Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Gamete Size

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_3063-1



The sizes of reproductive cells in sexual reproduction.


Female gametes are larger than male gametes. This is not an empirical observation, but a definition: in a system with two markedly different gamete sizes, we define females to be the sex that produces the larger gametes and vice-versa for males (Parker et al. 1972), and the same definition applies to the female and male functions in hermaphrodites. Although asymmetry in gamete size rather than number is usually used as the defining characteristic, size dimorphism has the almost inevitable consequence that females produce fewer gametes than males due to a simple physical trade-off – larger things can be produced in smaller numbers, given a limited amount of resources. Therefore, in practice females differ from males in terms of both gamete size and numbers. This definition of the two sexes is a very simple one, yet it leads to some intricate, surprisingly...

This is a preview of subscription content, log in to check access.


  1. Bateman, A. J. (1948). Intra-sexual selection in drosophila. Heredity, 2(Pt. 3), 349–368.CrossRefPubMedGoogle Scholar
  2. Cosmides, L. M., & Tooby, J. (1981). Cytoplasmic inheritance and intragenomic conflict. Journal of Theoretical Biology, 89(1), 83–129.CrossRefPubMedGoogle Scholar
  3. Darwin, C. R. (1871). The descent of man, and selection in relation to sex. London: J. Murray.CrossRefGoogle Scholar
  4. Fromhage, L., & Jennions, M. D. (2016). Coevolution of parental investment and sexually selected traits drives sex-role divergence. Nature Communications, 7. doi: 10.1038/ncomms12517.
  5. Kalmus, H. (1932). Über den Erhaltungswert der phänotypischen (morphologischen) Anisogamie und die Entstehung der ersten Geschlechtsunterschiede. Biologisches Zentralblatt, 52, 716–736.Google Scholar
  6. Lehtonen, J., & Parker, G. A. (2014). Gamete competition, gamete limitation, and the evolution of the two sexes. Molecular Human Reproduction, 20(12), 1161–1168. doi: 10.1093/molehr/gau068.CrossRefPubMedGoogle Scholar
  7. Lehtonen, J., Parker, G. A., & Schärer, L. (2016). Why anisogamy drives ancestral sex roles. Evolution, 70(5), 1129–1135. doi: 10.1111/evo.12926.CrossRefPubMedGoogle Scholar
  8. Lessells, C. M., Snook, R. R., & Hosken, D. J. (2009). The evolutionary origin and maintenance of sperm: Selection for a small, motile gamete mating type. In T. R. Birkhead, D. J. Hosken, & S. Pitnick (Eds.), Sperm biology: An evolutionary perspective (pp. 43–67). London: Academic.CrossRefGoogle Scholar
  9. Lüpold, S., Manier, M. K., Puniamoorthy, N., Schoff, C., Starmer, W. T., Luepold, S. H. B., et al. (2016). How sexual selection can drive the evolution of costly sperm ornamentation. Nature, 533(7604), 535–538. doi: 10.1038/nature18005.CrossRefPubMedGoogle Scholar
  10. Parker, G. A., Baker, R. R., & Smith, V. G. F. (1972). The origin and evolution of gamete dimorphism and the male-female phenomenon. Journal of Theoretical Biology, 36(3), 529–553.CrossRefPubMedGoogle Scholar

Authors and Affiliations

  1. 1.University of New South WalesSydneyAustralia

Section editors and affiliations

  • Catherine Salmon
    • 1
  1. 1.University of RedlandsRedlandsUSA