192. Matherly LH, Barlowe CK, Goldman ID. Antifolate polyglutamylation and competitive drug displacement at dihydrofolate reductase as important elements in leucovorin rescue in L1210 cells. Cancer Res. 1986;46(2):588–93. http://www.ncbi.nlm.nih.gov/pubmed/2416428. Accessed 21 Sept 2015.

  193. Borsi JD, Sagen E, Romslo I, Moe PJ. Rescue after intermediate and high-dose methotrexate: background, rationale, and current practice. Pediatr Hematol Oncol. 1990;7(4):347–63. http://www.ncbi.nlm.nih.gov/pubmed/2268535.

  194. Matherly LH, Fry DW, Goldman ID. Role of methotrexate polyglutamylation and cellular energy metabolism in inhibition of methotrexate binding to dihydrofolate reductase by 5-formyltetrahydrofolate in Ehrlich ascites tumor cells in vitro. Cancer Res. 1983;43(6):2694–9. http://www.ncbi.nlm.nih.gov/pubmed/6189586. Accessed 14 Jan 2016.

  195. Goldman ID, Matherly LH. Biochemical factors in the selectivity of leucovorin rescue: selective inhibition of leucovorin reactivation of dihydrofolate reductase and leucovorin utilization in purine and pyrimidine biosynthesis by methotrexate and dihydrofolate polyglutamates. NCI Monogr. 1987;5:17–26. http://www.ncbi.nlm.nih.gov/pubmed/2448654. Accessed 14 Jan 2016.

  196. Schoo MM, Pristupa ZB, Vickers PJ, Scrimgeour KG. Folate analogues as substrates of mammalian folylpolyglutamate synthetase. Cancer Res. 1985;45(7):3034–41. http://www.ncbi.nlm.nih.gov/pubmed/3873989. Accessed 14 Jan 2016.

  197. Jolivet J. Biochemical and pharmacologic rationale for high-dose methotrexate. NCI Monogr. 1987;5:61–5. http://www.ncbi.nlm.nih.gov/pubmed/2448656. Accessed 14 Jan 2016.

  198. Zelcer S, Kellick M, Wexler LH, Gorlick R, Meyers PA. The Memorial Sloan Kettering Cancer Center experience with outpatient administration of high dose methotrexate with leucovorin rescue. Pediatr Blood Cancer. 2008;50(6):1176–80. doi:10.1002/pbc.21419.

    Article  PubMed  Google Scholar 

  199. Leucovorin Calcium Injection, USP. (package insert). Bedford laboratories. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/040347s010lbl.pdf. Accessed 15 Jan 2016.

  200. Kadia TM, Kantarjian HM, Thomas DA, et al. Phase II study of methotrexate, vincristine, pegylated-asparaginase, and dexamethasone (MOpAD) in patients with relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2015;90(2):120–4. doi:10.1002/ajh.23886.

    Article  CAS  PubMed  Google Scholar 

  201. Harris RE, McCallister JA, Provisor DS, Weetman RM, Baehner RL. Methotrexate/L-asparaginase combination chemotherapy for patients with acute leukemia in relapse: a study of 36 children. Cancer. 1980;46(9):2004–8. http://www.ncbi.nlm.nih.gov/pubmed/6968621. Accessed 14 Jan 2016.

  202. Reiter A, Schrappe M, Tiemann M, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Münster Group Trial NHL-BFM 90. Blood. 1999;94(10):3294–306. http://www.ncbi.nlm.nih.gov/pubmed/10552938. Accessed 11 Jan 2016.

  203. Balis FM, Savitch JL, Bleyer WA, Reaman GH, Poplack DG. Remission induction of meningeal leukemia with high-dose intravenous methotrexate. J Clin Oncol. 1985;3(4):485–9. http://www.ncbi.nlm.nih.gov/pubmed/3856631. Accessed 14 Jan 2016.

  204. Cohen IJ. Progression of osteosarcoma after high-dose methotrexate: over-rescue by folinic acid. Pediatr Hematol Oncol. 2003;20(8):579–81. http://www.ncbi.nlm.nih.gov/pubmed/14578026. Accessed 14 Jan 2016.

  205. Skärby TVC, Anderson H, Heldrup J, Kanerva JA, Seidel H, Schmiegelow K. High leucovorin doses during high-dose methotrexate treatment may reduce the cure rate in childhood acute lymphoblastic leukemia. Leukemia. 2006;20(11):1955–62. doi:10.1038/sj.leu.2404404.

    Article  PubMed  CAS  Google Scholar 

  206. Flombaum CD, Meyers PA. High-dose leucovorin as sole therapy for methotrexate toxicity. J Clin Oncol. 1999;17(5):1589–94. http://www.ncbi.nlm.nih.gov/pubmed/10334548. Accessed 14 Jan 2016.

  207. Wan SH, Huffman DH, Azarnoff DL, Stephens R, Hoogstraten B. Effect of route of administration and effusions on methotrexate pharmacokinetics. Cancer Res. 1974;34(12):3487–91. http://www.ncbi.nlm.nih.gov/pubmed/4429965. Accessed 14 Jan 2016.

  208. Pauley JL, Panetta JC, Schmidt J, Kornegay N, Relling MV, Pui C-H. Late-onset delayed excretion of methotrexate. (abstract only). Cancer Chemother Pharmacol. 2004;54(2):146–52. doi:10.1007/s00280-004-0797-y.

    Article  CAS  PubMed  Google Scholar 

  209. Simonini G, Paudyal P, Jones GT, Cimaz R, Macfarlane GJ. Current evidence of methotrexate efficacy in childhood chronic uveitis: a systematic review and meta-analysis approach. Rheumatology (Oxford). 2013;52(5):825–31. doi:10.1093/rheumatology/kes186.

    Article  CAS  Google Scholar 

  210. Mulligan K, Wedderburn LR, Newman S. The experience of taking methotrexate for juvenile idiopathic arthritis: results of a cross-sectional survey with children and young people. Pediatr Rheumatol. 2015;13(1):58. doi:10.1186/s12969-015-0052-6.

    Article  Google Scholar 

  211. Barnhart KT. Clinical practice. Ectopic pregnancy. N Engl J Med. 2009;361(4):379–87. doi:10.1056/NEJMcp0810384.

    Article  CAS  PubMed  Google Scholar 

  212. VORAXAZE® (glucarpidase) For Injection, for intravenous use (package insert). BTG International Inc. 2012. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/125327lbl.pdf. Accessed 15 Jan 2016.

  213. Meropol NJ, Creaven PJ, Petrelli NJ, White RM, Arbuck SG. Seizures associated with leucovorin administration in cancer patients. J Natl Cancer Inst. 1995;87(1):56–8. http://www.ncbi.nlm.nih.gov/pubmed/7666465. Accessed 30 Sept 2015.

  214. Glucarpidase, U.S. Food and Drug Administration, Drug Approvals and Databases. 2012. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm288016.htm. Accessed 1 Jan 2016.

  215. Phillips M, Smith W, Balan G, Ward S. Pharmacokinetics of glucarpidase in subjects with normal and impaired renal function. J Clin Pharmacol. 2008;48(3):279–84. doi:10.1177/0091270007311571.

    Article  CAS  PubMed  Google Scholar 

  216. Widemann BC, Balis FM, Kim A, et al. Glucarpidase, leucovorin, and thymidine for high-dose methotrexate-induced renal dysfunction: clinical and pharmacologic factors affecting outcome. J Clin Oncol. 2010;28(25):3979–86. doi:10.1200/JCO.2009.25.4540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Widemann BC. Using a lower dose of glucarpidase to reduce plasma levels of methotrexate. Clin Adv Hematol Oncol. 2013;11(5):324–5. http://www.ncbi.nlm.nih.gov/pubmed/23880720. Accessed 21 Sept 2015.

  218. Trifilio S, Ma S, Petrich A. Reduced-dose carboxypeptidase-G2 successfully lowers elevated methotrexate levels in an adult with acute methotrexate-induced renal failure. Clin Adv Hematol Oncol. 2013;11(5):322–3. http://www.ncbi.nlm.nih.gov/pubmed/23880719. Accessed 14 Jan 2016.

  219. Scott JR, Zhou Y, Cheng C, et al. Comparable efficacy with varying dosages of glucarpidase in pediatric oncology patients. Pediatr Blood Cancer. 2015;62(9):1518–22. doi:10.1002/pbc.25395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Albertioni F, Rask C, Eksborg S, et al. Evaluation of clinical assays for measuring high-dose methotrexate in plasma. Clin Chem. 1996;42(1):39–44. http://www.ncbi.nlm.nih.gov/pubmed/8565230. Accessed 14 Jan 2016.

  221. Buice RG, Evans WE, Karas J, et al. Evaluation of enzyme immunoassay, radioassay, and radioimmunoassay of serum methotrexate, as compared with liquid chromatography. Clin Chem. 1980;26(13):1902–4. http://www.ncbi.nlm.nih.gov/pubmed/7002366. Accessed 14 Jan 2016.

  222. Widemann BC. Practical considerations for the administration of glucarpidase in high-dose methotrexate (HDMTX) induced renal dysfunction. Pediatr Blood Cancer. 2015;62(9):1512–3. doi:10.1002/pbc.25577.

    Article  PubMed  Google Scholar 

  223. Meyers PA. Glucarpidase for the treatment of methotrexate-induced renal dysfunction and delayed methotrexate excretion. Pediatr Blood Cancer. 2015. doi:10.1002/pbc.25748.

    Google Scholar 

  224. Kumar N, Shirali AC. What is the best therapy for toxicity in the setting of methotrexate-associated acute kidney injury: high-flux hemodialysis or carboxypeptidase G2? Semin Dial. 2014;27(3):226–8. doi:10.1111/sdi.12220.

    Article  PubMed  Google Scholar 

  225. Wall SM, Johansen MJ, Molony DA, DuBose TD, Jaffe N, Madden T. Effective clearance of methotrexate using high-flux hemodialysis membranes. Am J Kidney Dis. 1996;28(6):846–54. http://www.ncbi.nlm.nih.gov/pubmed/8957036. Accessed 14 Jan 2016.

  226. Saland JM, Leavey PJ, Bash RO, Hansch E, Arbus GS, Quigley R. Effective removal of methotrexate by high-flux hemodialysis. Pediatr Nephrol. 2002;17(10):825–9. doi:10.1007/s00467-002-0946-7.

    Article  PubMed  Google Scholar 

  227. Abdelsalam MS, Althaf MM, Alfurayh O, Maghfoor I. The utility of online haemodiafiltration in methotrexate poisoning. BMJ Case Rep. 2014; 2014. doi:10.1136/bcr-2014-203530.

  228. Garlich FM, Goldfarb DS. Have advances in extracorporeal removal techniques changed the indications for their use in poisonings? Adv Chronic Kidney Dis. 2011;18(3):172–9. doi:10.1053/j.ackd.2011.01.009.

    Article  PubMed  Google Scholar 

  229. Vilay AM, Mueller BA, Haines H, Alten JA, Askenazi DJ. Treatment of methotrexate intoxication with various modalities of continuous extracorporeal therapy and glucarpidase. Pharmacotherapy. 2010;30(1):111. doi:10.1592/phco.30.1.111.

    Article  PubMed  Google Scholar 

  230. Connors NJ, Sise ME, Nelson LS, Hoffman RS, Smith SW. Methotrexate toxicity treated with continuous venovenous hemofiltration, leucovorin and glucarpidase. Clin Kidney J. 2014;7(6):590–2. doi:10.1093/ckj/sfu093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Grafft C, Gunderson H, Langman L, Farmer JC, Leung N. High-dose continuous venovenous hemofiltration combined with charcoal hemoperfusion for methotrexate removal. NDT Plus. 2011;4(2):87–9. doi:10.1093/ndtplus/sfr002.

    PubMed  PubMed Central  Google Scholar 

  232. Malbora B, Ozyurek E, Kocum AI, Ozbek N. Delayed recognition of intrathecal methotrexate overdose. J Pediatr Hematol Oncol. 2009;31(5):352–4. doi:10.1097/MPH.0b013e3181914709.

    Article  CAS  PubMed  Google Scholar 

  233. Widemann BC, Balis FM, Shalabi A, et al. Treatment of accidental intrathecal methotrexate overdose with intrathecal carboxypeptidase G2. J Natl Cancer Inst. 2004;96(20):1557–9. doi:10.1093/jnci/djh270.

    Article  CAS  PubMed  Google Scholar 

  234. Bleyer A, Choi M, Wang SJ, Fuller CD, Raney RB. Increased vulnerability of the spinal cord to radiation or intrathecal chemotherapy during adolescence: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2009;53(7):1205–10. doi:10.1002/pbc.22164.

    Article  PubMed  Google Scholar 

  235. Lee AC, Wong KW, Fong KW, So KT. Intrathecal methotrexate overdose. Acta Paediatr. 1997;86(4):434–7. http://www.ncbi.nlm.nih.gov/pubmed/9174236. Accessed 30 Sept 2015.

  236. Zeng G, Ma H, Wang X, et al. Paraplegia and paraparesis from intrathecal methotrexate and cytarabine contaminated with trace amounts of vincristine in China during 2007. J Clin Oncol. 2011;29(13):1765–70. doi:10.1200/JCO.2010.32.7072.

    Article  CAS  PubMed  Google Scholar 

  237. Finkelstein Y, Zevin S, Heyd J, Bentur Y, Zigelman Y, Hersch M. Emergency treatment of life-threatening intrathecal methotrexate overdose. Neurotoxicology. 2004;25(3):407–10. doi:10.1016/j.neuro.2003.10.004.

    Article  PubMed  Google Scholar 

  238. Bleyer WA, Poplack DG, Simon RM. “Concentration x time” methotrexate via a subcutaneous reservoir: a less toxic regimen for intraventricular chemotherapy of central nervous system neoplasms. Blood. 1978;51(5):835–42. http://www.ncbi.nlm.nih.gov/pubmed/638249. Accessed 30 Sept 2015.

  239. Brugnoletti F, Morris EB, Laningham FH, et al. Recurrent intrathecal methotrexate induced neurotoxicity in an adolescent with acute lymphoblastic leukemia: serial clinical and radiologic findings. Pediatr Blood Cancer. 2009;52(2):293–5. doi:10.1002/pbc.21764.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Trinkle R, Wu JK. Intrathecal methotrexate overdoses. Acta Paediatr. 1998;87(1):116–7. http://www.ncbi.nlm.nih.gov/pubmed/9510464. Accessed 30 Sept 2015.

  241. Ettinger LJ, Freeman AI, Creaven PJ. Intrathecal methotrexate overdose without neurotoxicity: case report and literature review. Cancer. 1978;41(4):1270–3. http://www.ncbi.nlm.nih.gov/pubmed/346194. Accessed 30 Sept 2015.

  242. Jakobson AM, Kreuger A, Mortimer O, Henningsson S, Seidel H, Moe PJ. Cerebrospinal fluid exchange after intrathecal methotrexate overdose. A report of two cases. Acta Paediatr. 1992;81(4):359–61. http://www.ncbi.nlm.nih.gov/pubmed/1606401. Accessed 30 Sept 2015.

  243. Ettinger LJ. Pharmacokinetics and biochemical effects of a fatal intrathecal methotrexate overdose. Cancer. 1982;50(3):444–50. http://www.ncbi.nlm.nih.gov/pubmed/6178493. Accessed 14 Jan 2016.

  244. Jardine LF, Ingram LC, Bleyer WA. Intrathecal leucovorin after intrathecal methotrexate overdose. J Pediatr Hematol Oncol. 1996;18(3):302–4. http://www.ncbi.nlm.nih.gov/pubmed/8689347. Accessed 30 Sept 2015.

  245. Spiegel RJ, Cooper PR, Blum RH, Speyer JL, McBride D, Mangiardi J. Treatment of massive intrathecal methotrexate overdose by ventriculolumbar perfusion. N Engl J Med. 1984;311(6):386–8. doi:10.1056/NEJM198408093110607.

    Article  CAS  PubMed  Google Scholar 

  246. Shapiro WR, Young DF, Mehta BM. Methotrexate: distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. N Engl J Med. 1975;293(4):161–6. doi:10.1056/NEJM197507242930402.

    Article  CAS  PubMed  Google Scholar 

  247. Bleyer AW. Clinical pharmacology of intrathecal methotrexate. II. An improved dosage regimen derived from age-related pharmacokinetics. Cancer Treat Rep. 1977;61(8):1419–25. http://www.ncbi.nlm.nih.gov/pubmed/579164. Accessed 14 Jan 2016.

  248. Bleyer WA, Dedrick RL. Clinical pharmacology of intrathecal methotrexate. I. Pharmacokinetics in nontoxic patients after lumbar injection. Cancer Treat Rep. 1977;61(4):703–8. http://www.ncbi.nlm.nih.gov/pubmed/577895. Accessed 30 Sept 2015.

  249. Bleyer WA, Drake JC, Chabner BA. Neurotoxicity and elevated cerebrospinal-fluid methotrexate concentration in meningeal leukemia. N Engl J Med. 1973;289(15):770–3. doi:10.1056/NEJM197310112891503.

    Article  CAS  PubMed  Google Scholar 

  250. Finkelstein Y, Zevin S, Raikhlin-Eisenkraft B, Bentur Y. Intrathecal methotrexate neurotoxicity: clinical correlates and antidotal treatment. Environ Toxicol Pharmacol. 2005;19(3):721–5. doi:10.1016/j.etap.2004.12.031.

    Article  CAS  PubMed  Google Scholar 

  251. Gottschling S, Reinhard H, Meyer S, Krenn T, Graf N, Strowitzki M. Severe encephalopathy caused by intraparenchymal methotrexate instillation due to the design of the catheter. Med Pediatr Oncol. 2003;41(5):491–2. doi:10.1002/mpo.10117.

    Article  PubMed  Google Scholar 

  252. Ziemińska E, Stafiej A, Łazarewicz JW. Role of group I metabotropic glutamate receptors and NMDA receptors in homocysteine-evoked acute neurodegeneration of cultured cerebellar granule neurones. Neurochem Int. 2003;43(4–5):481–92. http://www.ncbi.nlm.nih.gov/pubmed/12742095. Accessed 30 Sept 2015.

  253. Cronstein BN, Naime D, Ostad E. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest. 1993;92(6):2675–82. doi:10.1172/JCI116884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Quinn CT, Griener JC, Bottiglieri T, Arning E, Winick NJ. Effects of intraventricular methotrexate on folate, adenosine, and homocysteine metabolism in cerebrospinal fluid. J Pediatr Hematol Oncol. 2004;26(6):386–8. http://www.ncbi.nlm.nih.gov/pubmed/15167354. Accessed 30 Sept 2015.

  255. Quinn CT, Griener JC, Bottiglieri T, Hyland K, Farrow A, Kamen BA. Elevation of homocysteine and excitatory amino acid neurotransmitters in the CSF of children who receive methotrexate for the treatment of cancer. J Clin Oncol. 1997;15(8):2800–6. http://www.ncbi.nlm.nih.gov/pubmed/9256122. Accessed 30 Sept 2015.

  256. Li Y, Vijayanathan V, Gulinello M, Cole PD. Intrathecal methotrexate induces focal cognitive deficits and increases cerebrospinal fluid homocysteine. Pharmacol Biochem Behav. 2010;95(4):428–33. doi:10.1016/j.pbb.2010.03.003.

    Article  CAS  PubMed  Google Scholar 

  257. Surtees R, Clelland J, Hann I. Demyelination and single-carbon transfer pathway metabolites during the treatment of acute lymphoblastic leukemia: CSF studies. J Clin Oncol. 1998;16(4):1505–11. http://www.ncbi.nlm.nih.gov/pubmed/9552059. Accessed 30 Sept 2015.

  258. Kishi T, Tanaka Y, Ueda K. Evidence for hypomethylation in two children with acute lymphoblastic leukemia and leukoencephalopathy. Cancer. 2000;89(4):925–31. http://www.ncbi.nlm.nih.gov/pubmed/10951359. Accessed 30 Sept 2015.

  259. Bernini JC, Fort DW, Griener JC, Kane BJ, Chappell WB, Kamen BA. Aminophylline for methotrexate-induced neurotoxicity. Lancet Lond Engl. 1995;345(8949):544–7. http://www.ncbi.nlm.nih.gov/pubmed/7776773. Accessed 29 Aug 2015.

  260. Szawarski P, Chapman CS. A woman who couldn’t speak: report of methotrexate neurotoxicity. Postgrad Med J. 2005;81(953):194–5. doi:10.1136/pgmj.2003.018267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Riva L, Conter V, Rizzari C, Jankovic M, Sala A, Milani M. Successful treatment of intrathecal methotrexate overdose with folinic acid rescue: a case report. Acta Paediatr. 1999;88(7):780–2. http://www.ncbi.nlm.nih.gov/pubmed/10447141. Accessed 30 Sept 2015.

  262. Bradley AM, Buie LW, Kuykendal A, Voorhees PM. Successful use of intrathecal carboxypeptidase G2 for intrathecal methotrexate overdose: a case study and review of the literature. Clin Lymphoma Myeloma Leuk. 2013;13(2):166–70. doi:10.1016/j.clml.2012.09.004.

    Article  CAS  PubMed  Google Scholar 

  263. Dichiro G. Movement of the cerebrospinal fluid in human beings. Nature. 1964;204:290–1. http://www.ncbi.nlm.nih.gov/pubmed/14212432. Accessed 15 Jan 2016.

  264. Addiego JE, Ridgway D, Bleyer WA. The acute management of intrathecal methotrexate overdose: pharmacologic rationale and guidelines. J Pediatr. 1981;98(5):825–8. http://www.ncbi.nlm.nih.gov/pubmed/6971923. Accessed 30 Sept 2015.

  265. O’Marcaigh AS, Johnson CM, Smithson WA, et al. Successful treatment of intrathecal methotrexate overdose by using ventriculolumbar perfusion and intrathecal instillation of carboxypeptidase G2. Mayo Clin Proc. 1996;71(2):161–5. doi:10.1016/S0025-6196(11)64508-4.

    Article  PubMed  Google Scholar 

  266. Gosselin S, Isbister GK. Re: treatment of accidental intrathecal methotrexate overdose. J Natl Cancer Inst. 2005;97(8):609–10. doi:10.1093/jnci/dji108. author reply 610–611.

    Article  PubMed  Google Scholar 

  267. Adamson PC, Balis FM, McCully CL, et al. Rescue of experimental intrathecal methotrexate overdose with carboxypeptidase-G2. J Clin Oncol. 1991;9(4):670–4. http://www.ncbi.nlm.nih.gov/pubmed/2066764. Accessed 30 Sept 2015.

  268. Vijayanathan V, Gulinello M, Ali N, Cole PD. Persistent cognitive deficits, induced by intrathecal methotrexate, are associated with elevated CSF concentrations of excitotoxic glutamate analogs and can be reversed by an NMDA antagonist. Behav Brain Res. 2011;225(2):491–7. doi:10.1016/j.bbr.2011.08.006.

    Article  CAS  PubMed  Google Scholar 

  269. Feldkamp M, Carey JC. Clinical teratology counseling and consultation case report: low dose methotrexate exposure in the early weeks of pregnancy. Teratology. 1993;47(6):533–9. doi:10.1002/tera.1420470605.

    Article  CAS  PubMed  Google Scholar 

  270. Poggi SH, Ghidini A. Importance of timing of gestational exposure to methotrexate for its teratogenic effects when used in setting of misdiagnosis of ectopic pregnancy. Fertil Steril. 2011;96(3):669–71. doi:10.1016/j.fertnstert.2011.06.014.

    Article  CAS  PubMed  Google Scholar 

  271. Martín MC, Barbero P, Groisman B, Aguirre MÁ, Koren G. Methotrexate embryopathy after exposure to low weekly doses in early pregnancy. Reprod Toxicol. 2014;43:26–9. doi:10.1016/j.reprotox.2013.10.005.

    Article  PubMed  CAS  Google Scholar 

  272. Hyoun SC, Običan SG, Scialli AR. Teratogen update: methotrexate. Birth Defects Res A Clin Mol Teratol. 2012;94(4):187–207. doi:10.1002/bdra.23003.

    Article  CAS  PubMed  Google Scholar 

  273. Lewden B, Vial T, Elefant E, Nelva A, Carlier P, Descotes J. Low dose methotrexate in the first trimester of pregnancy: results of a French collaborative study. J Rheumatol. 2004;31(12):2360–5. http://www.ncbi.nlm.nih.gov/pubmed/15570635. Accessed 4 Oct 2015.

  274. Weber-Schoendorfer C, Chambers C, Wacker E, et al. Pregnancy outcome after methotrexate treatment for rheumatic disease prior to or during early pregnancy: a prospective multicenter cohort study. Arthritis Rheumatol (Hoboken, NJ). 2014;66(5):1101–10. doi:10.1002/art.38368.

    Article  CAS  Google Scholar 

  275. French AE, Koren G. Effect of methotrexate on male fertility. Can Fam Physician. 2003;49:577–8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2214217&tool=pmcentrez&rendertype=abstract. Accessed 4 Oct 2015.

  276. Weber-Schoendorfer C, Hoeltzenbein M, Wacker E, Meister R, Schaefer C. No evidence for an increased risk of adverse pregnancy outcome after paternal low-dose methotrexate: an observational cohort study. Rheumatology. 2013;53(4):757–63. doi:10.1093/rheumatology/ket390.

    Article  PubMed  CAS  Google Scholar 

  277. Johns DG, Rutherford LD, Leighton PC, Vogel CL. Secretion of methotrexate into human milk. Am J Obstet Gynecol. 1972;112(7):978–80. http://www.ncbi.nlm.nih.gov/pubmed/5042796. Accessed 4 Oct 2015.

  278. Thorne JC, Nadarajah T, Moretti M, Ito S. Methotrexate use in a breastfeeding patient with rheumatoid arthritis. J Rheumatol. 2014;41(11):2332. doi:10.3899/jrheum.140263.

    Article  PubMed  Google Scholar 

  279. Visser K, Katchamart W, Loza E, et al. Multinational evidence-based recommendations for the use of methotrexate in rheumatic disorders with a focus on rheumatoid arthritis: integrating systematic literature research and expert opinion of a broad international panel of rheumatologists in the 3E. Ann Rheum Dis. 2009;68(7):1086–93. doi:10.1136/ard.2008.094474.

    Article  CAS  PubMed  Google Scholar 

  280. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317(17):1098. doi:10.1056/NEJM198710223171717.

    CAS  PubMed  Google Scholar 

  281. West nomogram: estimating body surface area of infants and young children. http://stedmansonline.com/webFiles/Dict-Stedmans28/APP25.pdf. Accessed 15 Jan 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yedidia Bentur .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Bentur, Y., Lurie, Y. (2017). Methotrexate. In: Brent, J., et al. Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-17900-1_109

Download citation

Publish with us

Policies and ethics