Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Evolution of the Brain, The

  • Joshua R. Lemert
  • Muhammad A. SpocterEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_3094-1



Evolutionary neuroscience is an interdisciplinary field of study which seeks to understand the evolution of the brain and nervous system and provides a framework for interpreting evolutionary changes in the brain and brain component size or shape.


The field of evolutionary neuroscience has provided us with an enormous amount of comparative data and relevant theoretical principles to support our current understanding of the evolution of the nervous system. Evolutionary neuroscientists are interested in understanding how the brain evolves and in reconstructing the natural history of the nervous system from a structural and functional perspective. Evidence of brain evolution can be documented through the lens of various biological fields, including biological anthropology, ethology, paleontology, comparative psychology, comparative neuroanatomy, cognitive science, and molecular biology and genetics....

This is a preview of subscription content, log in to check access.


  1. Allman, J., McLaughlin, T., & Hakeem, A. (1993). Brain weight and life-span in primate species. Proceedings of National Academy of Science (USA), 90, 118–122.CrossRefGoogle Scholar
  2. Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058.CrossRefPubMedGoogle Scholar
  3. Bennet, P. M., & Harvey, P. H. (1985). Relative brain size and ecology in birds. Journal of the Zoological Society of London A, 207, 151–169.CrossRefGoogle Scholar
  4. Bianchi, S., Bauernfeind, A. L., Gupta, K., Stimpson, C. D., Spocter, M. A., Bonar, C. J., Manger, P. R., Hof, P. R., Jacobs, B., & Sherwood, C. C. (2011). Neocortical neuron morphology in Afrotheria: Comparing the rock hyrax with the African elephant. Annals of the New York Academy of Sciences, 1225, 37–46.CrossRefPubMedGoogle Scholar
  5. Butler, A. B., & Hodos, W. (2005). Comparative vertebrate neuroanatomy (2nd ed.). New York: Wiley-Liss.CrossRefGoogle Scholar
  6. Catania, K. C., Northcutt, R. G., & Kaas, J. H. (1999). The development of a biological novelty: A different way to make appendages as revealed in the snout of the star-nosed mole Condylura cristata. Journal of Experimental Biology, 2002, 2719–2726.Google Scholar
  7. Clayton, N. S., Griffiths, D. P., Emery, N. J., & Dickinson, A. (2001). Elements of episodic-like memory in animals. Philosophical Transactions of the Royal Society of London B, 356, 1483–1491.CrossRefGoogle Scholar
  8. Clutton-Brock, T. H., & Harvey, P. H. (1980). Primates, brains and ecology. Journal of the Zoological Society of London A, 190, 309–323.CrossRefGoogle Scholar
  9. Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178–190.CrossRefGoogle Scholar
  10. Finger, S. (2000). Minds behind the brain. Oxford: Oxford University Press.Google Scholar
  11. Finlay, B. L., & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584.CrossRefPubMedGoogle Scholar
  12. Harvey, P. H., & Krebs, J. H. (1990). Comparing brains. Science, 249, 140–146Google Scholar
  13. Healy, S. D., & Krebs, J. R. (1996). Food storing and the hippocampus in Paridae. Brain, Behavior and Evolution, 47, 195–199.CrossRefPubMedGoogle Scholar
  14. Hutcheon, J. M., Kirsch, J. A. W., & Garland, T. J. (2002). A comparative analysis of brain size in relation to foraging ecology and phylogeny in the Chiroptera. Brain, Behavior and Evolution, 60, 165–180.CrossRefPubMedGoogle Scholar
  15. Iwanuik, A. N., & Nelson, J. E. (2003). Developmental differences are correlated with relative brain size in birds: A comparative analysis. Canadian Journal of Zoology, 81, 1913–1928.CrossRefGoogle Scholar
  16. Jerison, H. (1973). Evolution of the brain and intelligence. New York: Academic.Google Scholar
  17. Krubitzer, L., Campi, K. L., & Cooke, D. F. (2011). All rodents are not the same: A modern synthesis of cortical organization. Brain, Behavior and Evolution, 78, 51–93.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Manger, P. R., Hemingway, J., Spocter, M. A., & Gallagher, A. (2012). The mass of the human brain: Is it a spandrel. In S. Reynolds & A. Gallagher (Eds.), African genesis: Perspectives on hominin evolution, Cambridge studies in biological and evolutionary anthropology. Cambridge: Cambridge University Press.Google Scholar
  19. Manger, P. R., Spocter, M. A., & Patzke, N. (2013). The evolutions of large brain size in mammals- ‘the Over 700g Club Quartet’. Brain, Behavior and Evolution, 82(1), 68–78.CrossRefPubMedGoogle Scholar
  20. Northcutt, R. G. (1981). Evolution of the telencephalon in non-mammals. Annual Review of Neuroscience, 4, 301–350.CrossRefPubMedGoogle Scholar
  21. Northcutt, R. G., & Kaas, J. H. (1995). The emergence and evolution of mammalian neocortex. Trends in Neurosciences, 18, 373–379.CrossRefPubMedGoogle Scholar
  22. Pettigrew, J. D., Manger, P. R., & Fine, S. L. B. (1998). The sensory world of the platypus. Philosophical Transactions of the Royal Society of London B, 353, 1199–1210.CrossRefGoogle Scholar
  23. Radinsky, L. (1968). The evolution of somatic sensory specialization in otter brains. Journal of Comparative Neurology, 134, 495–505.CrossRefPubMedGoogle Scholar
  24. Schmidt-Nielsen, K. (1984). Scaling: Why animals size is so important. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Spocter, M. A., Raghanti, M. A., Butti, C., Hof, P. R., & Sherwood, C. C. (2015). The minicolumn in a comparative context. In M. Casanova & I. Opris (Eds.), Recent advances on the modular organization of the cerebral cortex. Dordrecht: Springer Publishing.Google Scholar
  26. Striedter, G. F. (2005). Principles of brain evolution. Sunderland: Sinauer Associates.Google Scholar
  27. Striedter, G. F. (2007). A history of ideas in evolutionary neuroscience. In J. Kaas (Ed.), Evolutionary neuroscience (1st ed.). New York: Associated Press.Google Scholar
  28. van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the primate visual cortex: An integrated systems perspective. Science, 255, 419–423.CrossRefPubMedGoogle Scholar
  29. Welker, W. L., & Campos, G. B. (1963). Physiological significance of sulci in somatic sensory cerebral cortex in mammals of the family Procyonidae. Journal of Comparative Neurology, 120, 19–36.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of AnatomyDes Moines UniversityDes MoinesUSA
  2. 2.School of Anatomical SciencesUniversity of the WitwatersrandJohannesburgSouth Africa

Section editors and affiliations

  • Catherine Salmon
    • 1
  1. 1.University of RedlandsRedlandsUSA