Skip to main content

Microwave-Assisted Extraction of Polysaccharides

  • Reference work entry
  • First Online:

Abstract

In this chapter, the use of microwave irradiation has been reviewed and discussed for the extraction of polysaccharides as well as for combined processes involving extraction and hydrolysis of these compounds. Special attention has been paid to polysaccharides with bioactive properties. Fundamentals and instrumentation, together with a detailed discussion on the effect of the most important parameters affecting the microwave-assisted extraction (MAE) process, are presented. Some of the most recent and outstanding applications of MAE for the extraction of polysaccharides, mainly from food matrices or food by-products, are described and classified according to the type of polysaccharide extracted. The comparison in terms of speed, yield, etc. of MAE with other conventional (solid–liquid extraction) or emerging techniques (pressurized liquid extraction, ultrasound-assisted extraction) is also shown. The scale-up of MAE technique and the development of hybrid systems (e.g., ultrasonic–microwave-assisted extraction, UMAE) are shown as future trends. To conclude, MAE is shown as a promising emerging technique for extraction of polysaccharides from natural sources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bagherian H, Zokaee Ashtiani F, Fouladitajar A, Mohtashamy M (2011) Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Process 50:1237–1243

    Article  CAS  Google Scholar 

  • Baghurst DR, Mingos DMP (1992) Superheating effects associated with microwave dielectric heating. J Chem Soc Chem Commun 9:674–677

    Article  Google Scholar 

  • Bélafi-Bakó K, Cserjési P, Beszédes S, Csanádi Z, Hodúr C (2012) Berry pectins: microwave-assisted extraction and rheological properties. Food Bioprocess Technol 5(3):1100–1105

    Article  Google Scholar 

  • Benkő Z, Andersson A, Szengyel Z, Gáspár M, Réczey K, Stålbrand H (2007) Heat extraction of corn fiber hemicellulose. Appl Biochem Biotechnol 137–140:253–265

    Google Scholar 

  • Buchholt HC, Christensen TMIE, Fallesen B, Ralet MC, Thibault JF (2004) Preparation and properties of enzymatically and chemically modified sugar beet pectins. Carbohydr Polym 58:149–161

    Article  CAS  Google Scholar 

  • Bulgariu L, Bulgariu D (2008) Extraction of metal ions in aqueous polyethylene glycol–inorganic salt two-phase systems in the presence of inorganic extractants: correlation between extraction behaviour and stability constants of extracted species. J Chromatogr A 1196–1197:117–124

    Article  Google Scholar 

  • Buranov AU, Mazza G (2010) Extraction and characterization of hemicelluloses from flax shives by different methods. Carbohydr Polym 79:17–25

    Article  CAS  Google Scholar 

  • Coelho E, Rocha MAM, Saraiva JÁ, Coimbra MA (2014) Microwave superheated water and diluted alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydr Polym 99:415–422

    Article  CAS  Google Scholar 

  • Cravotto G, Cintas P (2006) Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem Soc Rev 35:180–196

    Article  CAS  Google Scholar 

  • Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15:898–902

    Article  CAS  Google Scholar 

  • Du B, Zhu F, Xu B (2014) β-Glucan extraction from bran of hull-less barley by accelerated solvent extraction combined with response surface methodology. J Cereal Sci 59:95–100

    Article  CAS  Google Scholar 

  • El-Nawawi SA, Shehata FR (1988) Effect of the extraction temperature on the quality characteristics of pectin extracted from Egyptian Orange Peel. Biol Waste 24:307–311

    Article  CAS  Google Scholar 

  • Eskilsson CS, Björklund E (2000) Analytical-scale microwave-assisted extraction. J Chromatogr A 902:227–250

    Article  CAS  Google Scholar 

  • Eskilsson CS, Björklund E, Mathiasson L, Karlsson L, Torstensson A (1999) Microwave-assisted extraction of felodipine tablets. J Chromatogr A 840:59–70

    Article  CAS  Google Scholar 

  • Fishman ML, Chau HK, Hoagland PD, Hotchkiss AT (2006) Microwave-assisted extraction of lime pectin. Food Hydrocoll 20:1170–1177

    Article  CAS  Google Scholar 

  • Fishman ML, Chau HK, Coffin DR, Cooke PH, Qi P, Yadav MP, Hotchkiss AT Jr (2011) Physico-chemical characterization of a cellulosic fraction from sugar beet pulp. Cellulose 18:787–801

    Article  CAS  Google Scholar 

  • García-Ayuso LE, Sánchez M, Fernández De Alba A, Luque De Castro MD (1998) Focused microwave-assisted soxhlet: an advantageous tool for sample extraction. Anal Chem 70:2426–2431

    Article  Google Scholar 

  • Gullón P, Gullón B, González-Munñoz MJ, Alonso JL, Parajó JC (2014) Production and bioactivity of oligosaccharides from biomass hemicelluloses. In: Moreno FJ, Sanz ML (eds) Food oligosaccharides: production, analysis and bioactivity. Wiley, Oxford, pp 88–106

    Chapter  Google Scholar 

  • Guolin H, Jeffrey S, Kai Z, Xiaolan H (2012) Application of ionic liquids in the microwave-assisted extraction of pectin from lemon peels. J Anal Methods Chem 2012:1–8

    Article  Google Scholar 

  • Holck J, Hotchkiss AT, Meyer AS, Mikkelsen JD, Rastall RA (2014) Production and bioactivity of pectic oligosaccharides from fruit and vegetable biomass. In: Moreno FJ, Sanz ML (eds) Food oligosaccharides: production, analysis and bioactivity. Wiley, Oxford, pp 76–87

    Chapter  Google Scholar 

  • Hummert K, Vetter W, Luckas B (1996) Fast and effective sample preparation for determination of organochlorine compounds in fatty tissue of marine mammals using microwave extraction. Chromatographia 42:300–304

    Article  CAS  Google Scholar 

  • Ibañez E, Herrero M, Mendiola JA, Castro-Puyana M (2012) Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria and invertebrates. In: Hayes M (ed) Marine bioactive compounds: sources, characterization and applications. Springer, New York, pp 55–98

    Chapter  Google Scholar 

  • Jassie L, Revesz R, Kierstead T, Hasty E, Metz S (1997) Microwave-assisted solvent extraction. In: Kingston HM, Haswell SJ (eds) Microwave-enhanced chemistry. Fundamentals, sample preparation and applications. American Chemical Society, Washington, DC, pp 569–609

    Google Scholar 

  • Jocelyn Paré JR, Bélanger JMR, Stafford SS (1994) Microwave-assisted process (MAP™): a new tool for the analytical laboratory. Trends Anal Chem 13:176–184

    Article  Google Scholar 

  • Karabegović IT, Stojičević SS, Veličković DT, Nikolić NČ, Lazić ML (2013) Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Sep Purif Technol 120:429–436

    Article  Google Scholar 

  • Kratchanova M, Pavlova E, Panchev I (2004) The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydr Polym 56:181–185

    Article  CAS  Google Scholar 

  • Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process 49:885–900

    Article  CAS  Google Scholar 

  • Letellier M, Budzinski H (1999) Microwave assisted extraction of organic compounds. Analusis 27: 259–271

    Article  CAS  Google Scholar 

  • Li D-Q, Jia X, Wei Z, Liu Z-Y (2012) Box–Behnken experimental design for investigation of microwave-assisted extracted sugar beet pulp pectin. Carbohydr Polym 88:342–346

    Article  CAS  Google Scholar 

  • Li Y, Radoiu M, Fabiano-Tixier A-S, Chemat F (2013) From laboratory to industry: scale-up, quality, and safety consideration for microwave-assisted extraction. In: Chemat F, Cravotto G (eds) Microwave-assisted extraction for bioactive compounds. Springer, New York, US, pp 207–229

    Google Scholar 

  • Meireles MAM (2009) Extracting bioactive compounds for food products: theory and applications. CRC Press, Boca Raton

    Google Scholar 

  • Milestone (2007) From http://milestonesrl.com

  • Mircioaga N, Calinescu I (2011) Extraction and identification of active principles from Mentha piperita L. Rev Chim 11:1073–1076

    Google Scholar 

  • Nadagouda MN, Speth TF, Varma RS (2011) Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 44:469–478

    Article  CAS  Google Scholar 

  • Panthapulakkal S, Pakharenko V, Sain M (2013) Microwave assisted short-time alkaline extraction of birch xylan. J Polym Environ 21:917–929

    Article  CAS  Google Scholar 

  • Passos CP, Coimbra MA (2013) Microwave superheated water extraction of polysaccharides from spent coffee grounds. Carbohydr Polym 94:626–633

    Article  CAS  Google Scholar 

  • Passos CP, Moreira ASP, Domingues MRM, Evtuguin DV, Coimbra MA (2014) Sequential microwave superheated water extraction of mannans from spent coffee grounds. Carbohydr Polym 103:333–338

    Article  CAS  Google Scholar 

  • Prakash Maran J, Sivakumar V, Thirugnanasambandham K, Sridhar R (2013) Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr Polym 97:703–709

    Article  CAS  Google Scholar 

  • Prakash Maran J, Sivakumar V, Thirugnanasambandham K, Sridhar R (2014) Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydr Polym 101:786–791

    Article  CAS  Google Scholar 

  • Proestos C, Komaitis M (2008) Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT-Food Sci Technol 41:652–659

    Article  CAS  Google Scholar 

  • Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA (2011) Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr Polym 86:1137–1144

    Article  CAS  Google Scholar 

  • Romanik G, Gilgenast E, Przyjazny A, Kamiński M (2007) Techniques of preparing plant material for chromatographic separation and analysis. J Biochem Biophys Methods 70:253–261

    Article  CAS  Google Scholar 

  • Roos AA, Persson T, Krawczyk H, Zacchi G, Stålbrand H (2009) Extraction of water-soluble hemicelluloses from barley husks. Bioresour Technol 100:763–769

    Article  CAS  Google Scholar 

  • Routray W, Orsat V (2012) Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol 5:409–424

    Article  CAS  Google Scholar 

  • Ruiz-Aceituno L , García-Sarrió MJ, Alonso-Rodriguez B, Martínez-Castro I, Ramos L, Sanz ML (2014) Extraction of bioactive carbohydrates from food byproducts using a microwave-assisted extraction procedure. 14th Instrumental Analysis Conference, Barcelona

    Google Scholar 

  • Ruiz-Aceituno L, Sanz ML, Ramos L (2013) Use of ionic liquids in analytical sample preparation of organic compounds from food and environmental samples. TRAC-Trend Anal Chem 43:121–145

    Article  CAS  Google Scholar 

  • Simões J, Madureira P, Nunes FM, Do Rosário Domingues M, Vilanova M, Coimbra MA (2009) Immunostimulatory properties of coffee mannans. Mol Nutr Food Res 53:1036–1043

    Article  Google Scholar 

  • Takeuchi TM, Pereira CG, Braga MEM, Marostica MR, Leal PF, Meireles MAM (2008) Low-pressure solvent extraction (solid–liquid extraction, microwave assisted, and ultrasound assisted) from condimentary plants. In: Meireles MAM (ed) Extracting bioactive compounds for food products: theory and applications. CRC Press, Boca Raton, pp 137–218

    Google Scholar 

  • Terigar BG, Balasubramanian S, Sabliov CM, Lima M, Boldor D (2011) Soybean and rice bran oil extraction in a continuous microwave system: from laboratory- to pilot-scale. J Food Eng 104:208–217

    Article  CAS  Google Scholar 

  • Vázquez-Delfín E, Robledo D, Freile-Pelegrín Y (2014) Microwave-assisted extraction of the Carrageenan from Hypnea musciformis (Cystocloniaceae, Rhodophyta). J Appl Phycol 26:901–907

    Article  Google Scholar 

  • Vetter W, Weichbrodt M, Batista A, Luckas B (1999) Combined microwave-assisted extraction and gel permeation chromatography as sample clean-up for fish tissue and blubber of marine mammals. Organohalogen Compd 40:305–308

    CAS  Google Scholar 

  • Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  • Wang S, Chen F, Wu J, Wang Z, Liao X, Hu X (2007) Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. J Food Eng 78:693–700

    Article  CAS  Google Scholar 

  • Ying Z, Han X, Li J (2011) Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chem 127:1273–1279

    Article  CAS  Google Scholar 

  • Yoo S-H, Lee B-H, Lee H, Lee S, Bae IY, Lee HG, Fishman ML, Chau HK, Savary BJ, Hotchkiss AT Jr (2012) Structural characteristics of pumpkin pectin extracted by microwave heating. J Food Sci 77:C1169–C1173

    Article  CAS  Google Scholar 

  • Zeng WC, Zhang Z, Gao H, Jia LR, Chen WY (2012) Characterization of antioxidant polysaccharides from Auricularia auricular using microwave-assisted extraction. Carbohydr Polym 89:694–700

    Article  CAS  Google Scholar 

  • Zhang H-F, Yang X-H, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22:672–688

    Article  CAS  Google Scholar 

  • Zhang J, Wang J, Wu Y, Yao J, Wang Y, Liang J, Zhang Y, Wang X, Xu X (2012) Microwave-assisted extraction of polysaccharide from Artemisia sphaerocephala. US Patent 8110677 B2

    Google Scholar 

  • Zhou X-Y, Liu R-L, Ma X, Zhang Z-Q (2014) Polyethylene glycol as a novel solvent for extraction of crude polysaccharides from Pericarpium granati. Carbohydr Polym 101:886–889

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by Ministerio de Economía y Competitividad (project CTQ2012-32957), Junta de Andalucía (project AGR-7626), and Comunidad de Madrid (project Avansecal). L. Ruiz-Aceituno is supported by a JAE-Predoc grant from CSIC and cofinanced by the European Social Fund (ESF). A.C.S. thanks Ministerio de Economía y Competitividad of Spain for a Ramón y Cajal contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz Maria Sanz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Soria, A.C., Ruiz-Aceituno, L., Ramos, L., Sanz, L.M. (2015). Microwave-Assisted Extraction of Polysaccharides. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_43

Download citation

Publish with us

Policies and ethics