Skip to main content

Filter-Feeding Zoobenthos and Hydrodynamics

  • Living reference work entry
  • First Online:
Marine Animal Forests

Abstract

This chapter summarizes recent years’ studies on zoobenthic filter feeding in the sea. General principles are extracted based on experiments and mathematical modeling, mainly from own studies in shallow temperate Danish waters, in order to present primary characteristics of the sophisticated interplay between benthic filter feeders and hydrodynamics. Starting from the general concept of grazing potential and typical data on benthic population densities its realization is considered, first at the level of the individual organism through the processes of pumping and trapping of food particles for ingestion which relies on hydrodynamics. Studies have shown the importance of biomixing giving increased vertical seston flux due to mixing induced by exhalant jets of filter feeders, particularly in stagnant water but likely also in benthic boundary layers over mussel beds at moderate flow velocities. Mathematical models for such flows are discussed. At the scale of benthic boundary layers, mussels experience flows that are usually turbulent, but at the smaller scale of sublayers, colonies of bryozoans experience viscous-dominated flow that needs modeling. Finally, a case study from a particular shallow water area illustrates the effects of tide, current, and wind on vertical mixing, growth rates, and ecological implications. The main biophysical processes that may allow or prevent dense populations of filter feeders to control the phytoplankton biomass in shallow waters are presented along with remaining challenges for development of improved models for the benthic boundary layers, including effects of wall roughness, biomixing, and oscillating flows caused by waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Boegman L, Loewen MR, Hamblin PF, Culver D. Vertical mixing and weak stratification over zebra mussel colonies in western Lake Erie. Limnol Oceanogr. 2008;53:1093–110.

    Article  Google Scholar 

  • Butman CA, Freécheétte M, Geyer WR, Starczak VR. Flume experiments on food supply to the blue mussel Mytilus edulis L. as a function of boundary – layer flow. Limnol Oceanogr. 1994;39:1755–68.

    Article  Google Scholar 

  • Clausen I, Riisgård HU. Growth, filtration and respiration in the mussel Mytilus edulis: no evidence for physiological regulation of the filter-pump to nutritional needs. Mar Ecol Prog Ser. 1996;141:37–45.

    Article  Google Scholar 

  • Fréchette M, Butman CA, Geyer WR. The importance of boundary-layer flows in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnol Oceanogr. 1989;34:19–36.

    Google Scholar 

  • Hermansen P, Larsen PS, Riisgård HU. Colony growth rate of encrusting marine bryozoans (Electra pilosa and Celleporella hyalina). J Exp Mar Biol Ecol. 2001;263:1–23.

    Article  Google Scholar 

  • Jonsson PR, Petersen JK, Karlsson Ö, Loo L-O, Nilsson S. Particle depletion above experimental bivalve beds: in situ measurements and numerical modeling of bivalve filtration in the boundary layer. Limnol Oceanogr. 2005;50:1989–98.

    Article  Google Scholar 

  • Jørgensen CB. Biology of suspension feeding. Oxford: Pergamon Press; 1966. p. 358.

    Google Scholar 

  • Jørgensen CB. Bivalve filter feeding: hydrodynamics, bioenergetics, physiology and ecology. Fredensborg: Olsen & Olsen; 1990. p. 140.

    Google Scholar 

  • Jørgensen CB, Famme P, Kristensen HS, Larsen PS, Møhlenberg F, Riisgård HU. The bivalve pump. Mar Ecol Prog Ser. 1988;34:69–77.

    Article  Google Scholar 

  • Jumars PA. Concepts in biological oceanography. An interdisciplinary primer. New York: Oxford University Press; 1993. p. 348.

    Google Scholar 

  • Kotta J, Møhlenberg F. Grazing impact of Mytilus edulis L. and Dreissena polymorpha (Pallas) in the Gulf of Riga, Baltic Sea estimated from biodeposition rates of algal pigments. Ann Zool Fenn. 2002;39:151–60.

    Google Scholar 

  • Larsen PS, Riisgård HU. Biomixing generated by benthic filter-feeders: a diffusion model for near-bottom phytoplankton depletion. J Sea Res. 1997;37:81–90.

    Article  Google Scholar 

  • Larsen PS, Riisgård HU. Chimney spacing in incrusting bryozoan colonies (Membranipora membranacea): video observations and hydrodynamic modeling. Ophelia. 2001;54:167–76.

    Article  Google Scholar 

  • Larsen PS, Matlok SS, Riisgård HU. Bryozoan filter feeding in laminar wall layers: flume experiments and computer simulation. Vie Milieu. 1998;48:309–19.

    Google Scholar 

  • Lassen J, Kortegård M, Riisgård HU, Friedrichs M, Graf G, Larsen PS. Down-mixing of phytoplankton above filter-feeding mussels – interplay between water flow and biomixing. Mar Ecol Prog Ser. 2006;314:77–88.

    Article  Google Scholar 

  • Mann KH, Lazier JRN. Dynamics of marine ecosystems. Biological-physical interactions in the ocean. Cambridge: Blackwell; 1996. p. 1–394.

    Google Scholar 

  • Møller LF, Riisgård HU. Filter feeding in the burrowing amphipod Corophium volutator. Mar Ecol Prog Ser. 2006;322:213–24.

    Article  Google Scholar 

  • Muschenheim DK. The dynamics of near-bed seston flux and suspension-feeding benthos. J Mar Res. 1987;45:473–96.

    Article  Google Scholar 

  • O’Riordan CA, Monismith SG, Koseff JR. A study of concentration boundary-layer formation over a bed of model bivalves. Limnol Oceanogr. 1993;38:1712–29.

    Article  Google Scholar 

  • O’Riordan CA, Monismith SG, Koseff JR. The effect of bivalve excurrent jet dynamics on mass transfer in a benthic boundary layer. Limnol Oceanogr. 1995;40:330–44.

    Article  Google Scholar 

  • Petersen JK, Riisgård HU. Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. Mar Ecol Prog Ser. 1992;88:9–17.

    Article  Google Scholar 

  • Petersen JK, Maar M, Ysebaert T, Herman PMJ. Near-bed gradients in particles and nutrients above a mussel bed in the Limfjorden: influence of physical mixing and mussel filtration. Mar Ecol Prog Ser. 2013;490:137–46.

    Article  CAS  Google Scholar 

  • Riisgård HU. Suspension feeding in the polychaete Nereis diversicolor. Mar Ecol Prog Ser. 1991;70:29–37.

    Article  Google Scholar 

  • Riisgård HU. Filter-feeding in the polychaete Nereis diversicolor: a review. Neth J Aquat Ecol. 1994;28:453–8.

    Article  Google Scholar 

  • Riisgård HU. Filter feeding and plankton dynamics in a Danish fjord: a review of the importance of flow, mixing and density-driven circulation. J Environ Manage. 1998;53:195–207.

    Article  Google Scholar 

  • Riisgård HU. On measurement of filtration rate in bivalves – the stony road to reliable data, review and interpretation. Mar Ecol Prog Ser. 2001;211:275–91.

    Article  Google Scholar 

  • Riisgård HU. Filter-feeding mechanisms in crustaceans. In: Thiel M, Watling L, editors. Life styles and feeding biology, Volume II. The Natural History of Crustaceans. New York: Oxford University Press; 2015. p. 418–63.

    Google Scholar 

  • Riisgård HU, Banta GT. Irrigation and deposit feeding by the lugworm Arenicola marina, characteristics and secondary effects on the environment. A review of current knowledge. Vie Milieu. 1998;48:243–57.

    Google Scholar 

  • Riisgård HU, Kamermans P. Switching between deposit and suspension feeding in coastal zoobenthos. In: Reise K, editor. Ecological comparisons of sedimentary shores. Ecological studies. Berlin: Springer; 2001. p. 73–101.

    Chapter  Google Scholar 

  • Riisgård HU, Larsen PS. Filter-feeding in marine macro-invertebrates: pump characteristics, modelling and energy cost. Biol Rev. 1995;70:67–106.

    Article  PubMed  Google Scholar 

  • Riisgård HU, Larsen PS. Comparative ecophysiology of active zoobenthic filter-feeding, essence of current knowledge. J Sea Res. 2000;44:169–93.

    Article  Google Scholar 

  • Riisgård HU, Larsen PS. Particle-capture mechanisms in marine suspension-feeding invertebrates. Mar Ecol Prog Ser. 2010;418:255–93.

    Article  Google Scholar 

  • Riisgård HU, Larsen PS. Physiologically regulated valve-closure makes mussels long-term starvation survivors: test of hypothesis. J Molluscan Stud. 2015;81:303–7.

    Article  Google Scholar 

  • Riisgård HU, Manríquez P. Filter-feeding in fifteen marine ectoprocts (Bryozoa): particle capture and water pumping. Mar Ecol Prog Ser. 1997;154:223–39.

    Article  Google Scholar 

  • Riisgård HU, Schotge P. Surface deposit-feeding versus filter-feeding in the amphipod Corophium volutator. Mar Biol Res. 2007;3:421–7.

    Article  Google Scholar 

  • Riisgård HU, Seerup DF. Filtration rates in soft clam, Mya arenaria: effects of temperature and body size. Sarsia. 2003;88:425–8.

    Article  Google Scholar 

  • Riisgård HU, Christensen PB, Olesen NJ, Petersen JK, Møller MM, Andersen P. Biological structure in a shallow cove (Kertinge Nor, Denmark) – control by benthic nutrient fluxes and suspension-feeding ascidians and jellyfish. Ophelia. 1995;41:329–44.

    Article  Google Scholar 

  • Riisgård HU, Jürgensen C, Andersen FØ. Case study: Kertinge Nor. In: Jørgensen BB, Richardson K, editors. Eutrophication in coastal marine ecosystems, Coastal and estuarine studies, vol. 52. Washington, DC: American Geophysical Union; 1996a. p. 205–21.

    Chapter  Google Scholar 

  • Riisgård HU, Jürgensen C, Clausen T. Filter-feeding ascidians (Ciona intestinalis) in a shallow cove: implications of hydrodynamics for grazing impact. J Sea Res. 1996b;35:293–300.

    Article  Google Scholar 

  • Riisgård HU, Poulsen L, Larsen PS. Phytoplankton reduction in near-bottom water caused by filter-feeding Nereis diversicolor – implications for worm growth and population grazing impact. Mar Ecol Prog Ser. 1996c;141:47–54.

    Article  Google Scholar 

  • Riisgård HU, Jensen AS, Jürgensen C. Hydrography, near-bottom currents, and grazing impact of the filter-feeding ascidian Ciona intestinalis in a Danish fjord. Ophelia. 1998;49:1–16.

    Article  Google Scholar 

  • Riisgård HU, Kittner C, Seerup DF. Regulation of opening state and filtration rate in filter-feeding bivalves (Cardium edule, Mytilus edulis, Mya arenaria) in response to low algal concentration. J Exp Mar Biol Ecol. 2003;284:105–27.

    Article  Google Scholar 

  • Riisgård HU, Seerup DF, Hjort MH, Glob E, Larsen PS. Grazing impact of filter-feeding zoobenthos in a Danish fjord. J Exp Mar Biol Ecol. 2004;307:261–71.

    Article  Google Scholar 

  • Riisgård HU, Lassen J, Kittner C. Valve-gape response times in mussels (Mytilus edulis) – effects of laboratory preceding-feeding conditions and in situ tidally induced variation in phytoplankton biomass. J Shellfish Res. 2006;25:901–13.

    Article  Google Scholar 

  • Riisgård HU, Lassen J, Kortegaard M, Møller LF, Friedrichs M, Jensen MH, Larsen PS. Filter-feeding zoobenthos and importance of hydrodynamics in the shallow Odense Fjord (Denmark) – earlier and recent studies, perspectives and modelling. Estuar Coast Shelf Sci. 2007;75:281–95.

    Article  Google Scholar 

  • Riisgård HU, Jørgensen BH, Lundgreen K, Storti F, Walther JH, Meyer KE, Larsen PS. The exhalant jet of mussels, Mytilus edulis. Mar Ecol Prog Ser. 2011a;437:147–64.

    Article  Google Scholar 

  • Riisgård HU, Egede PP, Saavedra IB. Feeding behaviour of mussels, Mytilus edulis, with a mini-review of current knowledge. J Mar Res. 2011b. doi:10.1155/2011/312459 (13 pages, published online).

    Google Scholar 

  • Riisgård HU, Pleissner D, Lundgreen K, Larsen PS. Growth of mussels Mytilus edulis at algal (Rhodomonas salina) concentrations below and above saturation levels for reduced filtration rate. Mar Biol Res. 2013;9:1005–17.

    Article  Google Scholar 

  • Riisgård HU, Larsen PS, Pleissner D. Allometric equations for maximum filtration rate in blue mussels Mytilus edulis and importance of condition index. Helgol Mar Res. 2014;68:193–8.

    Article  Google Scholar 

  • Saurel C. Mussel production carrying capacity: the need for an in situ and multidisciplinary approach. PhD thesis, Bangor University; 2008.

    Google Scholar 

  • Saurel C, Petersen JK, Wiles PJ, Kaiser MJ. Turbulent mixing limits mussel feeding: direct estimates of feeding rate and vertical diffusivity. Mar Ecol Prog Ser. 2013;485:105–21.

    Article  Google Scholar 

  • van Duren LA, Herman PMJ, Sandee AJJ, Heip CHR. Effects of mussel filtering activity on boundary layer structure. J Sea Res. 2006;55:3–14.

    Article  Google Scholar 

  • Vedel A, Andersen BB, Riisgård HU. Field investigations of pumping activity of the facultatively filter-feeding polychaete Nereis diversicolor using an improved infrared phototransducer system. Mar Ecol Prog Ser. 1994;103:91–101.

    Article  Google Scholar 

  • Vogel S. Life in moving fluids. The physical biology of flow. New Jersey: Princeton University Press; 1994. p. 1–467.

    Google Scholar 

  • Wildish D, Kristmanson D. Importance to mussel of the benthic boundary layer. Can J Fish Aquat Sci. 1984;41:1618–25.

    Article  Google Scholar 

  • Wildish D, Kristmanson D. Benthic suspension feeders and flow. Cambridge, UK: Cambridge University Press; 1997. p. 1–409.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Ulrik Riisgård .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Riisgård, H.U., Larsen, P.S. (2015). Filter-Feeding Zoobenthos and Hydrodynamics. In: Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics