Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Food Preferences

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_2943-1



An overview of human dietary preferences, including innate predispositions to favor and avoid certain tastes as well as the role of culture and environment in shaping food preferences.


Humans occupy a multitude of habitats on earth – a success possible due to our dietary flexibility, among other things. As omnivores – animals that eat both plants and other animals – we are able to consume a wide range of foods, which is evident in the great variability of diets worldwide. While omnivores or food generalists are not programmed for any specific diet, humans display universal tendencies such as an innate aversion to bitter tastes or fear of new foods – these preferences protect the organism from ingesting possibly dangerous items. Challenging this tendency for caution is the need to explore new edibles in order to vary the diet and prevent nutrient deficiencies. This conflict between an interest in novel foods and a fear of...


Food Preference Bitter Taste Lactase Persistence Innate Preference Bitter Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bartoshuk, L. M. (2000). Comparing sensory experiences across individuals: Recent psychophysical advances illuminate genetic variation in taste perception. Chemical Senses, 25(4), 447–460.CrossRefPubMedGoogle Scholar
  2. Birch, L. L. (1992). Children’s preference for high-fat foods. Nutrition Reviews, 50, 249–255.CrossRefPubMedGoogle Scholar
  3. Breslin, P. A. (2013). An evolutionary perspective on food and human taste. Current Biology, 23(9), R409–R418.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Breslin, P. A., Spector, A. C., & Grill, H. J. (1995). Sodium specificity of salt appetite in Fischer-344 and Wistar rats is impaired by chorda tympani nerve transection. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 269(2), R350–R356.Google Scholar
  5. Carrigan, M. A., Uryasev, O., Frye, C. B., Eckman, B. L., Myers, C. R., Hurley, T. D., & Benner, S. A. (2015). Hominids adapted to metabolize ethanol long before human-directed fermentation. Proceedings of the National Academy of Sciences, 112(2), 458–463.CrossRefGoogle Scholar
  6. Drewnowski, A. (1997). Taste preferences and food intake. Annual Review of Nutrition, 17(1), 237–253.CrossRefPubMedGoogle Scholar
  7. Drewnowski, A., & Almiron-Roig, E. (2009). Human perceptions and preferences for fat-rich foods. Fat Detection: Taste, Texture, and Post Ingestive Effects, 265.Google Scholar
  8. Fausto, N., Campbell, J. S., & Riehle, K. J. (2012). Liver regeneration. Journal of Hepatology, 57(3), 692–694.CrossRefPubMedGoogle Scholar
  9. Furness, J. B., & Bravo, D. M. (2015). Humans as cucinivores: Comparisons with other species. Journal of Comparative Physiology. B, 185(8), 825–834.CrossRefGoogle Scholar
  10. Furness, J. B., Cottrell, J. J., & Bravo, D. M. (2015). Comparative gut physiology symposium: Comparative physiology of digestion. Journal of Animal Science, 93(2), 485–491.CrossRefPubMedGoogle Scholar
  11. Hardy, K., Brand-Miller, J., Brown, K. D., Thomas, M. G., & Copeland, L. (2015). The importance of dietary carbohydrate in human evolution. The Quarterly Review of Biology, 90(3), 251–268.CrossRefPubMedGoogle Scholar
  12. Maillard, L. C. (1916). A synthesis of humic matter by effect of amine acids on sugar reducing agents. Annales De Chimie France, 5, 258–316.Google Scholar
  13. Malmström, H., Linderholm, A., Lidén, K., Storå, J., Molnar, P., Holmlund, G., … & Götherström, A. (2010). High frequency of lactose intolerance in a prehistoric hunter-gatherer population in northern Europe. BMC Evolutionary Biology, 10(1), 1.Google Scholar
  14. Neel, J. V. (1962). Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? American Journal of Human Genetics, 14(4), 353.PubMedPubMedCentralGoogle Scholar
  15. Perry, G. H., Kistler, L., Kelaita, M. A., & Sams, A. J. (2015). Insights into hominin phenotypic and dietary evolution from ancient DNA sequence data. Journal of Human Evolution, 79, 55–63.CrossRefPubMedGoogle Scholar
  16. Ranciaro, A., Campbell, M. C., Hirbo, J. B., Ko, W. Y., Froment, A., Anagnostou, P., … & Tishkoff, S. A. (2014). Genetic origins of lactase persistence and the spread of pastoralism in Africa. The American Journal of Human Genetics, 94(4), 496–510.Google Scholar
  17. Rankin, K. M., & Mattes, R. D. (1996). Role of food familiarity and taste quality in food preferences of individuals with Prader-Willi syndrome. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 20(8), 759–762.Google Scholar
  18. Remick, A. K., Polivy, J., & Pliner, P. (2009). Internal and external moderators of the effect of variety on food intake. Psychological Bulletin, 135(3), 434.CrossRefPubMedGoogle Scholar
  19. Rollo, F., & Marota, I. (1999). How microbial ancient DNA, found in association with human remains, can be interpreted. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 354(1379), 111–119.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Rolls, B. J., Rolls, E. T., & Rowe, E. A. (1982). The influence of variety on human food selection and intake. In The psychobiology of human food selection (pp. 101–122). Westport, CT: AVI.Google Scholar
  21. Rozin, P. (1976). The selection of foods by rats, humans, and other animals. Advances in the Study of Behavior, 6, 21–76.CrossRefGoogle Scholar
  22. Rozin, P. (1982). Human food selection: The interaction of biology, culture and individual experience. In L. M. Barker (Ed.), The psychobiology of human food selection (pp. 225–254). AVI, Bridgeport: Conn.Google Scholar
  23. Rozin, E., & Rozin, P. (1981). Culinary themes and variations. Natural History, 90(2), 6–14.Google Scholar
  24. Sherman, P. W., & Hash, G. A. (2001). Why vegetable recipes are not very spicy. Evolution and Human Behavior, 22(3), 147–163.CrossRefPubMedGoogle Scholar
  25. Soranzo, N., Bufe, B., Sabeti, P. C., Wilson, J. F., Weale, M. E., Marguerie, R., … & Goldstein, D. B. (2005). Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Current Biology, 15(14), 1257–1265.Google Scholar
  26. Speakman, J. R. (2008). Thrifty genes for obesity and diabetes, an attractive but flawed idea and an alternative scenario: The ‘drifty gene’ hypothesis. International Journal of Obesity, 32, 1611–1617.CrossRefPubMedGoogle Scholar
  27. Tamanna, N., & Mahmood, N. (2015). Food processing and maillard reaction products: Effect on human health and nutrition. International Journal of Food Science, 2015, 1–6.CrossRefGoogle Scholar
  28. Tishkoff, S. A., Reed, F. A., Ranciaro, A., Voight, B. F., Babbitt, C. C., Silverman, J. S., … & Ibrahim, M. (2007). Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics, 39(1), 31–40.Google Scholar
  29. Wobber, V., Hare, B., & Wrangham, R. (2008). Great apes prefer cooked food. Journal of Human Evolution, 55(2), 340–348.CrossRefPubMedGoogle Scholar

Authors and Affiliations

  1. 1.School of Human Evolution and Social ChangeArizona State UniversityTempeUSA