Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Puberty in Girls

  • Michele K. Surbey
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_2451-1



Puberty in girls involves the maturation of the endocrine system resulting in the achievement of adult body size and proportions, secondary sexual characteristics, and development of the reproductive organs resulting in the capacity to reproduce.


Puberty is a significant life history event marking the end of the prereproductive, juvenile phase of development, and entry into adulthood and reproductive life. Its characteristics, sequelae, and timing differ across species and between the sexes. Puberty in human females exhibits consistencies with the development of other mammals and primates, but unique qualities as well. Because puberty in girls is associated with a host of reproductive, medical, mental, and social changes, it has been the research focus of human biologists, physicians, psychologists, anthropologists, sociologists, demographers, and epidemiologists alike. Evolutionary theories and concepts,...

This is a preview of subscription content, log in to check access.


  1. Alexander, R. D. (1974). The evolution of social behavior. Annual Review of Ecology and Systematics, 5, 325–383.CrossRefGoogle Scholar
  2. Apter, D., & Vihko, R. (1984). Endocrine characteristics of adolescent menstrual cycles: Impact of early menarche. Journal of Steroid Biochemisty, 20(1), 231–236.CrossRefGoogle Scholar
  3. Barbaro, N., Boutwell, B. B., Barnes, J. C., & Shackelford, T. K. (2017). Genetic confounding of the relationship between father absence and age at menarche. Evolution and Human Behavior, 38, 357–365.CrossRefGoogle Scholar
  4. Belsky, J. (2000). Conditional and alternative reproductive strategies: Individual differences in susceptibility to rearing experiences. In J. L. Rodgers, D. C. Rowe, & W. B. Miller (Eds.), Genetic influences on human fertility and sexuality (pp. 127–146). Boston: Kluwer.CrossRefGoogle Scholar
  5. Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62, 647–670.CrossRefGoogle Scholar
  6. Bogin, B. (2011). Puberty and adolescence: An evolutionary perspective. In B. B. Brown & M. Prinstein (Eds.), Encyclopedia of adolescence (Vol. 1, pp. 275–286). San Diego: Academic.CrossRefGoogle Scholar
  7. Bogin, B., & Smith, B. H. (1996). Evolution of the human life cycle. American Journal of Human Biology, 8, 703–716.CrossRefGoogle Scholar
  8. Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271–301.CrossRefGoogle Scholar
  9. Boynton-Jarrett, R., Wright, R. J., Putnam, F. W., Hibert, E. L., Michels, K. B., Forman, M. R., & Rich-Edwards, J. (2013). Childhood abuse and age at menarche. Journal of Adolescent Health, 52(2), 241–247.CrossRefGoogle Scholar
  10. Chisholm, J. (1993). Death, hope, and sex: Life history theory and the development of reproductive strategies. Current Anthropology, 34, 1–12.CrossRefGoogle Scholar
  11. Dean, M. C. (2006). Tooth microstructure tracks the pace of human life-history evolution. Proceedings of the Royal Society B: Biological Sciences, 273, 2799–2808.CrossRefGoogle Scholar
  12. Dvornyk, V., & Waqar ul, H. (2012). Genetics of age at menarche: A systematic review. Human Reproduction Update, 18, 198–210.CrossRefGoogle Scholar
  13. Ellis, B. J. (2004). Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130, 920–958.CrossRefGoogle Scholar
  14. Ellis, B. J., & Garber, J. (2000). Psychosocial antecedents of variation in girls’ pubertal timing: Maternal depression, stepfather presence, and marital and family stress. Child Development, 71, 485–501.CrossRefGoogle Scholar
  15. Ellis, B. J., McFadyen-Ketchum, S., Dodge, K. A., Pettit, G. S., & Bates, J. E. (1999). Quality of early family relationships and individual differences in the timing of pubertal maturation in girls: A longitudinal test of an evolutionary model. Journal of Personality and Social Psychology, 77, 387–401.  https://doi.org/10.1037/0022-3514.77.2.387.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & Ijzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 7–28.CrossRefGoogle Scholar
  17. Ellison, P. T. (1990). Human ovarian function and reproductive ecology: New hypotheses. American Anthropologist, 92, 933–952.CrossRefGoogle Scholar
  18. Eveleth, P. B., & Tanner, J. M. (1976). Worldwide variation in human growth. London: Cambridge University Press.Google Scholar
  19. Flinn, M. V. (1988). Parent-offspring interactions in a Caribbean village: Daughter guarding. In L. Betzig, M. Mulder, & P. Turke (Eds.), Human reproductive behavior (pp. 189–200). Cambridge: Cambridge University Press.Google Scholar
  20. Frisch, R. E., & McArthur, J. W. (1974). Menstrual cycles: Fatness as a determinant of minimum weight for height necessary for their maintenance or onset. Science, 185, 149–151.CrossRefGoogle Scholar
  21. Graber, J. A. (2013). Pubertal timing and the development of psychopathology in adolescence and beyond. Hormones and Behavior, 64(2), 262–269.  https://doi.org/10.1016/j.yhbeh.2013.04.003.CrossRefPubMedGoogle Scholar
  22. Gueorguiev, M., Goth, M. I., & Korbonits, M. (2001). Leptin and puberty: A review. Pituitary, 4(1–2), 79–86.CrossRefGoogle Scholar
  23. Howell, N. (1979). Demography of the Dobe !Kung. New York: Academic.Google Scholar
  24. Jacobsen, B. K., Heuch, I., & Kvale, G. (2007). Association of low age at menarche with increased all-cause mortality: A 37-year follow-up of 61,319 Norwegian women. American Journal of Epidemiology, 166, 1431–1437.CrossRefGoogle Scholar
  25. Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology Issues News and Reviews, 9, 156–185.CrossRefGoogle Scholar
  26. Kaplan, H., Gangestad, S., Gurven, M., Lancaster, J., Mueller, T., & Robson, A. (2007). The evolution of diet, brain and life history among primates and humans. In W. Roebroek (Ed.), Guts and brains: An integrative approach to the hominin record (pp. 47–81). Leiden: Leiden University Press.Google Scholar
  27. Lancaster, J. B. (1986). Human adolescence and reproduction: An evolutionary perspective. In J. B. Lancaster & B. A. Hamburg (Eds.), School-age pregnancy and parenthood: Biosocial dimensions (pp. 17–37). New York: Aldine de Gruyter.Google Scholar
  28. Lancaster, J. B., & Kaplan, H. S. (2009). The endocrinology of the human adaptive complex. In P. T. Ellison & P. G. Gray (Eds.), Endocrinology of social relationships (pp. 95–119). Cambridge, MA: Harvard University Press.Google Scholar
  29. Lee, Y., & Styne, C. (2013). Influences on the onset and tempo of puberty in human beings and implications for adolescent psychological development. Hormones and Behavior, 64, 250–261.CrossRefGoogle Scholar
  30. Limony, Y., Koziel, S., & Friger, M. (2015). Age of onset of a normally timed pubertal growth spurt affects the final height of children. Pediatric Research, 78(3), 351–355.CrossRefGoogle Scholar
  31. Matsuwaki, T., Kayasuga, Y., Yamanouchi, K., & Nishihara, M. (2006). Maintenance of gonadotropin secretion by glucocorticoids under stress conditions through the inhibition of prostaglandin synthesis in the brain. Endocrinology, 147, 1087–1093.CrossRefGoogle Scholar
  32. Moffitt, T. E., Caspi, A., Belsky, J., & Silva, P. A. (1991). Childhood experience and the onset of menarche: A test of a sociobiological hypothesis. Child Development, 63, 47–58.CrossRefGoogle Scholar
  33. Negriff, S., & Susman, E. J. (2011). Pubertal timing, depression, and externalizing problems: A framework, review, and examination of gender differences. Journal of Research on Adolescence, 21(3), 717–746.  https://doi.org/10.1111/j.1532-7795.2010.00708.CrossRefGoogle Scholar
  34. Noll, J. G., Trickett, P. K., Long, J. D., Negriff, S., Susman, E. J., Shaley, I., Li, J. C., & Putnam, F. W. (2017). Childhood sexual abuse and early timing of puberty. Journal of Adolescent Health, 60, 65–71.CrossRefGoogle Scholar
  35. Ong, K. K., Elks, C. E., Li, S., Zhao, J. H., Luan, J., Andersen, L. B., Bingham, S. A., Brage, S., Smith, G. D., Ekelund, U., et al. (2009). Genetic variation in LIN28B is associated with the timing of puberty. Nature Genetics, 2009(41), 729–733.CrossRefGoogle Scholar
  36. Parent, A. S., Teilmann, G., Juul, A., Skakkebaek, N., Toppari, J., & Bourguignon, J. P. (2003). The timing of normal puberty and the age limits of sexual precocity: Variations around the world, secular trends, and changes after migration. Endocrine Reviews, 24, 668–693.CrossRefGoogle Scholar
  37. Proos, L. A., Hofvander, Y., & Tuvemo, T. (1991). Menarcheal age and growth pattern of Indian girls adopted in Sweden. II. Catch-up growth and final height. Indian Journal of Pediatrics, 58, 105–114.CrossRefGoogle Scholar
  38. Richardson, D. W., & Short, R. V. (1978). Time of onset of sperm production in boys. Journal of Biosocial Science (Supplement), 5, 15–25.CrossRefGoogle Scholar
  39. Roff, D. A. (2002). Life history evolution. Sunderland: Sinauer Associates.Google Scholar
  40. Rowe, D. C. (2002). On genetic variation and age at first sexual intercourse: A critique of the Belsky–Draper hypothesis. Evolution and Human Behavior, 23, 365–372.CrossRefGoogle Scholar
  41. Schlomer, G. L., & Cho, H. (2017). Genetic and environmental contributions to age at menarche: interactive effects of father absence and LIN28B. Evolution and Human. Behavior, 38, 761–769.CrossRefGoogle Scholar
  42. Singh, D. (1993). Adaptive significance of female physical attractiveness: Role of waist-to-hip ratio. Journal of Personality and Social Psychology, 65(2), 293–307.CrossRefGoogle Scholar
  43. Smith, T. M., Tafforeau, P., Reid, D. J., Grün, R., Eggins, S., Boutakiout, M., & Hublin, J. J. (2007). Earliest evidence of modern human life history in North African early Homo sapiens. Proceedings of the National Academy of Sciences, 104, 6128–6133.CrossRefGoogle Scholar
  44. Stearns, S. C. (1992). The evolution of life histories. Oxford: Oxford University Press.Google Scholar
  45. Surbey, M. K. (1990). Family composition, stress, and the timing of human menarche. In T. E. Ziegler & F. B. Bercovitch (Eds.), The socioendocrinology of primate reproduction (pp. 11–32). New York: Wiley-Liss.Google Scholar
  46. Surbey, M. K. (1998). Parent and offspring strategies in the transition at adolescence. Human Nature, 9, 67–94.CrossRefGoogle Scholar
  47. Tahirovic, H. F. (1998). Menarcheal age and the stress of war: An example from Bosnia. European Journal of Pediatrics, 157, 978–980.CrossRefGoogle Scholar
  48. Tanner, J. M. (1962). Growth at adolescence (2nd ed.). Oxford: Blackwell.Google Scholar
  49. Towne, B., Czerwinski, S. A., Demerath, E. W., Blangero, J., Roche, A. F., & Siervogel, R. M. (2005). Heritability of age at menarche in girls from the Fels longitudinal study. American Journal of Physical Anthropology, 128, 210–219.CrossRefGoogle Scholar
  50. Trivers, R. L. (1972). Parental investment and sexual selection. In B. Campbell (Ed.), Sexual selection and the descent of man, 1871–1971 (pp. 136–179). Chicago: Aldine.Google Scholar
  51. Udry, J. R., & Cliquet, R. L. (1982). A cross-cultural examination of the relationship between ages at menarche, marriage and first birth. Demography, 19, 53–63.CrossRefGoogle Scholar
  52. Walker, K. K., Walker, C. S., Goodall, J., & Pusey, A. E. (2018). Maturation is prolonged and variable in female chimpanzees. Journal of Human Evolution, 114, 131–140.CrossRefGoogle Scholar
  53. Webster, G. D., Graber, J. A., Gesselman, A. N., Crosier, B. S., & Schember, T. O. (2014). A life history theory of father absence and menarche: A meta-analysis. Evolutionary Psychology, 12(2), 273–294.CrossRefGoogle Scholar
  54. Winick, M. (1981). Critical periods in body development. In L. P. Cioffi, W. P. T. James, & T. B. Van Itallie (Eds.), The body weight regulatory systems: Normal and disturbed mechanisms (pp. 229–236). New York: Raven Press.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Psychology, College of Health Care Sciences, Division of Tropical Health and MedicineJames Cook UniversityTownsvilleAustralia

Section editors and affiliations

  • Carey Fitzgerald
    • 1
  1. 1.University of South Carolina - BeaufortBlufftonUSA