Synonyms
Definition
Human visual neuroscience is an interdisciplinary field of study which seeks to understand the processing of visual information by the eye and brain in humans and provides a well-studied model of how sensory systems enable organisms to interact with their environments.
Introduction
Objects in the environment reflect light rays onto the retina which are transduced by photoreceptors into electrochemical impulses, and this information is sent to the occipital lobe for initial computation before being sent to higher-order brain regions for more modular processing. Visual neurons detect where objects are located in space by signaling only when an object in the visual field is presented in a specific position, known as its receptive field. As an example, a neuron in the right primary visual cortex may only signal in response to a black vertical bar but will only do so if it is located in a specific position in the visual...
This is a preview of subscription content, access via your institution.

References
Awasthi, B., Friedman, J., & Williams, M. A. (2011). Faster, stronger, lateralized: low spatial frequency information supports face processing. Neuropsychologia, 49(13), 3583–3590.
Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5, 617–629.
Barton, R. A. (2004). From the cover: Binocularity and brain evolution in primates. Proceedings of the National Academy of Sciences, USA, 101, 10113–10115.
Born, R. T., & Tootell, R. B. H. (1991). Spatial frequency tuning of single units in macaque supragranular striate cortex. Proceedings of the National Academy of Sciences, USA, 88, 7066–7070.
Buchel, C., Josephs, O., Rees, G., Turner, R., Frith, C. D., & Friston, K. J. (1998). The functional anatomy of attention to visual motion. A functional MRI study. Brain, 121, 1281–1294.
Carlson, N. R. (2014). Foundations of behavioral neuroscience (Ninth ed.). London: Pearson Education.
Cartmill, M. (2012). Primate origins, human origins, and the end of higher taxa. Evolutiuonary Anthropology, 21, 208–220.
Chatterjee, S., & Callaway, E. M. (2003). Parallel colour-opponent pathways to primary visual cortex. Nature, 426, 668–671.
Culham, J. C., Brandt, S. A., Cavanagh, P., Kanwisher, N. G., Dale, A. M., & Tootell, R. B. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of Neurophysiology, 80, 2657–2670.
Culham, J. C., Danckert, S. L., Souza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI actiation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153(2), 180–189.
De Sousa, A. A., & Proulx, M. J. (2014). What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric, and volumetric perspectives. Frontiers in Neuroanatomy, 8, 51.
De Sousa, A. A., Sherwood, C. C., Hof, P. R., & Zilles, K. (2013). Lamination of the lateral geniculate nucleus of catarrhine primates. Brain Behavior & Evolution, 81, 93–108.
De Valois, R. L., Albrecht, D. G., & Thorell, L. (1978). Cortical cells: Bar detectors or spatial frequency filters? In S. J. Cool & E. L. Smith (Eds.), Frontiers in visual science. Berlin: Springer.
De Valois, R. L., & De Valois, K. K. (1988). Spatial vision. New York: Oxford University Press.
Edwards, D. P., Purpura, K. P., & Kaplan, E. (1995). Contrast sensitivity and spatial-frequency response of primate cortical neurons in and around the cytochrome oxidase blobs. Vision Research, 35, 1501–1523.
Fitzpatrick, D., Itoh, K., & Diamond, I. T. (1983). The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). Journal of Neuroscience, 3, 673–702.
Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2019). Cognitive neuroscience, the biology of the mind. New York: W. W. Norton & Company.
Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349, 154–156.
Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27, 649–677.
Grossman, E., Donnely, M., Price, R., Pickens, D., Morgan, V., et al. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 711–720.
Heesy, C. P. (2004). On the relationship between orbit orientation and binocular visual field overlap in mammals. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 281, 1104–1110.
Heffner, R. S., & Heffner, H. E. (1992). Visual factors in sound localization in mammals. The Journal of Comparative Neurology, 317, 219–232.
Hendry, S. H. C., & Yoshioka, T. (1994). A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science, 1994(264), 575–577.
Horton, J. C., & Hubel, D. H. (1980). Cytochrome oxidase stain preferentially labels intersection of ocular dominance and vertical orientation columns in macaque striate cortex. Society for Neuroscience Abstracts, 6, 315.
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat’s striate cortex. The Journal of Physiology., 148, 574–591.
Huk, A. C., Ress, D., & Heeger, D. J. (2001). Neuronal basis of the motion aftereffect reconsidered. Neuron, 32, 161–172.
Humphrey, A. L., & Hendrickson, A. E. (1980). Radial zones of high metabolic activity in squirrel monkey striate cortex. Society for Neuroscience Abstracts, 6, 315.
Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., & Hudspeth, A.J. (2013). Principles of neural science (Fifth ed.). New York: McGraw-Hill Medical.
Kaas, J. H. (1989). Why does the brain have so many visual areas? Journal of Cognitive Neuroscience, 1, 121–135.
Kret, M. E., & Tomonaga, M. (2016). Getting to the bottom of face processing. Species-specific inversion effects for faces and behinds in humans and chimpanzees (Pan Troglodytes). PLoS One, 11, e0165357.
Krubitzer, L. (2009). In search of a unifying theory of complex brain evolution. Annals of the New York Academy of Science, 1156, 44–67.
Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.
Livingstone, M. S., & Hubel, D. H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience, 4, 309–356.
Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 7, 3416–3468.
Meredith, M. A., & Lomber, S. G. (2017). Species-dependent role of crossmodal connectivity among the primary sensory cortices. Hearing Research, 343, 83–91.
Morrone, M. C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., & Burr, D. C. (2000). A cortical area that responds specifically to optical flow, revealed by fMRI. Nature Neuroscience, 3, 1322–1328.
Orban, G. A., Van Essen, D., & Vanduffel, W. (2004). Comparative mapping of higher visual areas in monkeys and humans. Trends in Cognitive Science, 8, 315–324.
Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Res, 134, 427–445.
Patestas, M. A., & Gartner, L. P. (2016). Chapter 18: Visual system. In A textbook of neuroanatomy (2nd ed., pp. 350–375).
Poggio, G. F., & Poggio, T. (1984). The analysis of stereopsis. Annual Review of Neuroscience, 7, 379–412.
Preuss, T. (2004). Specializations of the human visual system: The monkey model meets human reality. In J. H. Kaas & C. E. Collins (Eds.), The primate visual system. Boca Raton: CRC Press.
Preuss, T. M., Qi, H., & Kaas, J. H. (1999). Distinctive compartmental organization of human primary visual cortex. Proceedings of the National Academy of Sciences, USA, 96, 11601–11606.
Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A. S., & White, L. E. (2012). Chapter 11–12: Vision: The eye and central visual pathways. In Neuroscience (5th ed., pp. 229–276).
Purves, D. (2019). Neuroscience (Sixth ed.). New York: Sinauer Associates.
Rockel, A. J., Hiorns, R. W., & Powell, T. P. (1980). The basic uniformity in structure of the neocortex. Brain, 103, 221–244.
Ross, C. F. (2004). The tarsier fovea: Functionless vestige or nocturnal adaptation? In C. F. Ross & R. F. Kay (Eds.), Anthropoid origins. Springer US: Boston.
Srinivasan, S., Carlo, C. N., & Stevens, C. F. (2015). Predicting visual acuity from the structure of visual cortex. Proceedings of the National Academy of Sciences, USA, 112(25), 7815–7820.
Tootell, R. B., Reppas, J. B., Dale, A. M., Look, R. B., Sereno, M. I., et al. (1995). Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature, 375, 139–141.
Tomonaga, M. (1998). Perception of shape from shading in chimpanzees (Pan troglodytes) and humans (Homo sapiens). Animal Cognition, 1, 25–35.
Van Essen, D. C. (2004). Organization of visual areas in macaque and human cerebral cortex. In L. Chalupa & J. Werner (Eds.), Visual neurosciences. Cambridge, MA: MIT Press.
Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research, 1, 11–28.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this entry
Cite this entry
Haas, J., Hass, R., Spocter, M.A., de Sousa, A.A. (2020). Human Visual Neurobiology. In: Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_2768-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-16999-6_2768-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16999-6
Online ISBN: 978-3-319-16999-6
eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social Sciences