Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Development of Sex Differences

  • Ashlyn Swift-Gallant
  • Lindsay A. Coome
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_666-1



Activational effects

Transient effects of hormones that occur throughout life.

Asexual reproduction

Offspring produced from a single organism that inherits the entire genome of the parent organism.


Having two sets of chromosomes or double the number of chromosomes in the germ cell.


Cooperative breeding strategy in which usually one female and a few males are reproductively active, whereas the rest of the nonbreeding members provide care for the offspring of the colony and gather food and resources for the colony.


Having a set of chromosomes equal to the number in the germ cell.


Refers to the sex of a species that has two different sex chromosomes.


Refers to the sex of a species that has two of the same-sex chromosomes.

Intersexual competition

Mate choice, occurs when an individual is...

This is a preview of subscription content, log in to check access.


  1. Adkins-Regan, E. (2012). Hormonal organization and activation: evolutionary implications and questions. General and comparative endocrinology, 176(3), 279–285.Google Scholar
  2. Agrawal, A. F. (2001). Sexual selection and the maintenance of sexual reproduction. Nature, 411, 692–695.CrossRefPubMedGoogle Scholar
  3. Allen, L. S., Hines, M., Shryne, J. E., & Gorski, R. A. (1989). Two sexually dimorphic cell groups in the human brain. The Journal of Neuroscience, 9, 497–506.PubMedGoogle Scholar
  4. Arendash, G. W., & Gorski, R. A. (1983). Effects of discrete lesions of the sexually dimorphic nucleus of the preoptic area or other medial preoptic regions on the sexual behavior of male rats. Brain Research Bulletin, 10, 147–154.CrossRefPubMedGoogle Scholar
  5. Baillet, A., Mandon-Pépin, B., Veitia, R., & Cotinot, C. (2010). Genetics of early ovarian differentiation: Recent data. Biologie Aujourd’hui, 205, 201–221.CrossRefGoogle Scholar
  6. Bakker, J., & Brock, O. (2010). Early oestrogens in shaping reproductive networks: Evidence for a potential organisational role of oestradiol in female brain development. Journal of Neuroendocrinology, 22, 728–735.PubMedGoogle Scholar
  7. Bear, A., & Monteiro, A. (2013). Both cell-autonomous mechanisms and hormones contribute to sexual development in vertebrates and insects. BioEssays, 35, 725–732.CrossRefPubMedGoogle Scholar
  8. Bilde, T., Tuni, C., Elsayed, R., Pekár, S., & Toft, S. (2006). Death feigning in the face of sexual cannibalism. Biology Letters, 2, 23–25.CrossRefPubMedGoogle Scholar
  9. Buss, D. M. (1989). Sex differences in human mate preferences: Evolutionary hypotheses tested in 37 cultures. Behavioral and Brain Sciences, 12, 1–14.CrossRefGoogle Scholar
  10. Christov-Moore, L., Simpson, E. A., Coudé, G., Grigaityte, K., Iacoboni, M., & Ferrari, P. F. (2014). Empathy: Gender effects in brain and behavior. Neuroscience & Biobehavioral Reviews, 46, 604–627.CrossRefGoogle Scholar
  11. Clutton-Brock, T. H. (1989). Review lecture: mammalian mating systems. Proceedings of the Royal Society of London B: Biological Sciences, 236(1285), 339–372.Google Scholar
  12. Clutton-Brock, T. (2007). Sexual selection in males and females. Science, 318(5858), 1882–1885.Google Scholar
  13. Darwin, C. (1871). Sexual selection and the descent of man. Murray, London, 589.Google Scholar
  14. De Vries, G. J. (2004). Minireview: Sex differences in adult and developing brains: Compensation, compensation, compensation. Endocrinology, 145, 1063–1068.CrossRefPubMedGoogle Scholar
  15. Dewing, P., Chiang, C. W., Sinchak, K., Sim, H., Fernagut, P. O., Kelly, S., Chesselet, M. F., Micevych, P. E., Albrecht, K. H., Harley, V. R., & Vilain, E. (2006). Direct regulation of adult brain function by the male-specific factor SRY. Current Biology, 16, 415–420.CrossRefPubMedGoogle Scholar
  16. Glickman, S. E., Cunda, G. R., Drea, C. M., Conley, A. J., & Place, N. J. (2006). Mammalian sexual differentiation: Lessons from the spotted hyena. Trends in Endocrinology and Metabolism, 17, 349–356.CrossRefPubMedGoogle Scholar
  17. Gwynne, D. T. (2008). Sexual conflict over nuptial gifts in insects. Annual Review of Entomology, 53, 83–101.CrossRefPubMedGoogle Scholar
  18. Hendricks, S. E., & Scheetz, H. A. (1973). Interaction of hypothalamic structures in the mediation of male sexual behavior. Physiology & Behavior, 10, 711–716.CrossRefGoogle Scholar
  19. Holleley, C. E., Sarre, S. D., O’Meally, D., & Georges, A. (2016). Sex reversal in reptiles: Reproductive oddity or powerful driver of evolutionary change? Sexual Development, 10(5–6), 279–287.CrossRefPubMedGoogle Scholar
  20. Holmes, M. M., Goldman, B. D., Goldman, S. L., Seney, M. L., & Forger, N. G. (2009). Neuroendocrinology and sexual differentiation in eusocial mammals. Frontiers in Neuroendocrinology, 30, 519–533.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hörandl, E. (2009). A combinational theory for maintenance of sex. Heredity, 103, 445–457.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liow, L. H., Van Valen, L., & Stenseth, N. C. (2011). Red Queen: From populations to taxa and communities. Trents in Ecology & Evolution, 26, 349–358.CrossRefGoogle Scholar
  23. McCarthy, M. M., & Arnold, A. P. (2011). Reframing sexual differentiation of the brain. Nature Neuroscience, 14, 677–683.CrossRefPubMedPubMedCentralGoogle Scholar
  24. McCarthy, M. M., Arnold, A. P., Ball, G. F., Blaustein, J. D., & De Vries, G. J. (2012). Sex differences in the brain: The not so inconvenient truth. The Journal of Neuroscience, 32, 2241–2247.CrossRefPubMedPubMedCentralGoogle Scholar
  25. McFadden, D., Pasanen, E. G., Weldele, M. L., Glickman, S. E., & Place, N. J. (2006). Masculinized otoacoustic emissions in female spotted hyenas (Crocuta crocuta). Hormones and Behavior, 50, 285–292.CrossRefPubMedGoogle Scholar
  26. Otto, S. P., & Thomas, L. (2002). Resolving the paradox of sex and recombination. Nature Reviews, 3, 252–261.CrossRefPubMedGoogle Scholar
  27. Puts, D. (2016). Human sexual selection. Current Opinions in Psychology, 7, 28–32.CrossRefGoogle Scholar
  28. Savic, I., Berglund, H., Gulyas, B., & Roland, P. (2001). Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activations in humans. Neuron, 31, 661–668.CrossRefPubMedGoogle Scholar
  29. Shapiro, L. E., Leonard, C. M., Sessions, C. E., Dewsbury, D. A., & Insel, T. R. (1991). Comparative neuroanatomy of the sexually dimorphic hypothalamus in monogamous and polygamous voles. Brain Research, 541, 232–240.CrossRefPubMedGoogle Scholar
  30. Swift-Gallant, A., Mo, K., Peragine, D. E., Monks, D. A., & Holmes, M. M. (2015). Removal of reproductive suppression reveals latent sex differences in brain steroid hormone receptors in naked mole-rats, Heterocephalus glaber. Biology of Sex Differences, 6, 1–9.CrossRefGoogle Scholar
  31. Trivers, R. (1972). Parental investment and sexual selection (Vol. 136, p. 179). Cambridge, MA: Biological Laboratories, Harvard University.Google Scholar
  32. Wallen, K. (2009). The organizational hypothesis: Reflections on the 50th anniversary of the publication of Phoenix, Goy, Gerall, and Young (1959). Hormones and Behavior, 55, 561–565.CrossRefPubMedGoogle Scholar
  33. Wang, Z., Young, L. J., & Insel, T. R. (1999). Voles and vasopressin: A review of molecular, cellular, and behavioral studies of pair bonding and paternal behaviors. Progress in Brain Research, 119, 483–499.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Michigan State UniversityEast LansingUSA
  2. 2.University of TorontoTorontoCanada

Section editors and affiliations

  • Doug P. VanderLaan
    • 1
    • 2
  1. 1.Department of PsychologyUniversity of Toronto MississaugaMississaugaCanada
  2. 2.Child, Youth and Family DivisionCentre for Addiction and Mental HealthTorontoCanada