Skip to main content

Microstructural Aspects of Ionic Conductivity in Nanocrystalline Zirconia

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry
  • 4509 Accesses

Abstract

Zirconia solid solutions have been actively intensively investigated as an oxide ion conductor in solid oxide fuel cells (SOFC), oxygen sensors, or electrochemical oxygen pumps. The importance of grain size and density of grain boundaries in such materials for their properties is obvious. It is generally believed that a formation of nanomaterials with high density of grain boundaries can lead to their much improved electrical properties [1]. A possibility to modify the ion conductor conductive properties by means of changes in its microstructure was shown for the first time, as the explanation of a significant difference in the conductivity values of zirconium dioxide solid solutions, obtained in different conditions [2]. However, a distinct determination the effect of microstructure on the ion conductive properties is not easy, if at all possible. The information on the impact of various elements of the microstructure on the ionic conductivity is scattered and fragmented and practically no systematic studies exist. In the case of zirconium dioxide solid solutions, an additional complication is a strong connection between material microstructural changes with variations in the chemical and phase composition. Describing the effect of microstructure on the conductivity level, the influence of each factor forming the microstructure should be determined separately, i.e., porosity, average particle size, as well as their size distribution, associated with the amount of grain boundaries, and their condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knauth P (2006) Ionic and electronic conduction in nanostructured solids: concepts and concerns, consensus and controversies. Solid State Ion 177:2495–2502

    Article  CAS  Google Scholar 

  2. Bauerle JE (1969) Study of solid electrolyte polarization by a complex admittance method. J Phys Chem Solid 30:2657–2670

    Article  CAS  Google Scholar 

  3. Verkerk MJ, Middelhuis BJ, Burggraaf AJ (1982) Effect of grain boundaries on the conductivity of high-purity ZrO2-Y2O3 ceramics. Solid State Ion 6:159–170

    Article  CAS  Google Scholar 

  4. van Dijk T, Burggraaf AJ (1981) Grain boundary effects on ionic conductivity in ceramic GdxZr1−xO2−(x/2) solid solutions. Phys Status Solidi A 63:229–240

    Article  Google Scholar 

  5. Guo X, Waser R (2006) Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci 51:151–210

    Article  CAS  Google Scholar 

  6. Yan MF, Cannon RM, Bowen HK (1983) Space charge, elastic field, and dipole contributions to equilibrium solute segregation at interfaces. J Appl Phys 54:764–778

    Article  CAS  Google Scholar 

  7. Maier J (1985) Space charge regions in solid two-phase systems and their conduction contribution – I. Conductance enhancement in the system ionic conductor-“inert” phase and application on AgCl:Al2O3 and AgCl:SiO2. J Phys Chem Solid 46:309–320

    Article  CAS  Google Scholar 

  8. Maier J (1995) Ionic conduction in space charge regions. Prog Solid State Chem 23:171–263

    Article  CAS  Google Scholar 

  9. Hwang S-L, Chen I-W (1990) Grain size control of tetragonal zirconia polycrystals using the space charge concept. J Am Ceram Soc 73:3269–3277

    Article  CAS  Google Scholar 

  10. Browning ND, Buban JP, Moltaji HO, Pennycook SJ, Duscher G, Johnson KD, Rodrigues RP, Dravid VP (1999) The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO3. Appl Phys Lett 74:2638–2640

    Article  CAS  Google Scholar 

  11. Fisher CAJ, Matsubara H (1999) Molecular dynamics investigations of grain boundary phenomena in cubic zirconia. Comput Mater Sci 14:177–184

    Article  CAS  Google Scholar 

  12. Aoki M, Chiang Y-M, Kosacki I, Lee LJ-R, Tuller H, Liu Y (1996) Solute segregation and grain-boundary impedance in high-purity stabilized zirconia. J Am Ceram Soc 79:1169–1180

    Article  CAS  Google Scholar 

  13. Guo X, Sigle W, Fleig J, Maier J (2002) Role of space charge in the grain boundary blocking effect in doped zirconia. Solid State Ion 154–155:555–561

    Article  Google Scholar 

  14. Guo X, Zhang Z (2003) Grain size dependent grain boundary defect structure: case of doped zirconia. Acta Mater 51:2539–2547

    Article  CAS  Google Scholar 

  15. Bingham D, Tasker PW, Cormack AN (1989) Simulated grain-boundary structures and ionic conductivity in tetragonal zirconia. Philos Mag A60:1–14

    Article  Google Scholar 

  16. Kliewer KL, Koehler JS (1965) Space charge in ionic crystals. I. General approach with application to NaCl. Phys Rev A140:A1226–A1240

    Article  Google Scholar 

  17. Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148:E121–E126

    Article  CAS  Google Scholar 

  18. Badwal SPS (1992) Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ion 52:23–32

    Article  CAS  Google Scholar 

  19. Hughes AE, Badwal SPS (1990) Impurity segregation study at the surface of yttria-zirconia electrolytes by XPS. Solid State Ion 40–41:312–315

    Article  Google Scholar 

  20. Kleitz M, Dessemond L, Steil MC (1995) Model for ion-blocking at internal interfaces in zirconias. Solid State Ion 75:107–115

    Article  CAS  Google Scholar 

  21. Martin MC, Mecartney ML (2003) Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size. Solid State Ion 161:67–79

    Article  CAS  Google Scholar 

  22. Jung Y-S, Lee J-H, Lee JH, Kim D-Y (2003) Liquid-phase redistribution during sintering of 8 mol% yttria-stabilized zirconia. J Eur Ceram Soc 23:499–503

    Article  CAS  Google Scholar 

  23. Badwal SPS, Hughes AE (1992) The effects of sintering atmosphere on impurity phase formation and grain boundary resistivity in Y2O3-fully stabilized ZrO2. J Eur Ceram Soc 10:115–122

    Article  CAS  Google Scholar 

  24. Badwal SPS (1995) Grain boundary resistivity in zirconia-based materials: effect of sintering temperatures and impurities. Solid State Ion 76:67–80

    Article  CAS  Google Scholar 

  25. Gödickemeier M, Michel B, Orliukas A, Bohac P, Sasaki K, Gauckler L, Heinrich H, Schwander P, Kostorz G, Hofmann H, Frei O (1994) Effect of intergranular glass films on the electrical conductivity of 3Y-TZP. J Mater Res 9:1228–1240

    Article  Google Scholar 

  26. Gremillard L, Epicier T, Chevalier J, Fantozzi G (2000) Microstructural study of silica-doped zirconia ceramics. Acta Mater 48:4647–4652

    Article  CAS  Google Scholar 

  27. Maier J (1987) Defect chemistry and ionic conductivity in thin films. Solid State Ion 23:59–67

    Article  CAS  Google Scholar 

  28. Sata N, Eberman K, Eberl K, Maier J (2000) Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408:946–949

    Article  CAS  Google Scholar 

  29. Maier J (1987) Composite electrolytes. Mater Chem Phys 17:485–498

    Article  CAS  Google Scholar 

  30. Hui S, Roller J, Yick S, Zhang X, Dec’es-Petit C, Xie Y, Maric R, Ghosh D (2007) A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J Power Sources 172:493–502

    Article  CAS  Google Scholar 

  31. Bućko MM, Haberko K, Faryna M (1995) Crystallization of zirconia under hydrothermal conditions. J Am Ceram Soc 78:3397–3440

    Article  Google Scholar 

  32. Tien TY (1964) Grain boundary conductivity of Zr0.84Ca0.16O1.84 ceramics. J Appl Phys 35:122–124

    Article  CAS  Google Scholar 

  33. Mondal P, Klein A, Jaegermann W, Hahn H (1999) Enhanced specific grain boundary conductivity in nanocrystalline Y2O3 -stabilized zirconia. Solid State Ion 118:331–339

    Article  CAS  Google Scholar 

  34. Jiang S, Schulze WA, Amarakoon VRW, Stangle GC (1997) Electrical properties of ultrafine-grained yttria-stabilized zirconia ceramics. J Mater Res 12:2374–2380

    Article  CAS  Google Scholar 

  35. Kosacki I, Suzuki T, Petrovsky V, Anderson HU (2000) Electrical conductivity of nanocrystalline ceria and zirconia thin films. Solid State Ion 136–137:1225–1233

    Article  Google Scholar 

  36. Zhang YW, Jin S, Yang Y, Li GB, Tian SJ, Jia JT, Liao CS, Yan CH (2000) Electrical conductivity enhancement in nanocrystalline (RE2O3)0.08(ZrO2)0.92 (RE = Sc, Y) thin films. App Phys Lett 77:3409–3411

    Article  CAS  Google Scholar 

  37. Tuller HL (2000) Ionic conduction in nanocrystalline materials. Solid State Ion 131:143–157

    Article  CAS  Google Scholar 

  38. Mayo MJ (1996) Processing of nanocrystalline ceramics from ultrafine particles. Int Mater Rev 41:85–115

    Article  CAS  Google Scholar 

  39. Groza JR (1999) Sintering of nanocrystalline powders. Int J Powder Metall 35:59–66

    CAS  Google Scholar 

  40. Kellett BJ, Lang FF (1989) Thermodynamics of densification: II, grain growth in porous compacts and relation to densification. J Am Ceram Soc 72:735–741

    Article  Google Scholar 

  41. Zych Ł, Haberko K (2003) Zirconia nanopowder – its shaping and sintering. Solid State Phenom 94:157–164

    Article  CAS  Google Scholar 

  42. Scott HG (1975) Phase relationships in the zirconia-yttria system. J Mater Sci 10:1527–1535

    Article  CAS  Google Scholar 

  43. Suzuki Y (1995) Phase transition temperature of fluorite-type ZrO2-Y2O3 solid solutions containing 8–44 mol.% Y2O3. Solid State Ion 81(3–4):211–216

    Article  CAS  Google Scholar 

  44. Yokokawa H, Sakai N, Kawada T, Dokiya M (1993) Phase diagram calculations for ZrO2 based ceramics: thermodynamic regularities in zirconate formation and solubilities of transition metal oxides. In: Badwal SPS, Bannister MJ, Hannink RHJ (eds) Science and technology of zirconia. Technomic Publishing, Lancaster, pp 59–68

    Google Scholar 

  45. Du Y, Jin ZP, Huang PY (1991) Thermodynamic assessment of ZrO2-YO1.5 system. J Am Ceram Soc 74:1569–1577

    Article  CAS  Google Scholar 

  46. Nowotny J (1988) Surface segregation of defects in oxide ceramic materials. Solid State Ion 28–30:1235–1243

    Article  Google Scholar 

  47. Rosin P, Rammler E (1933) The laws governing the fineness of powdered coal. J Inst Fuel 7:29–36

    CAS  Google Scholar 

  48. Kilner JA, Steel BCH (1981) Mass transport in anion-deficient fluorite oxides. In: Sørensen OT (ed) Non-stoichiometric oxides. Academic, New York, pp 233–269

    Google Scholar 

  49. Macdonald JR (1987) In: Macdonald JR (ed) Impedance spectroscopy – emphasizing solid materials and systems. Wiley, New York

    Google Scholar 

  50. Almond DP, West AR (1986) Entropy effects in ionic conductivity. Solid State Ion 18–19:1105–1109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław M. Bućko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Bućko, M.M. (2016). Microstructural Aspects of Ionic Conductivity in Nanocrystalline Zirconia. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_5

Download citation

Publish with us

Policies and ethics