Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

MHC Compatibility

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_1013-1
  • 621 Downloads

Synonyms

Definition

The Major Histocompatibility Complex (MHC) refers to a large, highly dense genomic region found in most vertebrates which encodes proteins that display both self- and non-self antigens to white blood cells called T cells that can eliminate pathogens or malfunctioning cells. In humans, the MHC is also called the Human Leukocyte Antigen (HLA) system. MHC Compatibility refers to the role of the MHC in mate selection.

Introduction

Since the debut of major histocompatibility complex- (MHC) dependent mate preferences in mice in 1976 (Yamazaki et al.), a number of studies have been conducted to determine the role of MHC across species, identify mechanisms of MHC identification, and distinguish among hypotheses about the adaptive significance of having this ability. Three main hypotheses have been suggested (discussed in Penn and Potts 1999): first, that dissortative mating on MHC genotypes...

This is a preview of subscription content, log in to check access.

References

  1. Beauchamp, G. K., Yamazaki, K., Bard, J., & Boyse, E. A. (1988). Preweaning experience in the control of mating prefrences by genes in the major histocompatibility complex of the mouse. Behavior Genetics, 18, 537–547.CrossRefGoogle Scholar
  2. Beck, S., & Trowsdale, J. (2000). The human major histocompatibility complex: Lessons from the DNA sequence. Annual Review of Genomics and Human Genetics, 1, 117–137.CrossRefGoogle Scholar
  3. Carrington, M., Nelson, G. W., Martin, M. P., Kissner, T., Vlahov, D., Goedert, J. J., Kaslow, R., Buchbinder, S., Hoots, K., & O’Brien, S. J. (1999). HLA and HIV-1: Heterozygote advantage and B*35-Cw*04 disadvantage. Science, 283, 1748–1752.CrossRefGoogle Scholar
  4. Egid, K., & Brown, J. L. (1989). The major histocompatibility complex and female mating preferences in mice. Animal Behaviour, 38, 548–549.CrossRefGoogle Scholar
  5. Eizaguirre, C., Yeates, S. E., Lenz, T. L., Kalbe, M., & Milinski, M. (2009). MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Molecular Ecology, 18, 3316–3329.CrossRefGoogle Scholar
  6. Havlicek, J., & Roberts, S. C. (2009). MHC-correlated mate choice in humans: A review. Psychoneuroendocrinology, 34, 497–512.CrossRefGoogle Scholar
  7. Hedrick, P. W. (1992). Female choice and variation in the major histocompatibility complex. Genetics, 132, 575–581.PubMedPubMedCentralGoogle Scholar
  8. Jacob, S., McClintock, M. K., Zelano, B., & Ober, C. (2002). Paternally inherited HLA alleles are associated with women’s choice of male odor. Nature Genetics, 30, 175–179.CrossRefGoogle Scholar
  9. Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. (2001). Immunobiology. New York: Garland Science.Google Scholar
  10. Ober, C. (1992). The maternal-fetal relationship in human pregnancy: An immunological perspective. Experimental and Clinical Immunogenetics, 9, 1–14.PubMedGoogle Scholar
  11. Ober, C., Weitkamp, L. R., Cox, N., Dytch, H., Kostyu, D., & Elias, S. (1997). HLA and mate choice in humans. American Journal of Human Genetics, 61, 497–504.CrossRefGoogle Scholar
  12. Pause, B. M., Sojka, B., Krauel, K., Fehm-Wolfsdorf, G., & Ferstl, R. (1996). Olfactory information processing during the course of the menstrual cycle. Biological Psychology, 44, 31–54.CrossRefGoogle Scholar
  13. Penn, D. J., & Potts, W. K. (1999). The evolution of mating preferences and major histocompatibility complex genes. The American Naturalist, 153(2), 145–164.CrossRefGoogle Scholar
  14. Penn, D. J., Oberzaucher, E., Grammer, K., Fischer, G., Soini, H. A., Wiesler, D., Novotny, M. V., Dixon, S. J., Xu, Y., & Brereton, R. G. (2007). Individual and gender fingerprints in human body odour. Journal of the Royal Society Interface, 4, 331–340.CrossRefGoogle Scholar
  15. Petrinovich, L. (1979). Probabilistic functionalism: A conception of research method. American Psychologist, 34(5), 373–390.CrossRefGoogle Scholar
  16. Potts, W. K. (2002). Wisdom through immunogenetics. Nature Genetics, 30, 130–131.CrossRefGoogle Scholar
  17. Roberts, S. C. (2009). Complexity and context of MHC-correlated mating preferences in wild populations. Molecular Ecology, 18(15), 3121–3123.CrossRefGoogle Scholar
  18. Roberts, S. C., Gosling, L. M., Spector, T. D., Miller, P., Penn, D. J., & Petrie, M. (2005). Body odor similarity in noncohabiting twins. Chemical Senses, 30, 651–656.CrossRefGoogle Scholar
  19. Roberts, S. C., Gosling, L. M., Carter, V., & Petrie, M. (2008). MHC-correlated odour preferences in humans and the use of oral contraceptives. Proceedings of the Royal Society of London B: Biological Sciences, 275(1652), 2715–2722.Google Scholar
  20. Schaefer, M. L., Young, D. A., & Restrepo, D. (2001). Olfactory fingerprints for major histocompatibility complex-determined body odors. The Journal of Neuroscience, 21, 2481–2487.CrossRefGoogle Scholar
  21. Schaefer, M. L., Yamazaki, K., Osada, K., Restrepo, D., & Beauchamp, G. K. (2002). Olfactory fingerprints for major histocompatibility complex determined odors II: Relationship among odor maps, genetics, odor composition, and behavior. The Journal of Neuroscience, 22(21), 9513–9521.CrossRefGoogle Scholar
  22. Singer, A. G., Beauchamp, G. K., & Yamazaki, K. (1997). Volatile signals of the major histocompatibility complex in male mouse urine. Proceedings of the National Academy of Sciences, 94(6), 2210–2214.CrossRefGoogle Scholar
  23. Singh, P. B., Herbert, J., Roser, B., Arnott, L., Tucker, D., & Brown, R. (1990). Rearing rats in a germ-free environment eliminates their odors of individuality. Journal of Chemical Ecology, 16, 1667–1682.CrossRefGoogle Scholar
  24. Wedekind, C., & Furi, S. (1997). Body odour preferences in men and women: Do they aim for specific MHC combinations or simply heterozygosity? Proceedings of the Royal Society of London B: Biological Sciences, 264(1387), 1471–1479.CrossRefGoogle Scholar
  25. Wedekind, C., Seeback, T., Bettens, F., & Paepke, A. J. (1995). MHC-dependent mate preferences in humans. Proceedings of the Royal Society of London B, 260(1359), 245–249.CrossRefGoogle Scholar
  26. Wedekind, C., Chapuisat, M., Macas, E., & Rulicke, T. (1996). Non-random fertilization in mice correlates with MHC and something else. Heredity, 77, 400–409.CrossRefGoogle Scholar
  27. Weidt, G., Deppert, W., Utermohlen, O., Heukeshoven, J., & Lehmann-Grube, F. (1995). Emergence of virus escape mutants after immunization with epitope vaccine. Journal of Virology, 69, 7147–7151.PubMedPubMedCentralGoogle Scholar
  28. Yamazaki, K. E., Boyse, A., Mike, V., Thaler, T., Mathieson, B. J., Abbott, J., Boyse, J., & Zayas, Z. A. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex. Journal of Experimental Medicine, 144, 1324–1335.CrossRefGoogle Scholar
  29. Yamazaki, K., Beauchamp, G. K., Kupniewski, D., Bard, J., & Thomas, L. (1988). Familial imprinting determines H-2 selective mating preferences. Science, 240, 1331–1332.CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of PsychologyArizona State University - West CampusPhoenixUSA
  2. 2.Division of CardiologyUniversity of California, San FranciscoSan FranciscoUSA

Section editors and affiliations

  • Menelaos Apostolou
    • 1
  1. 1.University of NicosiaNicosiaCyprus