Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Brain Size and Intelligence

  • Joshua R. Lemert
  • Muhammad A. SpocterEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_3097-1

Synonyms

Definition

The intelligence of an animal is related to the external and intrinsic properties of the brain which determine its functions.

Introduction

To the common observer, it would seem obvious that animals differ in their intelligence and that human intelligence, at least from our own biased perspective, is far superior to that of other animals. But what exactly is animal intelligence and how is it linked to the parameters of the brain? Knowledge on animal intelligence is not only of interest to comparative ecologists, evolutionary psychologists, and neuroscientists, but it is also important to the general public as this helps shape public perception regarding welfare, care, and use of animals.

What Is Animal Intelligence?

One of the major obstacles in comparing intelligence across species remains the acceptance of a universally accepted definition of intelligence and how to measure it. In humans, intelligence in...

This is a preview of subscription content, log in to check access.

References

  1. Brown, C. (2015). Fish intelligence, sentience and ethics. Animal Cognition, 18, 1–17.CrossRefPubMedGoogle Scholar
  2. Bshary, R., Wickler, W., & Fricke, H. (2002). Fish cognition: A primate’s eye view. Animal Cognition, 5, 1–13.CrossRefPubMedGoogle Scholar
  3. Butler, A. B., & Hodos, W. (2005). Comparative vertebrate neuroanatomy (2nd ed.). Hoboken: Wiley-Liss.CrossRefGoogle Scholar
  4. Call, J., Hare, B., Carpenter, M., & Tomasello, M. (2004). Unwilling’ versus ‘unable’: Chimpanzees’ understanding of human intentional action. Developmental Science, 7, 488–498.CrossRefPubMedGoogle Scholar
  5. De Marco, R. J., & Menzel, R. (2005). Encoding spatial information in the waggle dance. The Journal of Experimental Biology, 208, 3885–3894.CrossRefPubMedGoogle Scholar
  6. Dicke, U., & Roth, G. (2016). Neuronal factors determining high intelligence. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150180.CrossRefGoogle Scholar
  7. Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N., & Emslie, H. (2000). A neural basis for general intelligence. Science, 289, 457–460.CrossRefPubMedGoogle Scholar
  8. Farris, S. M. (2008). Structural, functional and developmental convergence of the insect mushroom bodies with higher brain centers of vertebrates. Brain, Behavior and Evolution, 72, 1–15.CrossRefPubMedGoogle Scholar
  9. Farris, S. M., Abrams, A. I., & Strausfeld, N. J. (2004). Development and morphology of Class II Kenyon cells in the mushroom bodies of the honey bee, Apis mellifera. Journal of Comparative Neurology, 474, 325–339.CrossRefPubMedGoogle Scholar
  10. Fiorito, G., & Scotto, P. (1992). Observational-learning in Octopus vulgaris. Science, 256, 545–547.CrossRefPubMedGoogle Scholar
  11. Gallup, G. G., Jr. (1970). Chimpanzees: Self-recognition. Science, 167, 86–87.CrossRefGoogle Scholar
  12. Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24, 13–23.CrossRefGoogle Scholar
  13. Gunturkun, O. (2005). The avian ‘prefrontal cortex’ and cognition. Current Opinion in Neurobiology, 15, 686–693.CrossRefPubMedGoogle Scholar
  14. Heisenberg, M. (2003). Mushroom body memoir: From maps to models. Nature Reviews. Neuroscience, 4, 266–227.CrossRefPubMedGoogle Scholar
  15. Hochner, B., Shomrat, T., & Fiorito, G. (2006). The octopus: A model for comparative analysis of the evolution of learning and memory. The Biological Bulletin, 210, 308–317.CrossRefPubMedGoogle Scholar
  16. Hunt, G. R., Holzhaider, J. C., & Gray, R. D. (2007). Spontaneous metatool use by new Caledonian crows. Current Biology, 17, 1504–1507.CrossRefPubMedGoogle Scholar
  17. Jerison, H. (1973). Evolution of the brain and intelligence. New York: Academic.Google Scholar
  18. Jolly, A. (1966). Lemur social behavior and primate intelligence. Science, 153, 501–506.CrossRefPubMedGoogle Scholar
  19. Kendal, R. L., Custance, D. M., Kendal, J. R., Vale, G., Stoinski, T. S., Rakotomalala, N. L., & Rasamimanana, H. (2010). Evidence for social learning in wild lemurs (Lemur catta). Learning & Behavior, 38, 220–234.CrossRefGoogle Scholar
  20. Manger, P. R. (2013). Questioning the interpretations of behavioral observations of cetaceans: Is there really support for a special intellectual status for this mammalian order? Neuroscience, 250, 664–696.CrossRefPubMedGoogle Scholar
  21. Manger, P. R., Hemingway, J. Spocter, M. A., & Gallagher, A. (2012). The mass of the human brain: Is it a spandrel. In: S. Reynolds, & A. Gallagher (Eds.), African genesis: Perspectives on hominin evolution (Cambridge studies in biological and evolutionary anthropology). Cambridge: Cambridge University Press.Google Scholar
  22. Maseko, B. C., Spocter, M. A., Haagensen, M., & Manger, P. R. (2011). Volumetric analysis of the African elephant ventricular system. Anatomical Record (Hoboken), 294(8), 1412–1417.CrossRefGoogle Scholar
  23. Moroz, L. L. (2009). On the independent origins of complex brains and neurons. Brain, Behavior and Evolution, 74(3), 177–190.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nixon M., &Young, J.Z. (2003). The brains and lives of cephalopods. Oxford, UK: Oxford Biology.Google Scholar
  25. Perez-Orive, J., Mazor, O., Turner, G. C., Cassenaer, S., Wilson, R. I., & Laurent, G. (2002). Oscillations and sparsening of odor representations in the mushroom body. Science, 297, 359–365.CrossRefPubMedGoogle Scholar
  26. Povinelli, D. J., Nelson, K. E., & Boysen, S. T. (1990). Inferences about guessing and knowing by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 104, 203–210.CrossRefPubMedGoogle Scholar
  27. Prior, H., Schwarz, A., & Gunturkun, O. (2008). Mirror- induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biology, 6, e0060202.CrossRefGoogle Scholar
  28. Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Science., 9(5), 250–257.CrossRefGoogle Scholar
  29. Roth, G. (2015). Convergent evolution of complex brains and high intelligence. Philosophical Transactions of the Royal Society B, 370, 1684–92.Google Scholar
  30. Strausfeld, N. J. (2012). Arthropod brains. Evolution, functional elegance and historical significance. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
  31. Striedter, G. F. (2005). Principles of brain evolution. Sunderland: Sinauer Associates, Inc.Google Scholar
  32. Tomasello, M., Call, J., & Hare, B. (2003). Chimpanzees understand psychological states – The question is which ones and to what extent. Trends in Cognitive Science, 7, 153–156.CrossRefGoogle Scholar
  33. van Dongen, P. A. M. (1998). Brain size in vertebrates. In R. Nieuwenhuys, H. J. Ten Donkelaar, & C. Nicholson (Eds.), The central nervous system of vertebrates. Berlin: Springer.Google Scholar
  34. van Schaik, C. P. (2006). Why are some animals so smart? Scientific America, 294, 64–71.Google Scholar
  35. van Schaik, C. P., & Burkart, J. M. (2011). Social learning and evolution: The cultural intelligence hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 1008–1016.CrossRefGoogle Scholar
  36. Whiten, A., & van Schaik, C. P. (2007). The evolution of animal ‘cultures’ and social intelligence. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 603–620.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of AnatomyDes Moines UniversityDes MoinesUSA
  2. 2.School of Anatomical SciencesUniversity of the WitwatersrandJohannesburgSouth Africa

Section editors and affiliations

  • Catherine Salmon
    • 1
  1. 1.University of RedlandsRedlandsUSA