MHC Compatibility
- 621 Downloads
Synonyms
Definition
The Major Histocompatibility Complex (MHC) refers to a large, highly dense genomic region found in most vertebrates which encodes proteins that display both self- and non-self antigens to white blood cells called T cells that can eliminate pathogens or malfunctioning cells. In humans, the MHC is also called the Human Leukocyte Antigen (HLA) system. MHC Compatibility refers to the role of the MHC in mate selection.
Introduction
Since the debut of major histocompatibility complex- (MHC) dependent mate preferences in mice in 1976 (Yamazaki et al.), a number of studies have been conducted to determine the role of MHC across species, identify mechanisms of MHC identification, and distinguish among hypotheses about the adaptive significance of having this ability. Three main hypotheses have been suggested (discussed in Penn and Potts 1999): first, that dissortative mating on MHC genotypes...
References
- Beauchamp, G. K., Yamazaki, K., Bard, J., & Boyse, E. A. (1988). Preweaning experience in the control of mating prefrences by genes in the major histocompatibility complex of the mouse. Behavior Genetics, 18, 537–547.CrossRefGoogle Scholar
- Beck, S., & Trowsdale, J. (2000). The human major histocompatibility complex: Lessons from the DNA sequence. Annual Review of Genomics and Human Genetics, 1, 117–137.CrossRefGoogle Scholar
- Carrington, M., Nelson, G. W., Martin, M. P., Kissner, T., Vlahov, D., Goedert, J. J., Kaslow, R., Buchbinder, S., Hoots, K., & O’Brien, S. J. (1999). HLA and HIV-1: Heterozygote advantage and B*35-Cw*04 disadvantage. Science, 283, 1748–1752.CrossRefGoogle Scholar
- Egid, K., & Brown, J. L. (1989). The major histocompatibility complex and female mating preferences in mice. Animal Behaviour, 38, 548–549.CrossRefGoogle Scholar
- Eizaguirre, C., Yeates, S. E., Lenz, T. L., Kalbe, M., & Milinski, M. (2009). MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Molecular Ecology, 18, 3316–3329.CrossRefGoogle Scholar
- Havlicek, J., & Roberts, S. C. (2009). MHC-correlated mate choice in humans: A review. Psychoneuroendocrinology, 34, 497–512.CrossRefGoogle Scholar
- Hedrick, P. W. (1992). Female choice and variation in the major histocompatibility complex. Genetics, 132, 575–581.PubMedPubMedCentralGoogle Scholar
- Jacob, S., McClintock, M. K., Zelano, B., & Ober, C. (2002). Paternally inherited HLA alleles are associated with women’s choice of male odor. Nature Genetics, 30, 175–179.CrossRefGoogle Scholar
- Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. (2001). Immunobiology. New York: Garland Science.Google Scholar
- Ober, C. (1992). The maternal-fetal relationship in human pregnancy: An immunological perspective. Experimental and Clinical Immunogenetics, 9, 1–14.PubMedGoogle Scholar
- Ober, C., Weitkamp, L. R., Cox, N., Dytch, H., Kostyu, D., & Elias, S. (1997). HLA and mate choice in humans. American Journal of Human Genetics, 61, 497–504.CrossRefGoogle Scholar
- Pause, B. M., Sojka, B., Krauel, K., Fehm-Wolfsdorf, G., & Ferstl, R. (1996). Olfactory information processing during the course of the menstrual cycle. Biological Psychology, 44, 31–54.CrossRefGoogle Scholar
- Penn, D. J., & Potts, W. K. (1999). The evolution of mating preferences and major histocompatibility complex genes. The American Naturalist, 153(2), 145–164.CrossRefGoogle Scholar
- Penn, D. J., Oberzaucher, E., Grammer, K., Fischer, G., Soini, H. A., Wiesler, D., Novotny, M. V., Dixon, S. J., Xu, Y., & Brereton, R. G. (2007). Individual and gender fingerprints in human body odour. Journal of the Royal Society Interface, 4, 331–340.CrossRefGoogle Scholar
- Petrinovich, L. (1979). Probabilistic functionalism: A conception of research method. American Psychologist, 34(5), 373–390.CrossRefGoogle Scholar
- Potts, W. K. (2002). Wisdom through immunogenetics. Nature Genetics, 30, 130–131.CrossRefGoogle Scholar
- Roberts, S. C. (2009). Complexity and context of MHC-correlated mating preferences in wild populations. Molecular Ecology, 18(15), 3121–3123.CrossRefGoogle Scholar
- Roberts, S. C., Gosling, L. M., Spector, T. D., Miller, P., Penn, D. J., & Petrie, M. (2005). Body odor similarity in noncohabiting twins. Chemical Senses, 30, 651–656.CrossRefGoogle Scholar
- Roberts, S. C., Gosling, L. M., Carter, V., & Petrie, M. (2008). MHC-correlated odour preferences in humans and the use of oral contraceptives. Proceedings of the Royal Society of London B: Biological Sciences, 275(1652), 2715–2722.Google Scholar
- Schaefer, M. L., Young, D. A., & Restrepo, D. (2001). Olfactory fingerprints for major histocompatibility complex-determined body odors. The Journal of Neuroscience, 21, 2481–2487.CrossRefGoogle Scholar
- Schaefer, M. L., Yamazaki, K., Osada, K., Restrepo, D., & Beauchamp, G. K. (2002). Olfactory fingerprints for major histocompatibility complex determined odors II: Relationship among odor maps, genetics, odor composition, and behavior. The Journal of Neuroscience, 22(21), 9513–9521.CrossRefGoogle Scholar
- Singer, A. G., Beauchamp, G. K., & Yamazaki, K. (1997). Volatile signals of the major histocompatibility complex in male mouse urine. Proceedings of the National Academy of Sciences, 94(6), 2210–2214.CrossRefGoogle Scholar
- Singh, P. B., Herbert, J., Roser, B., Arnott, L., Tucker, D., & Brown, R. (1990). Rearing rats in a germ-free environment eliminates their odors of individuality. Journal of Chemical Ecology, 16, 1667–1682.CrossRefGoogle Scholar
- Wedekind, C., & Furi, S. (1997). Body odour preferences in men and women: Do they aim for specific MHC combinations or simply heterozygosity? Proceedings of the Royal Society of London B: Biological Sciences, 264(1387), 1471–1479.CrossRefGoogle Scholar
- Wedekind, C., Seeback, T., Bettens, F., & Paepke, A. J. (1995). MHC-dependent mate preferences in humans. Proceedings of the Royal Society of London B, 260(1359), 245–249.CrossRefGoogle Scholar
- Wedekind, C., Chapuisat, M., Macas, E., & Rulicke, T. (1996). Non-random fertilization in mice correlates with MHC and something else. Heredity, 77, 400–409.CrossRefGoogle Scholar
- Weidt, G., Deppert, W., Utermohlen, O., Heukeshoven, J., & Lehmann-Grube, F. (1995). Emergence of virus escape mutants after immunization with epitope vaccine. Journal of Virology, 69, 7147–7151.PubMedPubMedCentralGoogle Scholar
- Yamazaki, K. E., Boyse, A., Mike, V., Thaler, T., Mathieson, B. J., Abbott, J., Boyse, J., & Zayas, Z. A. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex. Journal of Experimental Medicine, 144, 1324–1335.CrossRefGoogle Scholar
- Yamazaki, K., Beauchamp, G. K., Kupniewski, D., Bard, J., & Thomas, L. (1988). Familial imprinting determines H-2 selective mating preferences. Science, 240, 1331–1332.CrossRefGoogle Scholar