Competency-Based Personalization Process for Smart Learning Environments

  • Gilbert PaquetteEmail author
Living reference work entry


This chapter is a synthesis on the role of competency models in smart learning environments. A formal definition of competency, integrating the notions of skill/attitudes, knowledge, and performance, provides a foundation for the discussion. Concrete examples and tools will illustrate the role of competencies to help personalize learning scenarios, a central goal for smart learning environments. Competency as an input to and as an outcome of the learning process will be integrated in a learning design methodology, including user models and e-portfolios. A method for comparing competency will serve in the definition of assistance agents or recommenders. Finally, a number of research challenges will be identified.


Competency Learning objectives Personalization Adaptation Learning design Learning scenarios Recommender systems Advisor systems 


  1. ACRL. (2009). Information literacy competency standards for higher education.
  2. Adomavicus, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749.CrossRefGoogle Scholar
  3. Allemang, D., & Hendler, J. (2011). Semantic web for the working ontologist (2nd ed.). Morgan-Kaufmann.Google Scholar
  4. ANMC. (2009). National competency standards for the registered nurse (online).
  5. Basque, J., Dufresne, A., Paquette, G., Léonard, M., Lundgren-Cayrol, K., & Prom Tep, S. (2003). Vers un modèle conceptuel générique de système d’assistance pour le téléapprentissage. Revue STICEF, 10. France.Google Scholar
  6. Basque, J., & Ruelland, D. (2007). InfoCompétences+, développement d’un outil informatisé d’autodiagnostic des compétences informationnelles destine aux étudiants universitaires.
  7. Bates, T. (2014). The strengths and weaknesses of competency-based learning in a digital age.
  8. Bélisle, C., & Linard, M. (1996). Quelles nouvelles compétences des acteurs de la formation dans le contexte des TIC? Éducation Permanente, 127(2), 19–47.Google Scholar
  9. Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals (Handbook I: Cognitive domain). New York, NY: Longman.Google Scholar
  10. Boyatzis, R. E. (1982). The competent manager: A model for effective performance. New York, NY: Wiley.Google Scholar
  11. Breuker, J. A., Bredeweg, B., Valente, A., & van de Velde, W. (1993). Reusable problem solving components: The CommonKADS library. In Ch. Löckenhoff, D. Fensel, & R. Studer (Eds.), Proceedings of the third KADS meeting (pp. 251–270). Munich, Germany: Siemens ZFE.Google Scholar
  12. Bruner, J. S. (1966). Towards a theory of instruction. Cambridge, MA: Harvard University Press.Google Scholar
  13. Brusilovsky, P., Kobsa, A., & Vassileva, J. (Eds.). (1998). Adaptive hypertext and hypermedia. Dordrecht, The Netherlands/Boston, MA/London, UK: Kluwer.Google Scholar
  14. Chandrasekaran, B. (1983). Towards a taxonomy of problem solving types. AI Magazine, 4(4), 9–17.Google Scholar
  15. Chandrasekaran, B. (1987). Towards a functional architecture for intelligence based on generic information processing tasks. In Proceedings IJCAI-87, Milan, Italy, pp. 1183–1192.Google Scholar
  16. Dalziel, J. R. (2005). LAMS. Learning activity management system 2.0.
  17. Daniel, J. (2014). Making sense of MOOCs: Musings in a maze of myth, paradox and possibility. Journal of Interactive Media in Education (2012). Accessed 19 Aug 2014.
  18. Denaux, R., Aroyo, L., & Dimitrova, V. (2005). An approach for ontology-based elicitation of user models to enable personalization on the semantic web. Paper presented at the 14th international World Wide Web conference, Chiba, Japan, 10–14 May 2005.Google Scholar
  19. Devedzic, V. (2006). Semantic web and education (Integrated series in information systems, Vol. 12, p. 353). New York, NY: Springer.Google Scholar
  20. DISCAS. (2009). Profil de competence de l’élève en apprentissage (tableau-synthèse) (online).
  21. Dolog, P., Henze, N., Nejdl, W., & Sintek, M. (2004a). The personal reader: Personalizing and enriching learning resources using semantic web technologies. Paper presented at the 3rd International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, Eindhoven University, Eindhoven, The Netherlands, 23–26 Aug 2004.Google Scholar
  22. Dolog, P., Henze, N., Nejdl, W., & Sintek, M. (2004b). Towards the adaptive semantic web (Lecture notes in computer science). Springer.Google Scholar
  23. EC. (2006). Recommendation 2006/962/EC of the European Parliament and of the Council of 18 December 2006 on key competences for lifelong learning. Official Journal L 394 of 30.12.2006.Google Scholar
  24. Educause. (2014). Learning analytics.
  25. Frankowski, D., Lam, S. K., Sen, S., Maxwell Harper, F., & Yilek, S., … Riedl, J. (2010, August). Recommenders everywhere: The WikiLens community-maintained recommender system. Retrieved from Scholar
  26. Friedlander, P. (1996). Competency-driven, component-based curriculum architecture. Performance and Instruction, 35(2), 14–21.CrossRefGoogle Scholar
  27. Gagné, R. M. (1970). The conditions of learning (2nd ed.). New York, NY: Holt, Rhinehart & Winston.Google Scholar
  28. Girard, J., Paquette, G., Miara, A., & Lundgren-Cayrol, K. (1999). Intelligent assistance for web-based telelearning. In S. Lajoie & M. Vivet (Eds.), Proceedings of AI-Ed’99, in AI and Education, open learning environments (pp. 561–569). IOS Press.Google Scholar
  29. Griffiths, D., Blat, J., Garcia, R., Votgen, H., & Kwong, K. L. (2005). Learning design tools. In R. Koper & C. Tattersall (Eds.), Learning design – A handbook on modelling and delivering networked education and training (pp. 109–136). Springer.Google Scholar
  30. Harrow, A. J. (1972). A taxonomy of the psychomotor domain. New York, NY: David McKay Co.Google Scholar
  31. Hartig, J., Klieme, E., & Leutner, D. (2008). Assessment of competencies in educational contexts. Cambridge, MA: Hogrefe.Google Scholar
  32. Hayes-Roth, B. (1995). An architecture for adaptive intelligent systems. Artificial Intelligence, 72(1–2), 329–365. doi:10.1016/0004-3702(94)00004-KCrossRefGoogle Scholar
  33. Hayes-Roth, F., Waterman, D. A., & Lenat, D. B. (1984). Building expert systems. Reading, MA: Addison-Wesley.Google Scholar
  34. Heath, T., & Bizer, C. (2011). In Linked data – Evolving the web into a global data space (Synthesis lectures on the semantic web: Theory and technology). Morgan and ClaypoolGoogle Scholar
  35. Hollands, F., & Tirthali, D. (2014). MOOCs: Expectations and reality. Columbia University Teachers’ College.
  36. IMS_LD. (2003). Learning design specification. Accessed 19 Aug 2014.
  37. IMS-RDCEO. (2002). Reusable definition of competency and educational objective.
  38. Inchauspé Report. (1997). Reaffirming the mission of our schools – A new direction for success.
  39. Jannack, D., Zanker, M., Felfering, M., & Friedrich, G. (2011). Recommender systems, an introduction. Cambridge University Press.Google Scholar
  40. Kierstead, J. (1998, online in 2009). Compétences et CCHA. Direction générale des politiques, de la recherche et des communications. Commission de la fonction publique du Canada.
  41. Krathwohl, D. R., Bloom, B. S., & Masia, B. B. (1964). Taxonomy of educational objectives: The classification of educational goals (Handbook II: Affective domain). New York, NY: Longman.Google Scholar
  42. Le Boterf, G. (1999). L’ingénierie des compétences (2nd ed.). Paris, France: Éditions d’Organisation.Google Scholar
  43. Leontiev, A. N. (1976). Le développement du psychisme (3rd ed.). Paris, France: Éditions Sociales.Google Scholar
  44. Lundgren-Cayrol, K., Paquette, G., Miara, A., Bergeron, F., Rivard, J., & Rosca, I. (2001). Explor@ advisory agent: Tracing the student’s trail. In WebNet’01 conference, Orlando, FL.Google Scholar
  45. Martin, B. L., & Briggs, L. (1986). The affective and cognitive domains: Integration for instruction and research. Englewood Cliffs, NJ: Educational Technology.Google Scholar
  46. McDermott, J. (1988). Preliminary steps towards a taxonomy of problem-solving methods. In S. Marcus (Ed.), Automating knowledge acquisition for expert systems (pp. 225–255). Boston, MA: Kluwer.CrossRefGoogle Scholar
  47. Moodle. (2014). The Moodle LCMS portal.
  48. Moulet, L., Marino, O., Hotte, R., & Labat, J.-M. (2008). A framework for a competency-driven, multi-viewpoint and evolving learner model. In 9th international conference on intelligent tutoring systems, Montréal, QC, 23–27 June 2008.Google Scholar
  49. Open edX. (2014). The Open edX MOOC platform. Accessed 10 June 2014.
  50. OWL. (2004). Ontology language overview – W3C recommendation.
  51. Paquette, G. (2003). Instructional engineering for network-based learning. San Francisco, CA: Pfeiffer/Wiley Publishing.Google Scholar
  52. Paquette, G. (2007). An ontology and a software framework for competency modeling and management. Educational Technology and Society, Special Issue on “Advanced Technologies for Life-Long Learning”, 10(3), 1–21.Google Scholar
  53. Paquette, G. (2008). Graphical ontology modeling language for learning environments. Technology, Instruction and Cognition. Old City Publishing.Google Scholar
  54. Paquette, G. (2010a). Ontology-based educational modelling – Making IMS-LD visual. Technology, Instruction, Cognition and Learning, 7(3–4), 263–296, Old City Publishing.Google Scholar
  55. Paquette, G. (2010b). Visual knowledge modeling for semantic web technologies: Models and ontologies (pp. 302–324). IGI Global.Google Scholar
  56. Paquette, G. (2014). A competency-based ontology for learning design repositories. International Journal of Advanced Computer Science and Applications, 5(1), 55–62.CrossRefGoogle Scholar
  57. Paquette, G., & Magnan, F. (2008). An executable model for virtual campus environments. In H.-H. Adelsberger, Kinshuk, J.-M. Pawlowski, & D. Sampson (Eds.), International handbook on information technologies for education and training (pp. 365–405).Google Scholar
  58. Paquette, G., & Marino, O. (2011). A multi-actor ontology-based assistance model: A contribution to the adaptive semantic web in intelligent and adaptive. In S. Graf, F. Lin, Kinshuk, & R. McGreal (Eds.), Learning systems: Technology-enhanced support for learners and teachers (pp. 213–228). IGI Global.Google Scholar
  59. Paquette, G., Pachet, F., Giroux, S., & Girard, J. (1996). EpiTalk: Generating advisor agents for existing information systems. Journal of Artificial Intelligence in Education, 7(3–4), 349–379.Google Scholar
  60. Paquette, G., Rosca, I., De la Teja, I., Léonard, M., & Lundgren-Cayrol, K. (2001). Web-based support for the instructional engineering of e-learning systems. In WebNet’01 conference, Orlando, FL.Google Scholar
  61. Paquette, G., Rosca, I., Mihaila, S., & Masmoudi, A. (2006). TELOS, a service-oriented framework to support learning and knowledge management. In S. Pierre (Ed.), E-learning networked environments and architectures: A knowledge processing perspective. Springer.Google Scholar
  62. Paquette, G., & Tchounikine, P. (1999). Towards a knowledge engineering method for the construction of advisor systems. In S. Lajoie & M. Vivet (Eds.), Proceedings of AI-Ed’99, in AI and Education, open learning environments, IOS Press.Google Scholar
  63. Pitrat, J. (1990). Métaconnaissance, avenir de l’intelligence artificielle. Paris, France: Hermès.Google Scholar
  64. Pitrat, J. (1993). Penser l’informatique autrement. Paris, France: Hermès.Google Scholar
  65. PSCC. (2009). Public Service Commission of Canada.
  66. Romiszowski, A. J. (1981). Designing instructional systems. Londres, UK/New York, NY: Kogan Page/Nichols Publishing.Google Scholar
  67. Schreiber, G., Wielinga, B., & Breuker, J. (1993). KADS – A principled approach to knowledge-based system development. San Diego, CA: Academic.Google Scholar
  68. Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. Educause Review, 46, 30.Google Scholar
  69. Steels, L. (1990). Components of expertise. AI Magazine, 11(2), 29–49.Google Scholar
  70. USDE. (2010). National education technology plan. p. 12.
  71. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological functions. Cambridge, MA: Harvard University Press.Google Scholar
  72. Wenger, E. (1987). Artificial intelligence and tutoring systems – Computational and cognitive approaches to the communication of knowledge. Los Altos, CA: Morgan-Kaufmann Publishers.Google Scholar
  73. Winkels, R. (1992). Explorations in intelligent tutoring and help. Amsterdam, The Netherlands: Ios Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LICEF Research CenterTélé-universitéMontréalCanada

Personalised recommendations