Electrophoretic Deposition (EPD): Fundamentals and Applications from Nano- to Microscale Structures

  • Pouya Amrollahi
  • Jerzy S. Krasinski
  • Ranji Vaidyanathan
  • Lobat TayebiEmail author
  • Daryoosh VashaeeEmail author
Reference work entry


EPD is a technique where charged particles in a stable colloidal suspension are moved through the liquid due to electric field and deposited on an oppositely charged conductive substrate, forming the intended material or device. EPD enables fabrication of a wide range of structures from traditional to advanced materials, from nanometric thin films to a fraction of 1 mm thick films, and from porous scaffolds to highly compact coatings. These structures include different compositions with complex shapes and structures which can be formed in a relatively short experimentation time by simple apparatus. This review presents the fundamentals, mechanisms, and characteristics of EPD along with its past and recent applications.


Electrophoretic deposition (EPD) Ceramic materials Biomedical materials Thermoelectric materials Materials fabrication 



This study is partially based upon work supported by Air Force Office of Scientific Research (AFOSR) High Temperature Materials program under grant no. FA9550-10-1-0010, Oklahoma Center for Advancement of Science and Technology (grant no. AR131-054 8161 and grant no. AR131-049) and the National Science Foundation (NSF) under grant no. 0933763.


  1. 1.
    Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52:1–61CrossRefGoogle Scholar
  2. 2.
    Yoshioka T, Chávez-Valdez A, Roether J, Schubert D, Boccaccini A (2013) AC electrophoretic deposition of organic–inorganic composite coatings. J Colloid Interface Sci 392:167–171CrossRefGoogle Scholar
  3. 3.
    Gardeshzadeh A, Raissi B, Marzbanrad E (2008) Electrophoretic deposition of SnO2 nanoparticles using low frequency AC electric fields. Mater Lett 62(10–11):1697–1699CrossRefGoogle Scholar
  4. 4.
    P Sarkar, D De, T Uchikochi, L Besra (2012) Electrophoretic deposition (EPD): fundamentals and novel applications in fabrication of advanced ceramic microstructures. In: Electrophoretic deposition of nanomaterials. Springer, New York, pp 181–215CrossRefGoogle Scholar
  5. 5.
    Pickard W (1933) Remarks on the theory of electrophoretic deposition. J Electrochem Soc 115:105–108CrossRefGoogle Scholar
  6. 6.
    Sarkar P, Nicholson P (1996) Electrophoretic deposition (EPD): mechanism, kinetics and application to ceramics. J Am Ceram Soc 79:1987–2002CrossRefGoogle Scholar
  7. 7.
    E Harsanyi (1933) Method of coating radiant bodies. US Patent 1,897,902, 14 Feb 1933Google Scholar
  8. 8.
    T Blickwedel, W Rhyne (1958) Cataphoretically coated heater insulator assembly. US Patent Patent 2,831,140, 15 Apr 1958Google Scholar
  9. 9.
    Tang F, Sakka Y, Uchikoshi T (2002) Electrophoretic deposition of aqueous nano-sized zinc oxide suspensions on a zinc electrode. J Am Ceram Soc 85:2161–2165CrossRefGoogle Scholar
  10. 10.
    Besra L, Uchikoshi T, Suzuki T, Sakka Y (2008) Bubble-free aqueous electrophoretic deposition (EPD) by pulse potential application. J Am Ceram Soc 91:3154–3159CrossRefGoogle Scholar
  11. 11.
    Besra L, Uchikoshi T, Suzuki T, Sakka Y (2009) Application of constant current pulse to suppress bubble incorporation and control deposit morphology during aqueous electrophoretic deposition (EPD). J Eur Ceram Soc 29:1837–1845CrossRefGoogle Scholar
  12. 12.
    Biest OVD, Vandeperre L (1999) Electrophoretic deposition of materials. Annu Rev Mater Sci 29:327–352CrossRefGoogle Scholar
  13. 13.
    Boccaccini A, Zhitomirsky I (2002) Application of electrophoretic and electrolytic deposition techniques in ceramic processing. Curr Opin Solid State Mater Sci 6:251–260CrossRefGoogle Scholar
  14. 14.
    Uchikoshi T, Suzuki T, Iimura S, Tang F, Sakka Y (2006) Control of crystalline texture in polycrystalline TiO2 (anatase) by electrophoretic deposition in a strong magnetic field. J Eur Ceram Soc 26:559–563CrossRefGoogle Scholar
  15. 15.
    Rango PD, Lees M, Lejay P, Sulpice A, Tournier R, Ingold M, Germi P, Pernet M (1991) Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature 349:770–772CrossRefGoogle Scholar
  16. 16.
    Uchikoshi T, Suzuki T, Tang F, Okuyama H, Sakka Y (2004) Crystalline-oriented TiO2 fabricated by the electrophoretic deposition in a strong magnetic field. Ceram Int 30:1975–1978CrossRefGoogle Scholar
  17. 17.
    Uchikoshi T, Suzuki T, Sakka Y (2006) Crystalline orientation of alumina ceramics prepared by electrophoretic deposition under a high magnetic field. J Mater Sci 41:8074–8078CrossRefGoogle Scholar
  18. 18.
    Zhang L, Vleugels J, Biest OVD (2010) Fabrication of textured alumina by orienting template particles during electrophoretic deposition. J Eur Ceram Soc 30:1195–1202CrossRefGoogle Scholar
  19. 19.
    Suzuki T, Uchikoshi T, Okuyama H, Sakka Y, Hiraga K (2006) Mechanical properties of textured, multilayered alumina produced using electrophoretic deposition in a strong magnetic field. J Eur Ceram Soc 26:661–665CrossRefGoogle Scholar
  20. 20.
    Askaria E, Mehralib M, Metselaara I, Kadrib N, Rahmana M (2012) Fabrication and mechanical properties of Al2O3/SiC/ZrO2 functionally graded material by electrophoretic deposition. J Mech Behav Biomed Mater 12:144–150CrossRefGoogle Scholar
  21. 21.
    Ferrari B, Bartret A, Baudín C (2009) Sandwich materials formed by thick alumina tapes and thin-layered alumina–aluminium titanate structures shaped by EPD. J Eur Ceram Soc 29:1083–1092CrossRefGoogle Scholar
  22. 22.
    Dzepina B, Sigalas I, Herrmann M, Nilen R (2013) The aqueous electrophoretic deposition (EPD) of diamond–diamond laminates. Int J Refract Met Hard Mater 36:126–129CrossRefGoogle Scholar
  23. 23.
    Nozariasbmarz A, Tahmasbi Rad A, Zamanipour Z, Krasinski JS, Tayebi L, Vashaee D (2013) Enhancement of thermoelectric power factor of silicon germanium films grown by electrophoresis deposition. Scr Mater. doi:10.1016/j.scriptamat.2013.06.025Google Scholar
  24. 24.
    Raissi B, Marzbanrad E, Gardeshzadeh A (2009) Particle size separation by alternating electrophoretic deposition. J Eur Ceram Soc 29:3289–3291CrossRefGoogle Scholar
  25. 25.
    Boccaccini A, Cho J, Subhani T, Kaya C, Kaya F (2010) Electrophoretic deposition of carbon nanotube–ceramic nanocomposites. J Eur Ceram Soc 30:1115–1129CrossRefGoogle Scholar
  26. 26.
    Wang L, Chen Y, Chen T, Que W, Sun Z (2007) Optimization of field emission properties of carbon nanotubes cathodes by electrophoretic deposition. Mater Lett 61:1265–1269CrossRefGoogle Scholar
  27. 27.
    Ata M, Sun Y, Li X, Zhitomirsky I (2012) Electrophoretic deposition of graphene, carbon nanotubes and composites using aluminon as charging and film forming agent. Colloids Surf A Physicochem Eng Asp 398:9–16CrossRefGoogle Scholar
  28. 28.
    Chicatun F, Cho J, Schaab S, Brusatin G, Colombo P, Roether J (2007) Carbon nanotube deposits and CNT/SiO2 composite coatings by electrophoretic deposition. Adv Appl Ceram 106:186–195CrossRefGoogle Scholar
  29. 29.
    Lee S, Sigmund W (2003) Formation of anatase TiO2 nanoparticles on carbon nanotubes. Chem Commun 6:780–781CrossRefGoogle Scholar
  30. 30.
    Jitianu A, Cacciaguerra T, Benoit R, Delpeux S, Béguin F, Bonnamy S (2004) Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites. Carbon 42:1147–1151CrossRefGoogle Scholar
  31. 31.
    Li J, Zhitomirsky I (2009) Electrophoretic deposition of manganese dioxide-carbon nanotube composites. J Mater Process Technol 209:3452–3459CrossRefGoogle Scholar
  32. 32.
    Mahajan S, Hasan S, Cho J, Shaffer M, Boccaccini A (2008) Carbon nanotube–nanocrystal heterostructures fabricated by electrophoretic deposition. Nanotechnology 19:195301 (8pp)CrossRefGoogle Scholar
  33. 33.
    White A, Best S (2007) Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol 4:1–13CrossRefGoogle Scholar
  34. 34.
    Chen Y, Zhang Y, Zhang T, Gan C, Zheng C, Yu G (2006) Carbon nanotube reinforced hydroxyapatite composite coatings produced through laser surface alloying. Carbon 44:37–45CrossRefGoogle Scholar
  35. 35.
    Ma J, Wang C, Peng K (2003) Electrophoretic deposition of porous hydroxyapatite scaffold. Biomaterials 24:3505–3510CrossRefGoogle Scholar
  36. 36.
    Boccaccini A, Chicatun F, Cho J, Bretcanu O, Roether J, Novak S, Chen Q (2007) Carbon nanotube coatings on bioglass-based tissue engineering scaffolds. Adv Funct Mater 17:2815–2822CrossRefGoogle Scholar
  37. 37.
    Harrison B, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353CrossRefGoogle Scholar
  38. 38.
    Chiu W, Lee K, Hsieh W (2011) High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions. J Power Sources 196:3683–3687CrossRefGoogle Scholar
  39. 39.
    Hamadanian M, Gravand A, Jabbari V (2013) High performance dye-sensitized solar cells (DSSCs) achieved via electrophoretic technique by optimizing of photoelectrode properties. Mater Sci Semicond Process 16(5):1352–1359CrossRefGoogle Scholar
  40. 40.
    Novak S, Rade K, Konig K, Boccaccini A (2008) Electrophoretic deposition in the production of SiC/SiC composites for fusion reactor applications. J Eur Ceram Soc 28:2801–2807CrossRefGoogle Scholar
  41. 41.
    Khoo E, Lee P, Ma J (2010) Electrophoretic deposition (EPD) of WO3 nanorods for electrochromic application. J Eur Ceram Soc 30:1139–1144CrossRefGoogle Scholar
  42. 42.
    Verde M, Peiteado M, Caballero A, Villegas M, Ferrari B (2012) Electrophoretic deposition of transparent ZnO thin films from highly stabilized colloidal suspensions. J Colloid Interface Sci 373:27–33CrossRefGoogle Scholar
  43. 43.
    Ferrari B, Moreno R, Hernan L, Melero M, Morales J, Caballero A (2007) EPD of thick films for their application in lithium batteries. J Eur Ceram Soc 27:3823–3827CrossRefGoogle Scholar
  44. 44.
    Jang J, Machida K, Kim Y, Naoi K (2006) Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances. Electrochim Acta 52:1733–1741CrossRefGoogle Scholar
  45. 45.
    Ishihara T, Sato K, Takita Y (1996) Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells. J Am Ceram Soc 79(4):913–919CrossRefGoogle Scholar
  46. 46.
    Ishihara T, Sato K, Mizuhara Y, Takita Y (1992) Preparation of yttria-stabilized zirconia films for solid oxide fuel cells by electrophoretic deposition method. Chem Lett 21:943–946CrossRefGoogle Scholar
  47. 47.
    Ishihara T, Shimise K, Kudo T, Nishiguchi H, Akbay T, Takita Y (2000) Preparation of Yttria-stabilised zirconia thin-films on strontium doped LaMnO3 cathode substrate via Electrophoretic. J Am Ceram Soc 83:1921–1927CrossRefGoogle Scholar
  48. 48.
    Jia L, Lü Z, Huang X, Liu Z, Chen K, Sha X, Li G, Su W (2006) Preparation of YSZ film by EPD and its application in SOFCs. J Alloys Compd 424:299–303CrossRefGoogle Scholar
  49. 49.
    Konno H, Tokita M, Furusaki A, Furuichi R (1992) Electrochemical formation of a-site substituted perovskite structure La1 − xMxCrO3 oxide coatings. Electrochim Acta 37(13):2421–2426CrossRefGoogle Scholar
  50. 50.
    Zhitomirsky I, Petric A (1999) Electrolytic and electrophoretic deposition of CeO2 films. Mater Lett 40:263–268CrossRefGoogle Scholar
  51. 51.
    Zhitomirsky I, Petric A (2000) Electrolytic deposition of Gd2O3 and organoceramic composite. Mater Lett 42:273–279CrossRefGoogle Scholar
  52. 52.
    Castro Y, Ferrari B, Moreno R, Durán A (2005) Corrosion behaviour of silica hybrid coatings produced from basic catalysed particulate sols by dipping and EPD. Surf Coat Technol 191:228–235CrossRefGoogle Scholar
  53. 53.
    Kreethawate L, Larpkiattaworn S, Jiemsirilers S, Besra L, Uchikoshi T (2010) Application of electrophoretic deposition for inner surface coating of porous ceramic tubes. Surf Coat Technol 205:1922–1928CrossRefGoogle Scholar
  54. 54.
    Dougami N, Takada T (2003) Modification of metal oxide semiconductor gas sensor by electrophoretic deposition. Sens Actuators B 93:316–320CrossRefGoogle Scholar
  55. 55.
    Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B 107:209–232CrossRefGoogle Scholar
  56. 56.
    Hossein-Babaei F, Taghibakhsh F (2001) Electrophoretically deposited zinc oxide thick-film gas sensors. Electron Lett 36:1815–1816CrossRefGoogle Scholar
  57. 57.
    Han N, Deng P, Chen J, Chai L, Gao H, Chen Y (2010) Electrophoretic deposition of metal oxide films aimed for gas sensors application: the role of anodic aluminum oxide (AAO)/Al composite structure. Sens Actuators B 144:267–273CrossRefGoogle Scholar
  58. 58.
    Chen Y, Ma J, Li T (2004) Electrophoretic deposition and characterization of a piezoelectric FGM monomorph actuator. Ceram Int 30:1807–1809CrossRefGoogle Scholar
  59. 59.
    Chen Y, Boey T, Li F, Ma J (2008) Electrophoretic deposition and characterization of helical piezoelectric actuator. Ceram Int 34:1–6CrossRefGoogle Scholar
  60. 60.
    Zhitomirsky I, Gal-Or L (1997) Electrophoretic deposition of hydroxyapatite. J Mater Sci Mater Med 8:213–219CrossRefGoogle Scholar
  61. 61.
    Roether J, Boccaccini A, Hench L, Maquet V, Gautier S, Jerome R (2002) Development and in vitro characterization of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications. Biomaterials 23:3871–3878CrossRefGoogle Scholar
  62. 62.
    Stojanovic D, Jokic B, Veljovic D, Petrovic R, Uskokovic P, Janackovic D (2007) Bioactive glass–apatite composite coating for titanium implant synthesized by electrophoretic deposition. J Eur Ceram Soc 27:1595–1599CrossRefGoogle Scholar
  63. 63.
    Javidi M, Javadpour S, Bahrololoom M (2008) Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel. Mater Sci Eng C 28:1509–1515CrossRefGoogle Scholar
  64. 64.
    Pang X, Zhitomirsky I (2005) Electrodeposition of composite hydroxyapatite–chitosan films. Mater Chem Phys 94:245–251CrossRefGoogle Scholar
  65. 65.
    Ducheyne P, Radin S, Heughebaert M, Heughebaert J (1990) Calcium phosphate ceramic coatings on porous titanium: effects of structure and composition on electrophoretic deposition. Biomaterials 11:244–254CrossRefGoogle Scholar
  66. 66.
    Wei M, Ruys A, Milthorpe B, Sorrel C (1999) Solution ripening of hydroxyapatite nanoparticles: effects on electrophoretic deposition. J Biomed Mater Res 45:11–19CrossRefGoogle Scholar
  67. 67.
    Yamaguchi S, Yabutsuka T, Hibino M, Yao T (2009) Development of novel bioactive composites by electrophoretic deposition. Mater Sci Eng C 29:1584–1588CrossRefGoogle Scholar
  68. 68.
    Zhitomirsky D, Roether J, Boccaccini A, Zhitomirsky I (2009) Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications. J Mater Process Technol 209:1853–1860CrossRefGoogle Scholar
  69. 69.
    Mehdipour M, Afshar A, Mohebali M (2012) Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study. Appl Surf Sci 258:9832–9839CrossRefGoogle Scholar
  70. 70.
    Neirinck B, Mellaert LV, Fransaer J, Biest OVD, Anné J, Vleugels J (2009) Electrophoretic deposition of bacterial cells. Electrochem Commun 11:1842–1845CrossRefGoogle Scholar
  71. 71.
    Razavi M, Fathi M, Savabi O, Razavi S, Hashemi Beni B, Vashaee D, Tayebi L (2014) Controlling the degradation rate of bioactive magnesium implants by electrophoretic deposition of akermanite coating. Ceram Int 40(3):3865–3872. doi:10.1016/j.ceramint.2013.08.027Google Scholar
  72. 72.
    Tassel JV, Randall C (2006) Mechanisms of electrophoretic deposition. Key Eng Mater 314:167–174CrossRefGoogle Scholar
  73. 73.
    Tassel JV, Randall C (1999) Electrophoretic deposition and sintering of thin/thick PZT films. J Eur Ceram Soc 19:955–958CrossRefGoogle Scholar
  74. 74.
    Tassel JV, Randall C (2004) Potential for integration of electrophoretic deposition into electronic device manufacture; demonstrations using silver/palladium. J Mater Sci 39:867–880CrossRefGoogle Scholar
  75. 75.
    Hamaker H (1940) Formation of deposition by electrophoresis. Trans Faraday Soc 36:279–287CrossRefGoogle Scholar
  76. 76.
    Hamaker H, Verwey E (1940) Colloid stability: the role of the forces between the particles in the electrodeposition and other phenomena. Trans Faraday Soc 36:180–185CrossRefGoogle Scholar
  77. 77.
    Sarkar P, Huang X, Nicholson P (1993) Electrophoretic deposition and its use to synthesize YSZ/A1203 micro laminate ceramic/ceramic composites. Ceram Eng Sci Proc 14:707–726CrossRefGoogle Scholar
  78. 78.
    Koelmans H, Overbeek J (1954) Stability and electrophoretic deposition of suspensions in non-aqueous media. Discuss Faraday Soc 18:52–63CrossRefGoogle Scholar
  79. 79.
    Ferrari B, Moreno R (1996) The conductivity of aqueous Al2O3 slips for electrophoretic deposition. Mater Lett 28:353–355CrossRefGoogle Scholar
  80. 80.
    Negishi H, Yanagishita H, Yokokawa H (2002) Electrophoretic deposition of solid oxide fuel cell material powders. In: Proceedings of the electrochemical society on electrophoretic deposition: fundamentals and applications, vol 21, New Jersey, pp 214–221Google Scholar
  81. 81.
    Vandeperre L, Biest OVD, Clegg W (1997) Silicon carbide laminates with carbon interlayers by electrophoretic deposition. Key Eng Mater 1:127–131Google Scholar
  82. 82.
    Basu R, Randall C, Mayo M (2001) Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. J Am Ceram Soc 84:33–40CrossRefGoogle Scholar
  83. 83.
    Gani MSJ (1994) Electrophoretic deposition: a review. Ind Ceram 14:163–174Google Scholar
  84. 84.
    Sarraf H, Škarpová L, Louda P (2007) Influence of different anionic polyelectrolyte dispersants on the rheological and electrokinetic properties of carbon nanotubes. Ann Trans Nordic Rheol Soc 15:1–4Google Scholar
  85. 85.
    Suresh S, Mortensen A (1997) Functionally graded metals and metal–ceramic composites: part 2 thermomechanical behaviour. Int Mater Rev 42:85–116CrossRefGoogle Scholar
  86. 86.
    Bueno S, Baudín C (2007) Layered materials with high strength and flaw tolerance based on alumina and aluminium titanate. J Eur Ceram Soc 27(2–3):1455–1462CrossRefGoogle Scholar
  87. 87.
    Vashaee D, Christofferson J, Zhang Y, Shakouri A, Zeng G, LaBounty C, Fan X, Bowers JE, Croke E (2005) Modeling and optimization of single-element bulk SiGe thin-film coolers. Microscale Thermophys Eng 9:99–118CrossRefGoogle Scholar
  88. 88.
    Li Q, Wang X, Yuan D (2009) Preparation of solid-phase microextraction fiber coated with single-walled carbon nanotubes by electrophoretic deposition and its application in extracting phenols from aqueous samples. J Chromatogr A 1216:1305–1311CrossRefGoogle Scholar
  89. 89.
    Chen C, Wang M, Li J, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppet J, Tsai J, Gratzel C, Wu C, Zakeeruddin S, Gratzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3:3103–3109CrossRefGoogle Scholar
  90. 90.
    Muroga T, Gasparotto M, Zinkle S (2002) Overview of materials research for fusion reactors. Fusion Eng Des 61–62:13–25CrossRefGoogle Scholar
  91. 91.
    Tavassoli A (2002) Present limits and improvements of structural materials for fusion reactors – a review. J Nucl Mater 302:73–88CrossRefGoogle Scholar
  92. 92.
    Niklasson G, Granqvist C (2007) Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 17:127–156CrossRefGoogle Scholar
  93. 93.
    Subrahmanyam A, Karuppasamy A (2007) Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films. Sol Energy Mater Sol Cells 91:266–274CrossRefGoogle Scholar
  94. 94.
    Souquet J, Duclot M (2002) Thin film lithium batteries. Solid State Ion 148:375–379CrossRefGoogle Scholar
  95. 95.
    Miller J, Burke A (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Interface 17:53–57Google Scholar
  96. 96.
    Sharma P, Bhatti T (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51:2901–2912CrossRefGoogle Scholar
  97. 97.
    Deng L, Hao Z, Wang J, Zhu G, Kang L, Liu Z, Yang Z, Wang Z (2013) Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim Acta 89:191–198CrossRefGoogle Scholar
  98. 98.
    Chen C, Wang S, Lin C, Chen F, Lin C (2009) Electrophoretically deposited manganese oxide coatings for supercapacitor application. Ceram Int 35:3469–3474CrossRefGoogle Scholar
  99. 99.
    Minh N (1993) Ceramic fuel cells. J Am Ceram Soc 76(3):563–588CrossRefGoogle Scholar
  100. 100.
    Huijsmans J (2001) Ceramics in solid oxide fuel cells. Curr Opin Solid State Mater Sci 5:317–323CrossRefGoogle Scholar
  101. 101.
    Minh N (2004) Solid oxide fuel cell technology – features and applications. Solid State Ion 174:271–277CrossRefGoogle Scholar
  102. 102.
    Sun C, Stimming U (2007) Recent anode advances in solid oxide fuel cells. J Power Sources 171:247–260CrossRefGoogle Scholar
  103. 103.
    Badwal S, Foger K (1996) Solid oxide electrolyte fuel cell review. Ceram Int 22(3):257–265CrossRefGoogle Scholar
  104. 104.
    Yokokawa H, Tu H, Iwanschitz B, Mai A (2008) Fundamental mechanisms limiting solid oxide fuel cell durability. J Power Sources 182:400–412CrossRefGoogle Scholar
  105. 105.
    Zhu B (2003) Functional ceria–salt-composite materials for advanced ITSOFC applications. J Power Sources 114(1):1–9CrossRefGoogle Scholar
  106. 106.
    Talebi T, Raissi B, Haji M, Maghsoudipour A (2010) The role of electrical conductivity of substrate on the YSZ film formed by EPD for solid oxide fuel cell applications. Int J Hydrog Energy 35:9405–9410CrossRefGoogle Scholar
  107. 107.
    Chen F, Liu M (2001) Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM–YSZ substrates using an electrophoretic deposition (EPD) process. J Eur Ceram Soc 21:127–134CrossRefGoogle Scholar
  108. 108.
    Sora I, Pelosato R, Simone A, Montanaro L, Maglia F, Chiodelli G (2006) Characterization of LSGM films obtained by electrophoretic deposition (EPD). Solid State Ion 177:1985–1989CrossRefGoogle Scholar
  109. 109.
    Zhitomirsky I, Petric A (2000) Electrophoretic deposition of ceramic materials for fuel cell applications. J Eur Ceram Soc 20:2055–2061CrossRefGoogle Scholar
  110. 110.
    Priyantha N, Jayaweera P, Sanjurjo A, Lau K, Lu F, Krist K (2003) Corrosion-resistant metallic coatings for applications in highly aggressive environments. Surf Coat Technol 163–164:31–36CrossRefGoogle Scholar
  111. 111.
    El-Sharif M, Su Y, Chisholm C, Watson A (1993) Corrosion resistance of electrodeposited zinc-chromium alloy coatings. Corros Sci 35:1259–1265CrossRefGoogle Scholar
  112. 112.
    O’Donnell P (1967) Beryllium fluoride coating as a corrosion retardant for beryllium. Corros Sci 7(10):717–718CrossRefGoogle Scholar
  113. 113.
    Pepe A, Aparicio M, Ceré S, Durán A (2005) Synthesis of hybrid silica sol–gel coatings containing Zn particles on carbon steel and Al/Zn coated carbon steel. Mater Lett 59:3937–3940CrossRefGoogle Scholar
  114. 114.
    Pepe A, Galliano P, Ceré S, Aparicio M, Durán A (2005) Hybrid silica sol–gel coatings on Austempered Ductile Iron (ADI). Mater Lett 59:2219–2222CrossRefGoogle Scholar
  115. 115.
    Lu H, Hu Y, Gu M, Tang S, Lu H, Meng X (2009) Synthesis and characterization of silica–acrylic–epoxy hybrid coatings on 430 stainless steel. Surf Coat Technol 204:91–98CrossRefGoogle Scholar
  116. 116.
    Kanamura K, Hamagami J (2004) Innovation of novel functional material processing technique by using electrophoretic deposition process. Solid State Ion 172:303–308CrossRefGoogle Scholar
  117. 117.
    Boccaccini A, Schindler U, Krüger H (2001) Ceramic coatings on carbon and metallic fibres by electrophoretic deposition. Mater Lett 51(3):225–230CrossRefGoogle Scholar
  118. 118.
    Franchini RDA, Souza CD, Colombara R, Matos MC, Matos R (2007) Rapid determination of hydrogen peroxide using peroxidase immobilized on Amberlite IRA-743 and minerals in honey. J Agric Food Chem 55:6885–6890CrossRefGoogle Scholar
  119. 119.
    King T, Preston M, Murphy B, Cannell D (1990) Piezoelectric ceramic actuators: a review of machinery applications. Precis Eng 12(3):131–136CrossRefGoogle Scholar
  120. 120.
    Crawley E, Luis JD (1987) Use of piezoelectric actuators as elements of intelligent structures. Am Inst Aeronaut Astronaut J 25:1373–1385CrossRefGoogle Scholar
  121. 121.
    Chao X, Yang Z, Li G, Cheng Y (2008) Fabrication and characterization of low temperature sintering PMN–PZN–PZT step-down multilayer piezoelectric transformer. Sens Actuat A 144:117–123CrossRefGoogle Scholar
  122. 122.
    Trolier-McKinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroceram 12:7–17CrossRefGoogle Scholar
  123. 123.
    Dong W, Sun L, Du Z (2007) Design of a precision compliant parallel positioner driven by dual piezoelectric actuators. Sens Actuat A 135:250–256CrossRefGoogle Scholar
  124. 124.
    Boccaccini A, Keim S, Ma R, Li Y, Zhitomirsky I (2010) Electrophoretic deposition of biomaterials. J R Soc Interface 7:S581–S613CrossRefGoogle Scholar
  125. 125.
    Hench L (2006) The story of bioglass. J Mater Sci Mater Med 17:967–978CrossRefGoogle Scholar
  126. 126.
    Kim H (2003) Ceramic bioactivity and related biomimetic strategy. Curr Opin Solid State Mater Sci 7:289–299CrossRefGoogle Scholar
  127. 127.
    Wang P, Li C, Gong H, Jiang X, Wang H, Li K (2010) Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol 203:315–321CrossRefGoogle Scholar
  128. 128.
    Wang C, Ma J, Cheng W, Zhang R (2002) Thick hydroxyapatite coatings by electrophoretic deposition. Mater Lett 57:99–105CrossRefGoogle Scholar
  129. 129.
    Mahmoodi S, Sorkhi L, Farrokhi-Rad M, Shahrabi T (2013) Electrophoretic deposition of hydroxyapatite–chitosan nanocomposite coatings in different alcohols. Surf Coat Technol 216:106–114CrossRefGoogle Scholar
  130. 130.
    Jones J (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486CrossRefGoogle Scholar
  131. 131.
    Hench L (1998) Bioceramics. J Am Ceram Soc 81:1705–1728CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Helmerich Advanced Technology Research Center, School of Material Science and EngineeringOklahoma State UniversityTulsaUSA
  2. 2.Helmerich Advanced Technology Research Center, School of Electrical and Computer EngineeringOklahoma State UniversityTulsaUSA
  3. 3.Department of Developmental SciencesMarquette University School of DentistryMilwaukeeUSA
  4. 4.Electrical and Computer Engineering DepartmentNorth Carolina State UniversityRaleighUSA

Personalised recommendations