Skip to main content

Human Visual Neurobiology

  • 62 Accesses

Synonyms

Vision science; Visual cognition; Visual processing

Definition

Human visual neuroscience is an interdisciplinary field of study which seeks to understand the processing of visual information by the eye and brain in humans and provides a well-studied model of how sensory systems enable organisms to interact with their environments.

Introduction

Objects in the environment reflect light rays onto the retina which are transduced by photoreceptors into electrochemical impulses, and this information is sent to the occipital lobe for initial computation before being sent to higher-order brain regions for more modular processing. Visual neurons detect where objects are located in space by signaling only when an object in the visual field is presented in a specific position, known as its receptive field. As an example, a neuron in the right primary visual cortex may only signal in response to a black vertical bar but will only do so if it is located in a specific position in the visual...

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Awasthi, B., Friedman, J., & Williams, M. A. (2011). Faster, stronger, lateralized: low spatial frequency information supports face processing. Neuropsychologia, 49(13), 3583–3590.

    PubMed  Google Scholar 

  • Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5, 617–629.

    PubMed  Google Scholar 

  • Barton, R. A. (2004). From the cover: Binocularity and brain evolution in primates. Proceedings of the National Academy of Sciences, USA, 101, 10113–10115.

    Google Scholar 

  • Born, R. T., & Tootell, R. B. H. (1991). Spatial frequency tuning of single units in macaque supragranular striate cortex. Proceedings of the National Academy of Sciences, USA, 88, 7066–7070.

    Google Scholar 

  • Buchel, C., Josephs, O., Rees, G., Turner, R., Frith, C. D., & Friston, K. J. (1998). The functional anatomy of attention to visual motion. A functional MRI study. Brain, 121, 1281–1294.

    PubMed  Google Scholar 

  • Carlson, N. R. (2014). Foundations of behavioral neuroscience (Ninth ed.). London: Pearson Education.

    Google Scholar 

  • Cartmill, M. (2012). Primate origins, human origins, and the end of higher taxa. Evolutiuonary Anthropology, 21, 208–220.

    Google Scholar 

  • Chatterjee, S., & Callaway, E. M. (2003). Parallel colour-opponent pathways to primary visual cortex. Nature, 426, 668–671.

    PubMed  Google Scholar 

  • Culham, J. C., Brandt, S. A., Cavanagh, P., Kanwisher, N. G., Dale, A. M., & Tootell, R. B. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of Neurophysiology, 80, 2657–2670.

    PubMed  Google Scholar 

  • Culham, J. C., Danckert, S. L., Souza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI actiation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153(2), 180–189.

    PubMed  Google Scholar 

  • De Sousa, A. A., & Proulx, M. J. (2014). What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric, and volumetric perspectives. Frontiers in Neuroanatomy, 8, 51.

    PubMed  PubMed Central  Google Scholar 

  • De Sousa, A. A., Sherwood, C. C., Hof, P. R., & Zilles, K. (2013). Lamination of the lateral geniculate nucleus of catarrhine primates. Brain Behavior & Evolution, 81, 93–108.

    Google Scholar 

  • De Valois, R. L., Albrecht, D. G., & Thorell, L. (1978). Cortical cells: Bar detectors or spatial frequency filters? In S. J. Cool & E. L. Smith (Eds.), Frontiers in visual science. Berlin: Springer.

    Google Scholar 

  • De Valois, R. L., & De Valois, K. K. (1988). Spatial vision. New York: Oxford University Press.

    Google Scholar 

  • Edwards, D. P., Purpura, K. P., & Kaplan, E. (1995). Contrast sensitivity and spatial-frequency response of primate cortical neurons in and around the cytochrome oxidase blobs. Vision Research, 35, 1501–1523.

    PubMed  Google Scholar 

  • Fitzpatrick, D., Itoh, K., & Diamond, I. T. (1983). The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). Journal of Neuroscience, 3, 673–702.

    PubMed  Google Scholar 

  • Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2019). Cognitive neuroscience, the biology of the mind. New York: W. W. Norton & Company.

    Google Scholar 

  • Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349, 154–156.

    PubMed  Google Scholar 

  • Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27, 649–677.

    PubMed  Google Scholar 

  • Grossman, E., Donnely, M., Price, R., Pickens, D., Morgan, V., et al. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 711–720.

    PubMed  Google Scholar 

  • Heesy, C. P. (2004). On the relationship between orbit orientation and binocular visual field overlap in mammals. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 281, 1104–1110.

    PubMed  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1992). Visual factors in sound localization in mammals. The Journal of Comparative Neurology, 317, 219–232.

    PubMed  Google Scholar 

  • Hendry, S. H. C., & Yoshioka, T. (1994). A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science, 1994(264), 575–577.

    Google Scholar 

  • Horton, J. C., & Hubel, D. H. (1980). Cytochrome oxidase stain preferentially labels intersection of ocular dominance and vertical orientation columns in macaque striate cortex. Society for Neuroscience Abstracts, 6, 315.

    Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat’s striate cortex. The Journal of Physiology., 148, 574–591.

    PubMed  PubMed Central  Google Scholar 

  • Huk, A. C., Ress, D., & Heeger, D. J. (2001). Neuronal basis of the motion aftereffect reconsidered. Neuron, 32, 161–172.

    PubMed  Google Scholar 

  • Humphrey, A. L., & Hendrickson, A. E. (1980). Radial zones of high metabolic activity in squirrel monkey striate cortex. Society for Neuroscience Abstracts, 6, 315.

    Google Scholar 

  • Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., & Hudspeth, A.J. (2013). Principles of neural science (Fifth ed.). New York: McGraw-Hill Medical.

    Google Scholar 

  • Kaas, J. H. (1989). Why does the brain have so many visual areas? Journal of Cognitive Neuroscience, 1, 121–135.

    PubMed  Google Scholar 

  • Kret, M. E., & Tomonaga, M. (2016). Getting to the bottom of face processing. Species-specific inversion effects for faces and behinds in humans and chimpanzees (Pan Troglodytes). PLoS One, 11, e0165357.

    PubMed  PubMed Central  Google Scholar 

  • Krubitzer, L. (2009). In search of a unifying theory of complex brain evolution. Annals of the New York Academy of Science, 1156, 44–67.

    Google Scholar 

  • Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.

    PubMed  Google Scholar 

  • Livingstone, M. S., & Hubel, D. H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience, 4, 309–356.

    PubMed  Google Scholar 

  • Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 7, 3416–3468.

    PubMed  Google Scholar 

  • Meredith, M. A., & Lomber, S. G. (2017). Species-dependent role of crossmodal connectivity among the primary sensory cortices. Hearing Research, 343, 83–91.

    PubMed  Google Scholar 

  • Morrone, M. C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., & Burr, D. C. (2000). A cortical area that responds specifically to optical flow, revealed by fMRI. Nature Neuroscience, 3, 1322–1328.

    PubMed  Google Scholar 

  • Orban, G. A., Van Essen, D., & Vanduffel, W. (2004). Comparative mapping of higher visual areas in monkeys and humans. Trends in Cognitive Science, 8, 315–324.

    Google Scholar 

  • Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Res, 134, 427–445.

    Google Scholar 

  • Patestas, M. A., & Gartner, L. P. (2016). Chapter 18: Visual system. In A textbook of neuroanatomy (2nd ed., pp. 350–375).

    Google Scholar 

  • Poggio, G. F., & Poggio, T. (1984). The analysis of stereopsis. Annual Review of Neuroscience, 7, 379–412.

    PubMed  Google Scholar 

  • Preuss, T. (2004). Specializations of the human visual system: The monkey model meets human reality. In J. H. Kaas & C. E. Collins (Eds.), The primate visual system. Boca Raton: CRC Press.

    Google Scholar 

  • Preuss, T. M., Qi, H., & Kaas, J. H. (1999). Distinctive compartmental organization of human primary visual cortex. Proceedings of the National Academy of Sciences, USA, 96, 11601–11606.

    Google Scholar 

  • Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A. S., & White, L. E. (2012). Chapter 11–12: Vision: The eye and central visual pathways. In Neuroscience (5th ed., pp. 229–276).

    Google Scholar 

  • Purves, D. (2019). Neuroscience (Sixth ed.). New York: Sinauer Associates.

    Google Scholar 

  • Rockel, A. J., Hiorns, R. W., & Powell, T. P. (1980). The basic uniformity in structure of the neocortex. Brain, 103, 221–244.

    PubMed  Google Scholar 

  • Ross, C. F. (2004). The tarsier fovea: Functionless vestige or nocturnal adaptation? In C. F. Ross & R. F. Kay (Eds.), Anthropoid origins. Springer US: Boston.

    Google Scholar 

  • Srinivasan, S., Carlo, C. N., & Stevens, C. F. (2015). Predicting visual acuity from the structure of visual cortex. Proceedings of the National Academy of Sciences, USA, 112(25), 7815–7820.

    Google Scholar 

  • Tootell, R. B., Reppas, J. B., Dale, A. M., Look, R. B., Sereno, M. I., et al. (1995). Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature, 375, 139–141.

    PubMed  Google Scholar 

  • Tomonaga, M. (1998). Perception of shape from shading in chimpanzees (Pan troglodytes) and humans (Homo sapiens). Animal Cognition, 1, 25–35.

    Google Scholar 

  • Van Essen, D. C. (2004). Organization of visual areas in macaque and human cerebral cortex. In L. Chalupa & J. Werner (Eds.), Visual neurosciences. Cambridge, MA: MIT Press.

    Google Scholar 

  • Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research, 1, 11–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad A. Spocter .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Haas, J., Hass, R., Spocter, M.A., de Sousa, A.A. (2020). Human Visual Neurobiology. In: Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_2768-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16999-6_2768-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16999-6

  • Online ISBN: 978-3-319-16999-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social Sciences