Skip to main content

Synthesis and Properties of Metal-Based Nanoparticles with Potential Applications in Food-Contact Materials

  • Reference work entry
Book cover Handbook of Nanoparticles

Abstract

Metal-based micro and nanostructured materials are used in a variety of food-related applications as nutrient bioactive delivery systems texture and flavor encapsulation, microbiological control, and food packaging. In this chapter, we are focus on metal-based micro- and nanostructured materials incorporated into food-contact surfaces and packaging polymers. Heavy metals are effective antimicrobial agents in the form of salts, oxides, colloids, and complexes such as silver zeolites. Although it is not a metal base composite, montmorillonite (MMT) is widely used in industrial processes, in particular in metal-based micro- and nanostructured materials (MMT-silver) for food packaging applications. Silver-based nano-engineered materials are currently the most common nanocomposites used in commodities mainly due to their antimicrobial capacity. Copper, zinc, and titanium nanostructures have shown promise in food safety. Titanium dioxide is resistant to abrasion and UV-blocking capabilities. Copper has been shown to be an efficient sensor for humidity with antibacterial properties in active food packaging. Other important properties in active food packaging, which can be positively influenced by metal-based micro- and nanostructured materials, are ethylene oxidation and oxygen scavenging. In this chapter, we review synthesis methodologies and properties of the metal-based nanoparticles used in food-contact materials. Size, shape, crystal structure, surface functionality, and composition will determine their mobility and biological activity in different systems. Migration between ions and nanoparticles from the polymer matrices is one key point to determine their antimicrobial effectiveness; however, this migration may affect the consideration status of the polymer as a food-contact material.

This book chapter is not an official US Food and Drug Administration (FDA) guidance or policy statement. No official support or endorsement by the US FDA is intended or should be inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) C.N.R. Rao, S.R.C. Vivekchand et al., Synthesis of inorganic nanomaterials. Dalton Trans. 2007, 3728–3749 (2007); (b) G. Schmid, Nanoparticles from Theory to Application (Wiley-VCH, Weinheim, 2004); (c) K. Uwe, V. Michael, Optical Properties of Metal Clusters. Springer Seriees in Materials Science (Verlag, Berlin/Heidelberg/Germany, 1995); (d) R.B. Gupta, U.B. Kompella, Nanoparticles Technology for Drug Delivery. Drugs and Pharmaceutical Sciences (Taylor & Francis Group, LLC, New York, 2006)

    Google Scholar 

  2. http://www.nanotechproject.org/inventories/consumer/

  3. M. Scheringer, A. Helland, H.G. Kastenholz, M. Siegrist et al., Risk assessment of engineered nanomaterials: a survey of industrial approaches. Environ. Sci. Technol. 42(2), 640–646 (2008)

    Article  Google Scholar 

  4. (a) Y.A. Krutyakov, A.A. Kudrinskiy et al., Synthesis and properties of silver nanoparticles advances and prospects. Russ. Chem. Rev. 77(3), 233–257 (2008); (b) Q. Chaudhry, M. Scotter et al., Application and implications of nanotechnology for food sector. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25(3), 241–258 (2008); (c) N. Sozer, J.L. Kokini, Nanotechnology and its implication in the food sector. Trends Biotechnol. 27(2), 82–89 (2009); (d) M.A. Agustin, P. Sanguansri, Nanostructured materials in the food industry. Adv. Food Nutr. Rcs 58, 183–213 (2009); (e) H. Chen, J. Weiss et al., Nanotechnology in nutraceuticals and functional foods. Food Technol. 60(3), 30–36 (2006); (f) A.L. Incoronato et al., Active systems based on silver-montmorillonite nanoparticles embedded into bio-based polymer matrices for packaging applications. J. Food Prot. 73(12), 2256–2262 (2010)

    Google Scholar 

  5. Cientifica, Nanotechnologies in Food Industry, published August (2006) http://www.cientifica.eu/

  6. (a) Y.A. Krutyakov, A.A. Kudrinskiy et al., Synthesis and properties of silver nanoparticles advances and prospects. Russ. Chem. Rev. 77(3), 233–257 (2008); (b) A. Llorens, E. Lloret, P.A. Picouet, R. Trbojevich, A. Fernandez, Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food. Sci. Technol. 24, 19–29 (2012); (c) D.D. Evanoff Jr., G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays. Chem. Phys. Chem. 6, 1221–1231 (2005); (d) H. Liang, W. Wang et al., Controlled synthesis of uniform silver nanospheres. J. Phys. Chem. C 114, 7427–7431 (2010)

    Google Scholar 

  7. P. Angshuman, S. Sunil, D. Surekha, Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater. Chem. Phys. 114, 530–532 (2008)

    Google Scholar 

  8. R. Trbojevich, O. de Sanctis, N. Pellegri, A. Frattini, Silver nanoparticles by alcohol reduction. II worshop on metastable and nanostrutured materials, Foz de Iguaçu, Aug 2009

    Google Scholar 

  9. A. Krutyakov Yu, E.G. Rukhlya et al., Obtaining of bactericidal polyethylene terephthalate films modified by silver nanoparticles. Nanotechnol. Russia 3(11-12), 756–762 (2008)

    Article  Google Scholar 

  10. G. Xu, X. Qiao et al., Preparation and characterization of nano-silver loaded montmorillonite with strong antibacterial activity and slow release property. J. Mater. Sci. Technol. 27(8), 685–690 (2011)

    Article  Google Scholar 

  11. G.A. Sotiriou, A. Teleki et al., Nanosilver on nanostructured silica: antibacterial activity and Ag surface area. Chem. Eng. J. (2011). doi:10.1016/j.cej.2011.01.099

    Google Scholar 

  12. S. Duan, Y. Zhai et al., Synthesis and characterization of silver-histidine complex doped montmorillonite antibacterial agent. Adv. Mater. Res. 510, 757–761 (2012)

    Article  Google Scholar 

  13. R. Kumar, S. Howdle et al., Polyamide/silver antimicrobials: effect of filler types on the silver ion release. (2005). Published online in Wiley InterScience www.interscience.wiley.com. doi: 10.1002/jbm.b.30306

    Google Scholar 

  14. Approved Standards Action (ASTM) E committees, E35 on pesticides. Test method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions. New Standard 2001;11.05:E2149-01 Oct 2001

    Google Scholar 

  15. R. Gottesman, S. Shukla et al., Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 27(2), 720–726 (2010)

    Article  Google Scholar 

  16. P.J. Perez Espitia et al., Zinc oxide nanoparticle: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5, 1447–1464 (2012)

    Article  Google Scholar 

  17. K.A. Zak et al., Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason. Sonochem. 20, 395–400 (2013)

    Article  Google Scholar 

  18. M. Ramani et al., Morphology-directed synthesis of ZnO nanostructures and their antibacterial activity. Colloids Surf. B Biointerfaces 105, 24–30 (2013)

    Article  Google Scholar 

  19. M.T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8, 127–133 (2003)

    Article  Google Scholar 

  20. W. Marine et al., Strategy of nanocluster and nanostructure synthesis by conventional pulsed ablation laser. Appl. Surf. Sci. 154-155, 345–352 (2000)

    Article  Google Scholar 

  21. (a) G. Grass et al., Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 77(5), 1541–1547 (2011); (b) C.E. Santo et al., Antimicrobial metallic copper surface kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen 1(1), 46–52 (2012).

    Google Scholar 

  22. O. Rubilar et al., Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol. Lett. (2013). doi:10.1007/s10529-013-1329-x. Springer

    Google Scholar 

  23. D. Longano et al., Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal. Bioanal. Chem. 403, 1179–1186 (2012)

    Article  Google Scholar 

  24. N.M. Ushakov et al., Thermodielectric properties of polymer composites based on CuO-covered Cu particles in high-pressure polyethylene. Tech. Phys. 53, 1597–1601 (2008)

    Article  Google Scholar 

  25. D.P. Chattopadhyay et al., Effect of nanosized colloidal copper on cotton fabric. J. Eng. Fibers Fabr. 5, 1–6 (2010)

    Google Scholar 

  26. G. Cardenas et al., Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polym. Bull. 62, 511–524 (2009)

    Article  Google Scholar 

  27. T.G. Smijs et al., Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 4, 95–112 (2011)

    Article  Google Scholar 

  28. C. Chawengkijwanich et al., Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int. J. Food Microbiol. 123, 288–292 (2008)

    Article  Google Scholar 

  29. S. Mahshid, M.S. Ghamsari et al., Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Semicond. Phys. Quant. Electron. Optoelectron. N2(9), 65–68 (2006)

    Google Scholar 

  30. W.A. Daoud, J.H. Xin et al., Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf. Sci. 599, 69–75 (2005)

    Article  Google Scholar 

  31. N. Saraschandra, M. Pavithra et al., Antimicrobial application of TiO2 coated modified polyethylene (HDPE) films. Arch. Appl. Sci. Res. 5(1), 189–194 (2013)

    Google Scholar 

  32. Nanocor (Technical data). http://www.nanocor.com/tech_sheets/G105.pdf

  33. Z. Akbari, T. Ghomashchi, et al., Food and health food industries. in Conference, Organized by the Institute of Nanotechnology, Amsterdam, 25–26 Oct

    Google Scholar 

  34. (a) Z. Ke, B. Yongping, Mater. Lett. 59, 3348–3351 (2005); (b) G. Quian, D. Jarus et al., PCT Patent WO 2007/106671 A1

    Google Scholar 

  35. (a) M. Krook, M. Gällstedt et al., A study on montmorillonite/polyethylene nanocomposites extrusion-coated paperboard. Packag. Technol. Sci. 18, 11–20 (2005); (b) L. Cui, H.Y. Cho et al., Polyetylene-montmorillonite nanocomposites: preparation, characterization and properties. Macromol. Symp. 260, 49–57 (2007); (c) M.P. Villanueva, L. Cabedo et al., Development of novel LDPE clay nanocomposites. J. Plast. Technol. 5(3), 182–200 (2009); (d) M.P. Villanueva, L. Cabedo et al., Study of the dispersion of nanoclys in a LDPE matrix using microscopy and in-process ultrasonic monitoring. Polym. Test. 28, 277–287 (2009); (e) B.K. Deka, T.K. Maji, Effect of coupling agent and nanocly on properties of HLPE, LDPE, PP, PVC blend and phargamites karka nanocomposite. Compos. Sci. Technol. 70, 1755–1761 (2010); (f) Duncan T. (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid and Interface Sc. 363(1), 1–24 (2011); (g) A.M. Shirazi, K. Janghorban, Investigation of physical and chemical properties of polypropylene hybrid nanocomposites. Mater. Des. 34, 474–478 (2012)

    Google Scholar 

  36. A.L. Incoronato, G.G. Buonocore et al., Active system based on silver-montmorillonite nanoparticles embedded into bio-based polymer matrices for packaging applications. J. Food Prot. 73(12), 2256–2262 (2010)

    Google Scholar 

  37. A.L. Brody, B. Bugusu et al., Innovative food packaging solutions. J. Food Sci. 73, 107–116 (2008)

    Article  Google Scholar 

  38. R.H. Deurenberg, E.E. Stobberingh, The evolution of Staphylococcus aureus. Infect. Genet. Evol. 8, 747–763 (2008)

    Article  Google Scholar 

  39. M.A. Del Nobile, M. Cannarsi et al., Effect of Ag-containing nano-composite active packaging system on survival of Alicyclobacillus acidoterrestris. J. Food Sci. 6, 379–383 (2004)

    Article  Google Scholar 

  40. J.-W. Rhim, S.-I. Hong et al., Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J. Agric. Food Chem. 54, 5814–5822 (2006)

    Article  Google Scholar 

  41. A. Emamifar et al., Effect of nanocomposite packaging containing Ag and ZnO on reducing pasteurization temperature of orange juice. J. Food Process Preserv. 36(2), 104–112 (2010)

    Article  Google Scholar 

  42. H. Li, F. Li, L. Wang et al., Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujube Mill. var. inermis (Bunge) Rehd). Food Chem. 114, 547–552 (2009)

    Article  Google Scholar 

  43. D. Gammariello et al., Bio-based nanocomposite coating to preserve quality of Fior di latte cheese. J. Dairy Sci. 94(11), 5298–5304 (2011)

    Article  Google Scholar 

  44. C. Costa et al., Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int. J. Food Microbiol. 148(3), 164–167 (2011)

    Google Scholar 

  45. A. Fernandez, P. Picouet, E. Lloret, Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int. J. Food Microbiol. 142, 222–228 (2010)

    Article  Google Scholar 

  46. M. Cowan, K.Z. Abshire et al., Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J. Ind. Microbiol. Biotechnol. 30, 102–106 (2003)

    Article  Google Scholar 

  47. (a) H. Pehlivan et al., Characterization of pure and silver exchanged natural zeolite filled polypropylene composite films. Compos. Sci. Technol. 65, 2049–2058 (2005); (b) A. Fernandez et al., Migration of antimicrobial silver from composites of polylactide with silver zeolites. J. Food Sci. 75, 186–193 (2010); (c) J.O. Noyce, H. Michels et al., Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl. Environ. Microbiol. 72, 4239–4244 (2006)

    Google Scholar 

  48. A. Llorens, P. Picouet, E. Lloret, A. Fernández, Antifungal potential of novel cellulose/copper composites as absrobent materials for fruit juices. Int. J. Food Microbiol. 158, 113–119 (2012)

    Article  Google Scholar 

  49. K. Kasemets, A. Ivask et al., Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro 23(6), 1116–1122 (2009)

    Article  Google Scholar 

  50. X. Li, Y. Xing, Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. Int. J. Food Sci. Technol. 44, 2161–2168 (2009)

    Article  Google Scholar 

  51. N.G. Chorianopoulos et al., Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol. 28, 164–170 (2011)

    Article  Google Scholar 

  52. M.Z. Chaleshtori et al., Using new porous nanocomposites for photocatalytic water decontamination. Mater. Res. Soc. Symp. Proc. 1145, 75–80 (2008)

    Article  Google Scholar 

  53. Y. Kim et al., Disinfection of iceberg lettuce by titanium dioxide-UV photocatalytic reaction. J. Food Prot. 72, 1916–1922 (2009)

    Google Scholar 

  54. M.J. Galotto et al., Oxygen absorption kinetics of sheets and films containing a commercial iron-based oxygen scavenger. Food Sci. Technol. Int. 15, 159–168 (2009)

    Article  Google Scholar 

  55. J. Yu, R.Y.F. Liu et al., Polymers with palladium nanoparticles as active membrane materials. J. Appl. Polym. Sci. 92, 749–756 (2004)

    Article  Google Scholar 

  56. M.A. Busolo et al., Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innovative Food Sci. Emerg. Technol. 16, 211–217 (2012)

    Article  Google Scholar 

  57. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.167

  58. B. Galeano et al., Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc- containing zeolite formulation. Appl. Environ. Microbiol. 69, 4329–4331 (2003)

    Article  Google Scholar 

  59. EFSA Journal 2011;9(2):1999 [12 pp.]. doi:10.2903/j.efsa.2011.1999

    Google Scholar 

  60. FDA, Inventory of effective food contact substance (FCS) notifications (2007), http://www.cfsan.fda.gov/~dms/opa-fcn.html. FCN 697. Zeolite A in which silver and zinc ions have been exchanged for sodium ions

  61. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=182

Download references

Acknowledgments

The authors would like to acknowledge support of this book chapter through the project # E0736801 from the National Center for Toxicological Research-U.S. Food and Drug Administration. A. Fernández is also indebted to financial support by the Spanish Comisión Interministerial de Ciencia y Tecnología (Ministerio de Ciencia e Innovación) under contract AGL07-65936-C02. The authors also thank Dr. Frederick Beland and Dr Paul Howard for assistance in the review of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl A. Trbojevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Trbojevich, R.A., Fernández, A. (2016). Synthesis and Properties of Metal-Based Nanoparticles with Potential Applications in Food-Contact Materials. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4_53

Download citation

Publish with us

Policies and ethics