Skip to main content
Book cover

Polysaccharides pp 1319–1371Cite as

Transition-Metal-Catalyzed Transformation of Monosaccharides and Polysaccharides

  • Reference work entry
  • First Online:

Abstract

The exploitation of transition metals in carbohydrate chemistry has achieved considerable developments in the last decades. This contribution gives an overview of transition-metal-catalyzed transformations of various mono- and polysaccharides into enantiopure compounds, fine chemicals, and building blocks suitable for industrial application. These recent applications in this area have made this field of chemistry very attractive. The utilization of carbohydrate–transition-metal complexes have become a powerful tool for forming and breaking of the carbon–carbon bonds. Particular attention is given to recent developments and advances in the use of Mo(VI) ions as highly stereospecific catalyst in carbohydrate synthesis, highlighting the representative examples from the last decade. In the second part, the review describes transition-metal catalytic systems that are involved in the of transformation natural polysaccharides (cellulose, starch, xylans) into important organic intermediates (5-hydroxymethylfurfural, furfural). It is shown that particularly the application of Mo(VI)-catalytic system, in combination with microwave irradiation, in transformation of starch and xylans offers interesting alternative for the preparation of valuable of monosaccharides and corresponding alditols (mannose, xylose, lyxose, mannitol, xylitol, lyxitol). The emphasis is primarily placed on high stereoselectivity in catalytic reactions and transformation of renewable carbohydrate biomass as promising source of organic raw materials for production of useful platform chemicals, rare sugars, and fuels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adrover M, Vilanova B, Frau J, Munoz F, Donoso J (2008) The pyridoxamine action on Amadori compounds: a reexamination of its scavenging capacity and chelating effect. Bioorg Med Chem 16:5557–5569

    CAS  Google Scholar 

  • Agirrezabal-Telleria I, Larreategui A, Requies J, Gümez MB, Arias PL (2011) Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresour Technol 102:7478–7485

    CAS  Google Scholar 

  • Akpinar O, Erdogan K, Bostanci S (2009) Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr Res 344:660–666

    CAS  Google Scholar 

  • Alekseev YU, Garnovskii AD, Zhdanov YA (1998) Complexes of natural carbohydrates with metal cations. Russ Chem Rev 67:649–669

    Google Scholar 

  • Amadori M (1931) Prodotti di condensazione tra glucosio e p-toluidina. Atti Accad Naz Lincei Mem Cl Sci Fis Mat Nat 13:72–77

    CAS  Google Scholar 

  • Amiri H, Karimi K, Roodpeyma S (2010) Production of furans from rice straw by single-phase and biphasic systems. Carbohydr Res 345:1–6

    Google Scholar 

  • Anastas PT, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Angyal SJ (1980) Haworth memorial lecture. Sugar–cation complexes–structure and applications. Chem Soc Rev 9:415–428

    CAS  Google Scholar 

  • Angyal SJ (1984) The composition of reducing sugars in solution. Adv Carbohydr Chem Biochem 42:15–68

    CAS  Google Scholar 

  • Angyal SJ (1989) Complexes of metal cations with carbohydrates in solution. Adv Carbohydr Chem Biochem 47:1–43

    CAS  Google Scholar 

  • Angyal SJ (1994) The composition of reducing sugars in dimethyl sulfoxide solution. Carbohydr Res 263:1–11

    CAS  Google Scholar 

  • Angyal SJ (2001) The Lobry de Bruyn – Alberda van Ekenstein transformation and related reactions. In: Stütz AF (ed) Glycoscience: epimerization, isomerization, and rearrangement reactions of carbohydrates, vol 215, Topics in current chemistry. Springer, Berlin, pp 1–14

    Google Scholar 

  • Angyal SJ, Mills JA (1979) Complexes of carbohydrates with metal cations. XI. Paper electrophoresis of polyols in solution of calcium ions. Aust J Chem 32:1993–2001

    CAS  Google Scholar 

  • Antal M, Lessomboon T, Mok W, Richards G (1991) Mechanism of formation of 2-furaldehyde from d-xylose. Carbohydr Res 217:71–85

    CAS  Google Scholar 

  • Asif M, Egan J, Vasan S, Jyothirmayi GN, Masurekar MR, Lopez S, Williams C, Torres RL, Wagle D, Ulrich P, Cerami A, Brines M, Regan TJ (2000) An advanced glycation end-product cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci U S A 97:2809–2813

    CAS  Google Scholar 

  • Beerens K, Desmet T, Soetaert W (2012) Enzymes for the biocatalytic production of rare sugars. J Ind Microbiol Biotechnol 39:823–834

    CAS  Google Scholar 

  • Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam

    Google Scholar 

  • Bertolini AC (2010) Starches: characterization, properties, and applications. CRC Press Taylor & Francis Group, New York

    Google Scholar 

  • Bhat R, Karim AA (2009) Impact of radiation processing on starch. Compr Rev Food Sci Food Saf 8:44–58

    CAS  Google Scholar 

  • Bílik V (1972a) Epimerization of d-glucose and d-mannose. II. Chem Zvesti 26:183–186

    Google Scholar 

  • Bílik V (1972b) Preparation of l-glucose by epimerization of l-mannose or l-mannose phenylhydrazone. III. Chem Zvesti 26:187–189

    Google Scholar 

  • Bílik V (1972c) Epimerization of aldopentoses. IV. Chem Zvesti 26:372–375

    Google Scholar 

  • Bílik V, Caplovic J (1973) Reactions of saccharides catalyzed by molybdate ions. VII: preparation of l-ribose, d- and l-lyxose. Chem Zvesti 27:547–550

    Google Scholar 

  • Bílik V, Voelter W, Bayer E (1972) Epimerisirung von l-rhamnose. V. Justus Liebigs Ann Chem 759:189–194

    Google Scholar 

  • Bílik V, Petruš L, Farkaš V (1975) Mechanism of the epimerization reaction. XV. Chem Zvesti 29:690–696

    Google Scholar 

  • Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985

    CAS  Google Scholar 

  • Binder JB, Blank JJ, Cefali AV, Raines RT (2010) Synthesis of furfural from xylose and xylan. ChemSusChem 3:1268–1272

    CAS  Google Scholar 

  • Bock K, Pedersen C (1983) Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. Adv Carbohydr Chem Biochem 41:27–66

    CAS  Google Scholar 

  • Brown DW, Floyd AJ, Kinsman RG, Roshan-Ali Y (1982) Dehydration reactions of fructose in nonaqueous media. J Chem Technol Biotechnol 2:920–924

    Google Scholar 

  • Caddick S (1995) Microwave assisted organic reactions. Tetrahedron 51:10403–10432

    CAS  Google Scholar 

  • Camacho F, González-Tello P, Jurado E, Robles A (1996) Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid. J Chem Technol Biotechnol 67:350–356

    CAS  Google Scholar 

  • Campos A, Moreno S, Molina R (2008) Relationship between hydrothermal parameters as a strategy to reduce layer charge in vermiculite, and its catalytic behavior. Catal Today 133:351–356

    Google Scholar 

  • Caruel H, Rigal L, Gaset A (1991) Carbohydrate separation by ligand-exchange liquid chromatography. J Chromatogr A 558:89–104

    CAS  Google Scholar 

  • Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183

    CAS  Google Scholar 

  • Chidambaram M, Curulla-Ferre D, Singh AP, Anderson BG (2003) Synthesis and characterization of triflic acid-functionalized mesoporous Zr-TMS catalysts: heterogenization of CF3SO3H over Zr-TMS and its catalytic activity. J Catal 220:442–456

    CAS  Google Scholar 

  • Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG (2013) Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. J Am Chem Soc 135:3997–4006

    CAS  Google Scholar 

  • Chun JA, Lee JW, Yi YB, Hong SS, Chung CH (2010) Direct conversion of starch to hydroxymethylfurfural in the presence of an ionic liquid with metal chloride. Starch/Stärke 62:326–330

    CAS  Google Scholar 

  • Ciesielski W, Tomasik P (2003) Coordination of cassava starch to metal ions and thermolysis of resulting complexes. Bull Chem Soc Ethiop 17:155–165

    CAS  Google Scholar 

  • Ciesielski W, Lii CY, Yen MT, Tomasik P (2003) Interactions of starch with salts of metals from the transition groups. Carbohydr Polym 51:47–56

    CAS  Google Scholar 

  • Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131:209–217

    CAS  Google Scholar 

  • Collins P, Ferrier R (1995) Monosaccharides: their chemistry and their roles in natural products. Wiley, West Sussex, pp 107–114

    Google Scholar 

  • Collins JM, Leadbeater NE (2007) Microwave energy: a versatile tool for the biosciences. Org Biomol Chem 5:1141–1150

    CAS  Google Scholar 

  • Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614

    CAS  Google Scholar 

  • Corma A, Iborra SA (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    CAS  Google Scholar 

  • Corsaro A, Pistarà V, Chiacchio U, Romeo G (2013) A journey into recent microwave-assisted carbohydrate chemistry. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, vol 2, 3rd edn. Wiley, Weinheim, pp 961–1011

    Google Scholar 

  • Cottier L, Descotes G, Neyret C, Nigay H (1989) Pyrolyse de sucre Analyse des vapeurs de caramels industrriels. Ind Alim Agric 106:567–570

    CAS  Google Scholar 

  • Das SK (2004) Application of microwave irradiation in the synthesis of carbohydrates. Synlett 915–932

    Google Scholar 

  • De Guzman D (2005) Bio-based mannitol doser to market. Chem Mark Rep 267:40–52

    Google Scholar 

  • Delaney P, Mc Manamon C, Hanrahan P, Copley MP, Holmes JD, Morris A (2011) Development of chemically engineered porous metal oxides for phosphate removal. J Hazard Mater 185:382–391

    CAS  Google Scholar 

  • Deutschmann R, Dekker FH (2012) From plant biomass to bio-based chemicals: latest developments in xylan research. Biotechnol Adv 30:1627–1640

    CAS  Google Scholar 

  • Dias AS, Pillinger M, Valente AA (2005) Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catal 229:414–423

    CAS  Google Scholar 

  • Dias AS, Pillinger M, Valente AA (2006) Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural. Carbohydr Res 341:2946–2953

    CAS  Google Scholar 

  • Douglas SG (1981) A rapid method for the determination of pentosans in wheat-flour. Food Chem 7:139–145

    CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Dutta S, De S, Alam I, Abu-Omar MM, Saha B (2012) Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J Catal 288:8–15

    CAS  Google Scholar 

  • Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720

    CAS  Google Scholar 

  • El-Zawawy WK, Ibrahim MM, Abdel-Fattah YR, Soliman NA, Mahmoud MM (2011) Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydr Polym 84:865–871

    CAS  Google Scholar 

  • Ennifar S, El Khadem HS (1989) Facile preparation of 6-deoxy-l-arabino-hexulose by isomerization of l-rhamnose in boiling pyridine. Carbohydr Res 193:303–306

    CAS  Google Scholar 

  • Feather MS, Harris JF (1973) Dehydration reactions of carbohydrates. Adv Carbohydr Chem 28:161–224

    CAS  Google Scholar 

  • Feizi T (1993) Oligosaccharides that mediate mammalian cell-cell adhesion. Curr Opin Struct Biol 3:701–710

    CAS  Google Scholar 

  • Freeze HH, Aebi M (2005) Altered glycan structures: the molecular basis of congenital disorders of glycosylation. Curr Opin Struct Biol 15:490–498

    CAS  Google Scholar 

  • García-Sancho C, Rubio-Caballero JM, Mérida-Robles JM, Moreno-Tost R, Santamaría-González J, Maireles-Torres P (2014) Mesoporous Nb2O5 as solid acid catalyst for dehydration of d-xylose into furfural. Catal Today 234:119–124

    Google Scholar 

  • Geyer H, Geyer R (2008) Glycobiology of viruses. In: Ernst B, Hart GW, Sinai P (eds) Carbohydrates in chemistry and biology. Wiley-VCH, Weinheim, pp 821–838

    Google Scholar 

  • Ghoreishi SM, Shahrestani RG (2009) Innovative strategies for engineering mannitol production. Trends Food Sci Technol 20:263–270

    CAS  Google Scholar 

  • Giudici TA, Griffin JJ (1974) The interconversion of monosaccharide configurations: arabinose to lyxose. Carbohydr Res 33:287–295

    CAS  Google Scholar 

  • Granström TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74:273–276

    Google Scholar 

  • Grisebach H, Schmid R (1972) Chemistry and biochemistry of branched-chain sugars. Angew Chem Int Ed 11:159–248

    CAS  Google Scholar 

  • Hayes ML, Pennings NJ, Serianni AS, Barker R (1982) Epimerization of aldoses by molybdate involving a novel rearrangement of the carbon skeleton. J Am Chem Soc 104:6764–6769

    CAS  Google Scholar 

  • Hedman B (1977) Multicomponent polyanions. 15. The molecular and crystal structure of Na[Mo2O5{O3(OH)C6H8(OH)2}].2H2O. Acta Crystallogr B 33:3077–3083

    Google Scholar 

  • Ho P-T (1978) Branched-chain sugars. Reaction of furanoses with formaldehyde: a stereospecific synthesis of l-dendroketose Tetrahedron Lett 19:1623–1626

    Google Scholar 

  • Hosseini SA, Shah N (2011) Modelling enzymatic hydrolysis of cellulose part I: population balance modelling of hydrolysis by endoglucanase. Biomass Bioenerg 35:3841–3848

    CAS  Google Scholar 

  • Hricovíniová Z (2001) Facile and efficient synthesis of ido-heptulosan via a strategy derived from Mo(VI) catalysed reactions. Synthesis 5:751–754

    Google Scholar 

  • Hricovíniová Z (2002) Highly stereospecific Mo(VI)-mediated synthesis of d-glycero-l-galacto-oct-2-ulose. Tetrahedron Asymm 13:1567–1571

    Google Scholar 

  • Hricovíniová Z (2006) The effect of microwave irradiation on Mo(VI) catalyzed transformations of reducing saccharides. Carbohydr Res 341:2131–2134

    Google Scholar 

  • Hricovíniová Z (2007) Microwave assisted stereospecific synthesis of d-erythro-l-gluco-nonulose. Tetrahedron Asymm 18:1574–1578

    Google Scholar 

  • Hricovíniová Z (2008a) Isomerization as a route to rare ketoses: the beneficial effect of microwave irradiation on Mo(VI)-catalyzed stereospecific rearrangement. Tetrahedron Asymm 19:204–208

    Google Scholar 

  • Hricovíniová Z (2008b) Microwave-assisted stereospecific intramolecular rearrangement of (1→6)-linked disaccharides catalyzed by Mo(VI). Tetrahedron Asymm 19:1853–1856

    Google Scholar 

  • Hricovíniová Z (2009) The influence of microwave irradiation on stereospecific Mo(VI)-catalyzed transformation of deoxysugars. Tetrahedron Asymm 20:1239–1242

    Google Scholar 

  • Hricovíniová Z (2010) A new approach to Amadori ketoses via MoVI catalyzed stereospecific isomerization of 2-C-branched sugars bearing azido function in microwave field. Tetrahedron Asymm 21:2238–2243

    Google Scholar 

  • Hricovíniová Z (2011) Rapid, one pot preparation of d-mannose and d-mannitol from starch: the effect of microwave irradiation and MoVI catalyst. Tetrahedron Asymm 22:1184–1188

    Google Scholar 

  • Hricovíniová Z (2013) Xylans are a valuable alternative resource: production of d-xylose, d-lyxose and furfural under microwave irradiation. Carbohydr Polym 98:1416–1421

    Google Scholar 

  • Hricovíniová Z, Hricovíni M (2013) A new type of rearrangement in branched-chain carbohydrates: isomerization of 3-C-branched aldoses. Carbohydr Res 370:1–8

    Google Scholar 

  • Hricovíniová Z, Hricovíni M, Petrušová M, Matulová M, Petruš L (1998a) Molybdic acid-catalyzed mutual interconversions of 2-C-(Hydroxymethyl)-d-glucose with d-manno-hept-2-ulose and 2-C-(hydroxymethyl)-d-mannose with d-gluco-hept-2-ulose. Chem Pap 52:238–243

    Google Scholar 

  • Hricovíniová Z, Hricovíni M, Petruš L (1998b) Stereospecific molybdic acid-catalyzed isomerization of d-fructose to branched-chain aldose. Synthesis of d-hamamelose. Chem Pap 52:692–698

    Google Scholar 

  • Hricovíniová Z, Hricovíni M, Petruš L (2001) Stereospecific synthesis of d-glycero-d-ido-oct-2-ulose. Mon Chem 132:731–737

    Google Scholar 

  • Hricovíniová Z, Zalibera M, Hricovíni M (2010) Microwave-assisted regioselective synthesis and mutual isomerization of 6-O-vanillyl- and 6-O-iso-vanillyl hexoses and studies of their activities as radical scavengers by EPR spectroscopy. Tetrahedron Asymm 21:756–761

    Google Scholar 

  • Hricovíniová-Bíliková Z, Hricovíni M, Petrušová M, Serianni AS, Petruš L (1999) Stereospecific molybdic acid-catalyzed isomerization of 2-hexuloses to branched-chain aldoses. Carbohydr Res 319:38–46

    Google Scholar 

  • Hu S, Zhang Z, Song J, Zhou Y, Han B (2009) Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chem 11:1746–1749

    CAS  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    CAS  Google Scholar 

  • Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, König B (2009) Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem 11:1948–1954

    CAS  Google Scholar 

  • Ishida K, Nonoyama S, Hirano T, Yano S, Hidai M, Yoshikawa S (1989) Synthesis and characterization of cobalt(III) complexes containing an N-glycoside derived from ethylenediamine and an aldose. Conformational analysis of the sugar units by means of semiempirical AM1 calculations. J Am Chem Soc 111:1599–1604

    CAS  Google Scholar 

  • Izumori K (2002) Bioproduction strategies for rare hexose sugars. Naturwissenschaften 89:120–124

    CAS  Google Scholar 

  • Kappe CO, Dallinger D (2006) The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov 5:51–63

    CAS  Google Scholar 

  • Kappe CO, Stadler A (2005) Microwaves in organic and medicinal chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Kelley S, Rials T, Snell R, Groom L, Sluiter A (2004) Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood. Wood Sci Technol 38:257–276

    CAS  Google Scholar 

  • Khan AR, Johnson JA, Robinson RJ (1979) Degradation of starch polymers by microwave energy. Cereal Chem 59:303–304

    Google Scholar 

  • Kim YJ, Varki A (1997) Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj J 14:569–576

    CAS  Google Scholar 

  • Kim JS, Lee YY, Torget RW (2001) Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. Appl Biochem Biotechnol 91:331–340

    Google Scholar 

  • Kondo JN, Yamashita T, Nakajima K, Lu D, Hara M, Domen K (2005) Preparation and crystallization characteristics of mesoporous TiO2 and mixed oxides. J Mater Chem 15:2035–2040

    CAS  Google Scholar 

  • Kontiokari T, Uhari M, Koskela M (1995) Effect of xylitol on growth of nasopharyngeal bacteria in vitro. Antimicrob Agents Chemother 39:1820–1823

    CAS  Google Scholar 

  • Kontiokari T, Uhari M, Koskela M (1998) Antiadhesive effects of xylitol on otopathogenic bacteria. J Antimicrob Chemother 41:563–565

    CAS  Google Scholar 

  • Kunlan L, Lixin X, Jun L, Jun P, Guoying C, Zuwei X (2001) Salt-assisted acid hydrolysis of starch to d-glucose under microwave irradiation. Carbohydr Res 331:9–12

    CAS  Google Scholar 

  • Kuster BFM (1990) 5-hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch/Stärke 42:314–321

    CAS  Google Scholar 

  • Kuster BFM, van der Baan H (1977) Dehydration of d-fructose (formation of 5-hydroxymethyl-2-furaldehyde and levulinic acid).2. Influence of initial and catalyst concentrations on dehydration of d-fructose. Carbohydr Res 54:165–176

    CAS  Google Scholar 

  • Lai VMF, Tomasik P, Yen MT, Hung WL, Lii C (2001) Re-examination of the interactions between starch and salts of metals from the non-transition groups. Int J Food Sci Technol 36:321–330

    CAS  Google Scholar 

  • Ledl F, Schleicher E (1990) New aspects of the Maillard reaction in foods and in the human body. Angew Chem Int Ed Engl 29:565–594

    Google Scholar 

  • Lessard J, Morin JF, Wehrung JF, Magnin D, Chornet E (2010) High yield conversion of residual pentoses into furfural via zeolite catalysis and catalytic hydrogenation of furfural to 2-methylfuran. Top Catal 53:1231–1234

    CAS  Google Scholar 

  • Lewandowicz G, Jankowski T, Fornal J (2000) Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydr Polym 42:193–199

    CAS  Google Scholar 

  • Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives. Arkivoc 34:17–54

    Google Scholar 

  • Li Y, Liu H, Song Ch GX, Li H, Zhu W, Yin S, Han C (2013) The dehydration of fructose to 5-hydroxymethylfurfural efficiently catalyzed by acidic ion-exchange resin in ionic liquid. Biores Technol 133:347–353

    CAS  Google Scholar 

  • Li H, Deng A, Ren J, Liu C, Wang W, Peng F, Sun R (2014) A modified biphasic system for the dehydration of d-xylose into furfural using SO4 2−/TiO2-ZrO2/La3+as a solid catalyst. Catal Today 234:251–256

    CAS  Google Scholar 

  • Lichtenthaler FW (2010) Carbohydrates: occurrence, structures and chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Lichtenthaler FW, Ronninger S (1990) α-d-glucopyranosyl-d-fructoses. Distribution of furanoid and pyranoid tautomers in water, DMSO and pyridine. J Chem Soc Perkin Trans 2:1489–1497

    Google Scholar 

  • Lidström P, Tierney JP, Wathey B, Westman J (2001) Microwave assisted organic synthesis – a review. Tetrahedron 57:9225–9283

    Google Scholar 

  • Lill JR, Ingle ES, Liu PS, Pham V, Sandoval WN (2007) Microwave-assisted proteomics. Mass Spectrom Rev 26:657–671

    CAS  Google Scholar 

  • Lima S, Pillinger M, Valente AA (2008) Dehydration of d-xylose into furfural catalysed by solid acids derived from the layered zeolite Nu-6(1). Catal Commun 9:2144–2148

    CAS  Google Scholar 

  • Lima S, Antunes M, Fernandes A, Pillinger M, Ribeiro M, Valente A (2010) Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-beta and a micro/mesoporous beta/TUD-1 composite material. Appl Catal A 388:141–148

    CAS  Google Scholar 

  • Loupy A (2002) Microwaves in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  • Luisi B, Orozco M, Sponer J, Luque FJ, Shakked Z (1998) On the potential role of the amino nitrogen atom as a hydrogen bond acceptor in macromolecules. J Mol Biol 279:1123–1136

    CAS  Google Scholar 

  • Ma L, Liu S, Zubieta J (1989) Polyoxomolybdate-alkoxide interactions. The crystal and molecular structures of the erythritolate complexes. Polyhedron 8:1571–1573

    CAS  Google Scholar 

  • Maillard LC (1912) Action des acides aminés sur les sucres: formation des mélanoidines par voie méthodique. C R Acad Sci 154:66–68

    CAS  Google Scholar 

  • Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol Prog 16:637–641

    CAS  Google Scholar 

  • Matulová M, Bílik V (1990a) Reactions of saccharides catalyzed by molybdate ions. 39. NMR-spectra of the aldoses of ribose and arabinose homomorphous series in molybdate complexes. Chem Pap 44:77–87

    Google Scholar 

  • Matulová M, Bílik V (1990b) Reactions of saccharides catalyzed by molybdate ions. 43. 95Mo NMR spectra of the molybdate complexes of alditols and aldoses. Chem Pap 44:703–709

    Google Scholar 

  • Matulová M, Bílik V (1993) NMR studies of molybdate complexes of d-allose, d-altrose, d-gulose and d-idose. Carbohydr Res 250:203–209

    Google Scholar 

  • Matulová M, Hricovíniová Z (2002) NMR studies of molybdate complexes of d-erythro-l-manno-octose and d-erythro-l-gluco-octose and their Alditols. Carbohydr Res 337:1745–1756

    Google Scholar 

  • Mercadier D, Rigal L, Gaset A, Gorrichon JP (1981) Synthesis of 5-hydroxymethyl-2-furancarboxaldehyde catalysed by cationic exchange resins. Part 3. Kinetic approach of the d-fructose dehydration. J Chem Technol Biotechnol 31:503–508

    CAS  Google Scholar 

  • Merkle RK, Poppe I (1994) Carbohydrate-composition analysis of glycoconjugates by gas–liquid chromatography mass-spectrometry. Methods Enzymol 230:1–15

    CAS  Google Scholar 

  • Mingos DMP, Baghurst DR (1991) Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem Soc Rev 20:1–47

    CAS  Google Scholar 

  • Mittal A, Scott GM, Amidon TE, Kiemle DJ, Stipanovic AJ (2009) Quantitative analysis of sugars in wood hydrolysates with (1)H NMR during the autohydrolysis of hardwoods. Bioresour Technol 100:6398–406

    CAS  Google Scholar 

  • Mittal N, Nisole GM, Chung WJ (2012) Facile catalytic dehydration of fructose to 5-hydroxymethylfurfural by Niobium pentachloride. Tetrahedron 53:3149–3155

    CAS  Google Scholar 

  • Moreau C, Belgacem MN, Gandini A (2004) A Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27:11–30

    CAS  Google Scholar 

  • Mukherjee S, Majumdar S, Bhattacharyya D (2005) Role of hydrogen bonds in protein-DNA recognition: effect of nonplanar amino groups. J Phys Chem B 109:10484–10492

    CAS  Google Scholar 

  • Musau RM, Munavu MN (1987) Preparation of 5-hydroxymethyl-2-furaldehyde from fructose in the presence of DMSO. Biomass 13:67–74

    CAS  Google Scholar 

  • Nesatyy VJ, Dacanay A, Kelly JF, Ross NW (2007) Microwave-assisted protein staining: mass spectrometry compatible methods for rapid protein visualisation. Rapid Commun Mass Spectrom 16:272–280

    Google Scholar 

  • Nicotra F, La Ferla B, Airoldi C (2008) Aminated sugars, synthesis and biological activity. In: Ricci A (ed) Amino group chemistry: from synthesis to the life sciences. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 257–304

    Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen-bonding system in cellulose 1(alpha) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    CAS  Google Scholar 

  • Osanai S (2001) Nickel (II)-catalyzed rearrangements of free sugars. In: Stütz AF (ed) Glycoscience: epimerization, isomerization, and rearrangement reactions of carbohydrates, vol 215, Topics in current chemistry. Springer, Berlin, pp 44–76

    Google Scholar 

  • Osanai S, Inaba K, Yoshikawa S (1991) Aldose epimerization by Ni(II): effect of ether-containing alkylenediamine ligands. Carbohydr Res 209:289–295

    CAS  Google Scholar 

  • Östergård K, Björck I, Gunnarsson A (1988) A study of native and chemically modified potato starch. Part I: analysis and enzymic availability in vitro. Starch/Stärke 40:58–66

    Google Scholar 

  • Ott H, Spurlin HM, Grafflin MW (1965) Cellulose and cellulose derivatives. Interscience, New York

    Google Scholar 

  • Palav T, Seetharaman K (2007) Impact of microwave heating on the physico-chemical properties of a starch–water model system. Carbohydr Polym 67:596–604

    CAS  Google Scholar 

  • Pelyvas IV, Monneret C, Herczegh P (1988) Synthetic aspects of aminodeoxy sugars of antibiotics. Springer, Berlin, pp 123–162

    Google Scholar 

  • Peterson WH, Fred EB (1920) Fermentation of fructose by Lactobacillus pentoaceticus, n. sp. J Biol Chem 41:431–450

    CAS  Google Scholar 

  • Petruš L, Petrušová M, Hricovíniová Z (2001) The Bílik reaction. In: Stütz AF (ed) Glycoscience: epimerization, isomerization, and rearrangement reactions of carbohydrates, vol 215, Topics in current chemistry. Springer, Berlin, pp 15–41

    Google Scholar 

  • Pholjaroen B, Li N, Wang Z, Wang A, Zhang T (2013) Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system. J Energy Chem 22:826–832

    CAS  Google Scholar 

  • Pidko EA, Degirmenci V, van Santen RA, Hensen EJM (2010) Glucose activation by transient Cr2+ dimers. Angew Chem Int Ed 49:2530–2534

    CAS  Google Scholar 

  • Pinkert A, Marsh KN, Pang SS, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    CAS  Google Scholar 

  • Porai-Koshits MA, Atovmyan LO (1974) Kristallokhimiya i stereokhimiya koordinatzionnykh soedinenii molibdena. Nauka, Moscow

    Google Scholar 

  • Posthuma N, ter Wee PM, Niessen H, Donker AJ, Verbrugh HA, Schalkwijk CG (2001) Amadori albumin and advanced glycation end-product formation in peritoneal dialysis using icodextrin. Perit Dial Int 21:43–51

    CAS  Google Scholar 

  • Pratt MR, Bertozzi CR (2005) Synthetic glycopeptides and glycoproteins as tools for biology and as therapeutic agents. Chem Soc Rev 34:58–68

    CAS  Google Scholar 

  • Quignard F, di Renzo F, Guibal E (2010) From natural polysaccharides to materials for catalysis, adsorption, and remediation. Top Curr Chem 294:165–197

    CAS  Google Scholar 

  • Raabe HM, Molsen H, Mlinaric SM, Acil Y, Sinnecker G (1996) Biochemical alternations in collagen IV induced by in vitro glycation. Biochem J 319:699–704

    CAS  Google Scholar 

  • Rasrendra CD, Soetedjo JNM, Makertihartha GBN, Adisasmito S, Heeres HJ (2012) The catalytic conversion of d-glucose to 5-hydroxymethylfurfural in DMSO using metal salts. Top Catal 55:543–549

    CAS  Google Scholar 

  • Ren S, Xu H, Zhu J, Li S, He X, Lei T (2012) Furfural production from rice husk using sulfuric acid and a solid acid catalyst through a two-stage process. Carbohydr Res 359:2133–2138

    Google Scholar 

  • Richel A, Paquot M (2012) Conversion of carbohydrates under microwave heating. In: Chuan-Fa C (ed) Carbohydrates – comprehensive studies on glycobiology and glycotechnology. InTech Publisher, Rijeka:29

    Google Scholar 

  • Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793

    CAS  Google Scholar 

  • Rudd PM, Elliot T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291:2370–2376

    CAS  Google Scholar 

  • Sádaba I, Lima S, Valente AA, Granados ML (2011) Catalytic dehydration of xylose to furfural: vanadyl pyrophosphate as source of active soluble species. Carbohydr Res 346:2785–2791

    Google Scholar 

  • Saltmarch M, Labuza TP (1982) Nonenzymatic browning via the Maillard reaction in foods. Diabetes 31:29–36

    CAS  Google Scholar 

  • Sauvage JP, Chapelle S, Verchere JF (1992) Evidence for molybdate complexes of ketoses and aldoses in the furanose form: a 13C and 1H NMR study. Carbohydr Res 237:23–32

    CAS  Google Scholar 

  • Sauvage JP, Verchere JF, Chapelle S (1996) A multinuclear NMR spectroscopy study of the tungstate and molybdate complexes of d-fructose and l-sorbose. Arch Pharm Pharm Med Chem 333:275–277

    Google Scholar 

  • Sawardeker JS, Sloneker LH, Jeanes A (1965) Quantitative determination of monosaccharides as their alditol acetates by gas–liquid chromatography. Anal Chem 37:1602–1604

    CAS  Google Scholar 

  • Schomburg D, Salzmann M (eds) (1990) Enzyme handbook, vol 2. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Seri K, Inoue Y, Ishida H (2000) Highly efficient catalytic activity of lanthanide(III) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents. Chem Lett 29:22–23

    Google Scholar 

  • Seri K, Inoue Y, Ishida H (2001) Catalytic activity of lanthanide(III) ions for the dehydration of hexose to 5-hydroxymethyl-2-furaldehyde in water. Bull Chem Soc Jpn 74:1145–1150

    CAS  Google Scholar 

  • Shen Y, Xu Y, Sun J, Wang B, Xu F, Sun R (2014) Efficient conversion of monosaccharides into 5-hydroxymethylfurfural and levulinic acid in InCl3–H2O. Catal Commun 50:17–20

    CAS  Google Scholar 

  • Shi X, Wu Y, Li P, Yi H, Yang M, Wang G (2011) Catalytic conversion of xylose to furfural over the solid acid SO4 2−/ ZrO2-Al2O3/SBA-15 catalyst. Carbohydr Res 346:480–487

    CAS  Google Scholar 

  • Shin SJ, Cho NS (2008) Conversion factors for carbohydrate analysis by hydrolysis and 1H NMR spectroscopy. Cellulose 15:255–260

    CAS  Google Scholar 

  • Soetaert W, Vanhooren PT, Vandamme EJ (1999) Production of mannitol by fermentation. Methods Biotechnol 10:261–275

    CAS  Google Scholar 

  • Sowden JC, Schaffer R (1952) The reaction of d-glucose, d-mannose and d-fructose in 0.035 N sodium hydroxide at 35. J Am Chem Soc 74:499–504

    CAS  Google Scholar 

  • Speck JC Jr (1958) The Lobry de Bruyn and Alberda van Ekenstein transformation. Adv Carbohydr Chem 13:63–103

    CAS  Google Scholar 

  • Stahlberg T, Sørensen MG, Riisager A (2010) Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts. Green Chem 12:321–325

    Google Scholar 

  • Steiger M, Reichstein T (1936) d-psicose. Helv Chim Acta 19:184–189

    CAS  Google Scholar 

  • Steve J (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7:210–218

    Google Scholar 

  • Stütz AE (1999) Iminosugars as glycosidase inhibitors: nojirimycin and beyond. Wiley-VCH, Weinheim

    Google Scholar 

  • Su Y, Brown HM, Li G, Zhou XD, Amonette JE, Fulton JL, Zhang ZC (2009) Paired metal chlorides activate cellulose conversion in ionic liquid solvent. Appl Catal A 361:117–122

    CAS  Google Scholar 

  • Suzuki T, Yokoi T, Otomo R, Kondo JN, Tatsumi T (2011) Dehydration of xylose over sulfated tin oxide catalyst: influences of the preparation conditions on the structural properties and catalytic performance. Appl Catal A 408:117–124

    CAS  Google Scholar 

  • Tagusagawa C, Takagaki A, Iguchi A, Takanabe K, Kondo JN, Ebitani K (2010a) Highly active mesoporous Nb-W oxide solid-acid catalyst. Angew Chem Int Ed 49:1128–1132

    CAS  Google Scholar 

  • Tagusagawa C, Takagaki A, Iguchi A, Takanabe K, Kondo JN, Ebitani K (2010b) Synthesis and characterization of mesoporous Ta-W oxides as strong solid acid catalysts. Chem Mater 22:3072–3078

    CAS  Google Scholar 

  • Takagaki A, Tagusagawa C, Domen K (2008) Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water tolerant solid acid catalyst. Chem Commun 42:536–545

    Google Scholar 

  • Tanase T, Takei T, Hidai M, Yano S (2001) Substrate-dependent chemoselective aldose-aldose and aldose-ketose isomerization of carbohydrates promoted by a combination of calcium ion and monoamines. Carbohydr Res 333:303–312

    CAS  Google Scholar 

  • Tao F, Song H, Yang J, Chou L (2011) Catalytic hydrolysis of cellulose into furans in MnCl2-ionic system. Carbohydr Polym 85:363–368

    CAS  Google Scholar 

  • Taylor GE, Waters JM (1981) the structure of a compound of unexpected conformation involved in the xylose-lyxose epimerization. Tetrahedron Lett 22:1277–1278

    CAS  Google Scholar 

  • Taylor KLM, Rocca JD, Xie Z, Tran S, Lin W (2009) Post-synthetic modifications of iron-carboxylate nanoscale metal–organic frameworks for imaging and drug delivery. J Am Chem Soc 131:14261–14263

    Google Scholar 

  • Tomasik P, Pałasinski M, Wiejak S (1989) The thermal decomposition of carbohydrates. Part I and II. Adv Carbohydr Chem Biochem 47:203–343

    CAS  Google Scholar 

  • Tompsett G, Conner WC, Yngvesson KS (2006) Microwave synthesis of nanoporous materials. Chem Phys Chem 7:296–319

    CAS  Google Scholar 

  • Van Dam HE, Kieboom APG, Van Bekkum H (1986) The conversion of fructose and glucose in acidic media: formation of hydroxymethylfurfural. Starch/Stärke 38:95–101

    Google Scholar 

  • Vásquez M, Oliva M, Téllez L, Ramírez J (2007) Hydrolysis of sorghum Straw using phosphoric acid: evaluation of furfural production. Bioresour Technol 98:3053–3060

    Google Scholar 

  • Vigier KDO, Jérôme F (2010) Heterogeneously-catalyzed conversion of carbohydrates. Top Curr Chem 295:63–92

    CAS  Google Scholar 

  • Wang C, Fu L, Tong X, Yang Q, Zhang W (2012) Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions. Carbohydr Res 347:182–185

    CAS  Google Scholar 

  • Weingarten R, Tompsett GA, Conner WC, Huber GW (2011) Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: the role of Lewis and Brønsted acid sites. J Catal 279:174–182

    CAS  Google Scholar 

  • Weizman H, Tor Y (2003) RNA-Aminoglycoside Interactions. In: Wong C-H (ed) Carbohydrate based drug discovery, vol 2. Wiley-VCH, Weinheim, pp 661–683

    Google Scholar 

  • Wisniak J, Hershkowitz M, Leibowitz R, Stein S (1974) Hydrogenation of xylose to xylitol. Ind Eng Chem Prod Res Dev 13:75–79

    CAS  Google Scholar 

  • Yamauchi T, Fukushima K, Yanagihara R, Osanai S, Yoshikawa S (1990) Epimerization and isomerization of various monosaccharides using metal-diamine systems. Carbohydr Res 204:233–239

    CAS  Google Scholar 

  • Yanagihara R, Saeda K, Shiina S, Osanai S, Yoshikawa S (1997) C-2 epimerization of aldoses by calcium-ion in basic solutions – a simple system to transform d-glucose and d-xylose into d-mannose and d-lyxose. Bull Chem Soc Jpn 66:2268–2272

    Google Scholar 

  • Yang Z, Niu L, Ma Z, MaH Lei Z (2011) Fabrication of highly active Sn/W mixed transition-metal oxides as solid acid catalysts. Transit Met Chem 36:269–274

    CAS  Google Scholar 

  • Yang Y, Hu C, Abu-Omar MM (2012) Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system. Green Chem 14:509–513

    Google Scholar 

  • Yano S (1988) Coordination compounds containing sugars and their derivatives. Coord Chem Rev 92:113–156

    CAS  Google Scholar 

  • Yaylayan VA, Huyghues-Despointes A, Feather MS (1994) Chemistry of Amadori rearrangement products: analysis, synthesis, kinetics, reactions, and spectroscopic properties. Crit Rev Food Sci Nutr 34:321–369

    CAS  Google Scholar 

  • Yong G, Zhang Y, Ying JY (2008) Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose. Angew Chem Int Ed 47:9345–9348

    CAS  Google Scholar 

  • Yu H, Chen S, Suree P, Nuansri R, Wang K (1996) Effect of microwave irradiation on acid-catalyzed hydrolysis of starch. J Org Chem 61:9608–9609

    CAS  Google Scholar 

  • Zakrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R (2010) Solubility of carbohydrates in ionic liquids. Energy Fuels 24:737–745

    CAS  Google Scholar 

  • Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products. Elsevier, Amsterdam

    Google Scholar 

  • Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour Technol 101:1111–1114

    CAS  Google Scholar 

  • Zhang MJ, Su RG, Qi W, He ZM (2010) Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl Biochem Biotechnol 160:1407–1414

    CAS  Google Scholar 

  • Zhang Z, Wang Q, Xie H, Liu W, Zhao Z (2011) Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural by germanium(IV) chloride in ionic liquids. ChemSusChem 4:131–138

    Google Scholar 

  • Zhang J, Geng A, Yao C, Li Q (2012) Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18. Bioresour Technol 121:369–378

    CAS  Google Scholar 

  • Zhang L, Yu H, Wang P, Dong H, Peng X (2013) Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid. Bioresour Technol 130:110–116

    CAS  Google Scholar 

  • Zhao H, Holladay JE, Brown HM, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600

    CAS  Google Scholar 

  • Zugenmajer P (2008) Crystalline cellulose and derivatives characterization and structures, Springer series in wood science. Springer, Berlin

    Google Scholar 

Download references

Acknowledgment

The financial support of the Slovak Grant Agency VEGA, grant No. 2/0100/14, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Hricovíniová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Hricovíniová, Z. (2015). Transition-Metal-Catalyzed Transformation of Monosaccharides and Polysaccharides. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_76

Download citation

Publish with us

Policies and ethics