Definition
Sperm competition is an intrasexual process in which the sperm from two or more males compete to fertilize a female’s ova.
Introduction
Darwin’s classic view of sexual selection holds that, controlling for differences in survivorship, variation in the reproductive success of the members of one sex can be attributed to two main processes. First, the members of one sex (usually females) preferentially choose to mate with certain members of the opposite sex (usually males), leading to the evolution of sexual “ornaments,” “seductive” traits, and sexual “advertisements.” Second, members of one sex (usually males) directly compete against each other for access to sexually receptive members of the opposite sex (usually females), leading to the evolution of weaponry. These processes are commonly referred to as female mate choice (or intersexual sexual...
Keywords
- Sperm Competition
- Fertilization Success
- Sperm Production
- Evolutionary Stable Strategy
- Sperm Viability
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
References
Aron, S., Lybaert, P., Baudoux, C., et al. (2016). Sperm production characteristics vary with level of sperm competition in Cataglyphis desert ants. Functional Ecology, 30, 614–624. doi:10.1111/1365-2435.12533.
Birkhead, T. R., & Møller, A. P. (1998). Sperm competition and sexual selection. New York: Academic.
Byrne, P. (2004). Male sperm expenditure under sperm competition risk and intensity in quacking frogs. Behavioral Ecology, 15, 857–863.
Calhim, S., & Birkhead, T. R. (2007). Testes size in birds quality versus quantity –Assumptions, errors, and estimates. Behavioral Ecology, 18, 271–275. doi:10.1093/beheco/arl076.
Cook, P., & Gage, M. J. G. (1995). Effects of risks of sperm competition on the numbers of eupyrene and apyrene sperm ejaculated by the moth Plodiainterpunctella (Lepidoptera, Pyralidae). Behavioral Ecology and Sociobiology, 36, 261–268.
Crean, A. J., & Marshall, D. J. (2008). Gamete plasticity in a broadcast spawning marine invertebrate. Proceedings of the National Academy of Sciences, 105, 13508–13513. doi:10.2307/25464074?ref=search-gateway:1e12bb8a20be2817b23bbda85a2e7c2f.
delBarco-Trillo, J. (2011). Adjustment of sperm allocation under high risk of sperm competition across taxa: A meta-analysis. Journal of Evolutionary Biology, 24, 1706–1714. doi:10.1111/j.1420-9101.2011.02293.x.
Dziminski, M. A., Roberts, J. D., Beveridge, M., & Simmons, L. W. (2009). Sperm competitiveness in frogs: Slow and steady wins the race. Proceedings of the Royal Society of London B: Biological Sciences, 276, 3955–3961. doi:10.1098/rspb.2009.1334.
Engqvist, L., & Reinhold, K. (2005). Pitfalls in experiments testing predictions from sperm competition theory. Journal of Evolutionary Biology, 18, 116–123.
Engqvist, L., & Reinhold, K. (2007). Sperm competition games: Optimal sperm allocation in response to the size of competing ejaculates. Proceedings of the Royal Society of London. Series B, 274, 209–217.
Firman, R. C., & Simmons, L. W. (2008). The frequency of multiple paternity predicts variation in testes size among island populations of house mice. Journal of Evolutionary Biology, 21, 1524–1533. doi:10.1111/j.1420-9101.2008.01612.x.
Firman, R. C., & Simmons, L. W. (2011). Experimental evolution of sperm competitiveness in a mammal. BMC Evolutionary Biology, 11, 19. doi:10.1186/1471-2148-11-19.
Fitzpatrick, J. L., Montgomerie, R., Desjardins, J. K., et al. (2009). Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proceedings of the National Academy of Sciences, 106, 1128–1132. doi:10.1073/pnas.0809990106.
Fromhage, L., McNamara, J. M., & Houston, A. I. (2008). Sperm allocation strategies and female resistance: A unifying perspective. The American Naturalist, 172, 25–33. doi:10.1086/587806.
Gage, M. J. G., & Morrow, E. (2003). Experimental evidence for the evolution of numerous, tiny sperm via sperm competition. Current Biology, 13, 754–757.
Garcia-Gonzalez, F., & Simmons, L. W. (2005). Sperm viability matters in insect sperm competition. Current Biology, 15, 271–275.
Gay, L., Hosken, D. J., Vasudev, R., et al. (2009). Sperm competition and maternal effects differentially influence testis and sperm size in Callosobruchus maculatus. Journal of Evolutionary Biology, 22, 1143–1150. doi:10.1111/j.1420-9101.2009.01724.x.
Giannakara, A., Schärer, L., & Ramm, S. A. (2016). Sperm competition-induced plasticity in the speed of spermatogenesis. BMC Evolutionary Biology, 16, 1–10. doi:10.1186/s12862-016-0629-9.
Hettyey, A., & Roberts, J. D. (2007). Sperm traits in the quacking frog (Crinia georgiana), a species with plastic alternative mating tactics. Behavioral Ecology and Sociobiology, 61, 1303–1310. doi:10.1007/s00265-007-0361-y.
Hunter, F., & Birkhead, T. R. (2002). Sperm viability and sperm competition in insects. Current Biology, 12, 121–123.
Immler, S., & Birkhead, T. R. (2007). Sperm competition and sperm midpiece size: No consistent pattern in passerine birds. Proceedings of the Royal Society of London B: Biological Sciences, 274, 561–568. doi:10.1098/rspb.2006.3752.
Kelly, C. D., & Jennions, M. D. (2011). Sexual selection and sperm quantity: Meta-analyses of strategic ejaculation. Biological Reviews, 86, 863–884. doi:10.1111/j.1469-185X.2011.00175.x.
Kilgallon, S., & Simmons, L. W. (2005). Image content influences men’s semen quality. Biology Letters, 1, 253–255.
Kleven, O., Fossøy, F., Laskemoen, T., et al. (2009). Comparative evidence for the evolution of sperm swimming speed by sperm competition and female sperm storage duration in passerine birds. Evolution, 63, 2466–2473. doi:10.1111/j.1558-5646.2009.00725.x.
LaMunyon, C. W., & Ward, S. (2002). Evolution of larger sperm in response to experimentally increased sperm competition in Caenorhabditis elegans. Proceedings of the Royal Society of London B: Biological Sciences, 269, 1125–1128. doi:10.1098/rspb.2002.1996.
Leonard, J. L., & Cordoba-Aguilar, A. (Eds.). (2010). The evolution of primary sexual characters in animals. Oxford: Oxford University Press.
Lüpold, S., Calhim, S., Immler, S., & Birkhead, T. R. (2009). Sperm morphology and sperm velocity in passerine birds. Proceedings of the Royal Society of London B: Biological Sciences, 276, 1175–1181. doi:10.1098/rspb.2008.1645.
Lüpold, S., Tomkins, J. L., Simmons, L. W., & Fitzpatrick, J. L. (2014). Female monopolization mediates the relationship between pre- and postcopulatory sexual traits. Nature Communications, 5, 3184–3188. doi:10.1038/ncomms4184.
Lüpold, S., Manier, M. K., Puniamoorthy, N., et al. (2016). How sexual selection can drive the evolution of costly sperm ornamentation. Nature, 533, 535–538. doi:10.1038/nature18005.
Oppliger, A., Hosken, D., & Ribi, G. (1998). Snail sperm production characteristics vary with sperm competition risk. Proceedings of the Royal Society of London. Series B, 265, 1527–1534.
Parker, G. A. (1970). Sperm competition and its evolutionary consequences in insects. Biological Reviews, 45, 525–567.
Parker, G. A. (1990). Sperm competition games: Sneaks and extra-pair copulations. Proceedings of the Royal Society of London. Series B, 242, 127–133.
Parker, G. A. (1998). Sperm competition and the evolution of ejaculates: Towards a theory base. In T. R. Birkhead & A. P. Møller (Eds.), Sperm competition and sexual selection (pp. 3–54). New York: Academic.
Parker, G. A. (2016). The evolution of expenditure on testes. Journal of Zoology, 298, 3–19. doi:10.1111/jzo.12297.
Parker, G. A., & Ball, M. (2005). Sperm competition, mating rate and the evolution of testis and ejaculate sizes: A population model. Biology Letters, 1, 235–238.
Parker, G. A., & Pizzari, T. (2010). Sperm competition and ejaculate economics. Biological Reviews, 85, 897–934. doi:10.1111/j.1469-185X.2010.00140.x.
Parker, G. A., Lessells, C. M., & Simmons, L. W. (2013). Sperm competition games: A general model for precopulatory male-male competition. Evolution, 67, 95–109. doi:10.1111/j.1558-5646.2012.01741.x.
Peretti, A. V., & Aisenberg, A. (Eds.). (2015). Cryptic female choice in arthropods. Cham: Springer International Publishing.
Perry, J. C., Sirot, L., & Wigby, S. (2013). The seminal symphony: How to compose an ejaculate. Trends in Ecology & Evolution, 28, 414–422. doi:10.1016/j.tree.2013.03.005.
Pitnick, S., Hosken, D. J., & Birkhead, T. R. (2009a). Sperm morphological diversity. In T. R. Birkhead, D. J. Hosken, & S. Pitnick (Eds.), Sperm biology: An evolutionary perspective (pp. 69–149). San Diego: Academic.
Pitnick, S., Wolfner, M. F., & Suarez, S. S. (2009b). Ejaculate-female and sperm-female interactions. In Sperm biology: An evolutionary perspective (pp. 247–304). London: Academic.
Pizzari, T., & Parker, G. A. (2009). Sperm competition and sperm phenotype. In T. R. Birkhead, D. J. Hosken, & S. Pitnick (Eds.), Sperm biology: An evolutionary perspective (pp. 207–245). Burlington: Academic.
Ramm, S. A., & Schärer, L. (2014). The evolutionary ecology of testicular function: Size isn’t everything. Biological Reviews, 89, 874–888. doi:10.1111/brv.12084.
Ramm, S. A., & Stockley, P. (2009). Adaptive plasticity of mammalian sperm production in response to social experience. Proceedings of the Royal Society of London B: Biological Sciences, 276, 745–751. doi:10.1098/rspb.2008.1296.
Reznick, D. N., Nunney, L., & Tessier, A. (2000). Big houses, big cars, superfleas and the costs of reproduction. Trends in Ecology & Evolution, 15, 421–425.
Rudolfsen, G., Figenschou, L., Folstad, I., et al. (2006). Rapid adjustments of sperm characteristics in relation to social status. Proceedings of the Royal Society of London B: Biological Sciences, 273, 325–332. doi:10.1098/rspb.2005.3305.
Simmons, L. W. (2001). Sperm competition and its evolutionary consequences in the insects. Princeton: Princeton University Press.
Simmons, L. W., Denholm, A., Jackson, C., et al. (2007a). Male crickets adjust ejaculate quality with both risk and intensity of sperm competition. Biology Letters, 3, 520–522. doi:10.1098/rsbl.2007.0328.
Simmons, L. W., Emlen, D. J., & Tomkins, J. L. (2007b). Sperm competition games between sneaks and guards: A comparative analysis using dimorphic male beetles. Evolution, 61, 2684–2692. doi:10.1111/j.1558-5646.2007.00243.x.
Simpson, J. L., Humphries, S., Evans, J. P., et al. (2014). Relationships between sperm length and speed differ among three internally and three externally fertilizing species. Evolution, 68, 92–104. doi:10.1111/evo.12199.
Snook, R. R. (2005). Sperm in competition: Not playing by the numbers. Trends in Ecology & Evolution, 46–53.
Thomas, M. L., & Simmons, L. W. (2007). Male crickets adjust the viability of their sperm in response to female mating status. The American Naturalist, 170, 190–195.
Wedell, N., Gage, M. J. G., & Parker, G. A. (2002). Sperm competition, male prudence and sperm-limited females. Trends in Ecology & Evolution, 17, 313–320.
Williams, P., Day, T., & Cameron, E. (2005). The evolution of sperm-allocation strategies and the degree of sperm competition. Evolution, 59, 492–499.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this entry
Cite this entry
Kelly, C.D., Jennions, M.D. (2016). Sperm Competition Theory. In: Weekes-Shackelford, V., Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_1941-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-16999-6_1941-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Online ISBN: 978-3-319-16999-6
eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social Sciences