Skip to main content

Metal Oxide Nanoparticle Engineering for Printed Electrochemical Applications

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

Engineering procedures governing the selection or development of printable nanostructured metal oxide nanoparticles for chromic, photovoltaic, photocatalytic, sensing, electrolyte-gated TFTs, and power storage applications are established in this chapter. The main focus is given on how to perform the material selection and formulation of printable dispersion in order to develop functional films for electrochemical applications.

This chapter is divided into four main parts. Firstly, a brief introduction on electrochemically active nanocrystalline metal oxide films developed via printing techniques is given. This is followed by the description of the film morphology, structure, and required functionality. A theoretical approach to understand the impact of size and shape of nanoparticles on an ink formulation and electrochemical performance being the subject of the third section provides a greater control over the material selection. We attempt to describe these properties and show that for a given material, geometry and size of the nanoparticles have a major influence on the electrochemical reactivity and response time. This gives the ability to tune the performance of the film simply by varying the morphology of incorporated nanostructures. This section is completed by the recommendations on each major step of an ink formulation, together with imposed critical constraints concerning the fluid control. Finally, the performance of the ink-jet-printed dual-phase electrochromic films is discussed as a case study.

By providing such a rather systematic survey, we aim to stress the importance of proper design strategy that would result in both improved physicochemical properties of nanoparticle-loaded inks and enhanced electrochemical performance of printed functional films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiao Z, Sun XW, Wang J, Ke L, Demir HV (2010) Hydrothermally grown nanostructured WO3 films and their electrochromic characteristics. J Phys D Appl Phys 43:285501

    Article  Google Scholar 

  2. Wang J, Khoo E, Lee PS, Ma J (2009) Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte. J Phys Chem C 113:9655–9658

    Article  CAS  Google Scholar 

  3. Songara S, Gupta V, Kumar Patra M, Singh J, Saini L, Siddaramana Gowd G, Raj Vadera S, Kumar N (2012) Tuning of crystal phase structure in hydrated WO3 nanoparticles under wet chemical conditions and studies on their photochromic properties. J Phys Chem Solid 73:851–857

    Article  CAS  Google Scholar 

  4. Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459

    Article  CAS  Google Scholar 

  5. Li J, Xu D (2010) Tetragonal faceted-nanorods of anatase TiO2 single crystals with a large percentage of active {100} facets. Chem Commun (Camb) 46:2301–2303

    Article  CAS  Google Scholar 

  6. Hong SJ, Jun H, Borse PH, Lee JS (2009) Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int J Hydrogen Energy 34:3234–3242

    Article  CAS  Google Scholar 

  7. Wang H, Lindgren T, He J, Hagfeldt A, Lindquist S (2000) Photolelectrochemistry of nanostructured WO3 thin film electrodes for water oxidation: mechanism of electron transport. J Phys Chem B 104:5686–5696

    Article  CAS  Google Scholar 

  8. Sartoretti JC, Alexander BD, Solarska R, Rutkowska I, Augustynski J, Cerny R (2005) Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J Phys Chem B 109:13685–13692

    Article  CAS  Google Scholar 

  9. Sun CH, Yang XH, Chen JS, Li Z, Lou XW, Li C, Smith SC, Lu GQM, Yang HG (2010) Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chem Commun (Camb) 46:6129–6131

    Article  CAS  Google Scholar 

  10. Huang K, Pan Q, Yang F, Ni S, Wei X, He D (2008) Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J Phys D Appl Phys 41:155417

    Article  Google Scholar 

  11. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    Article  CAS  Google Scholar 

  12. Deng W, Ji X, Chen Q, Banks CE (2011) Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Adv 1:1171

    Article  CAS  Google Scholar 

  13. Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl 47:2930–2946

    Article  CAS  Google Scholar 

  14. Dasgupta S, Kruk R, Mechau N, Hahn H (2011) Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature. ACS Nano 5:9628–9638

    Article  CAS  Google Scholar 

  15. Dasgupta S, Gottschalk S, Kruk R, Hahn H (2008) A nanoparticulate indium tin oxide field-effect transistor with solid electrolyte gating. Nanotechnology 19:435203

    Article  CAS  Google Scholar 

  16. Zhang H, Liu T, Huang L, Guo W, Liu D, Zeng W (2012) Hydrothermal synthesis of assembled sphere-like WO3 architectures and their gas-sensing properties. Physica E 44:1467

    Article  CAS  Google Scholar 

  17. Liu S, Zhang F, Li H, Chen T, Wang Y (2012) Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template. Sens Actuators B 162:259–268

    Article  CAS  Google Scholar 

  18. Yan A, Xie C, Zeng D, Cai S, Li H (2010) Synthesis, formation mechanism and illuminated sensing properties of 3D WO3 nanowall. J Alloys Compd 495:88–92

    Article  CAS  Google Scholar 

  19. Wang K, Xu J-J, Chen H-Y (2006) Biocomposite of cobalt phthalocyanine and lactate oxidase for lactate biosensing with MnO2 nanoparticles as an eliminator of ascorbic acid interference. Sens Actuators B 114:1052–1058

    Article  CAS  Google Scholar 

  20. Ansari A, Alhoshan M, Alsalhi M, Aldwayyan A (2010) Nanostructured metal oxides based enzymatic electrochemical biosensors. In: Serra PA (ed) Biosensors. INTECH, Croatia, pp 23–46

    Google Scholar 

  21. Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem Int Ed Engl 49:1362–1395

    Article  CAS  Google Scholar 

  22. Bisquert J (2007) Photovoltaic, photoelectronic, and electrochemical devices based on metal-oxide nanoparticles and nanostructures. In: Rodríguez JA, Fernández-García M (eds) Synthesis, properties, and applications of oxide nanomaterials. Wiley, Hoboken, pp 451–490

    Google Scholar 

  23. Zhou L, Zou J, Yu M, Lu P, Wei J, Qian Y, Wang Y, Yu C (2008) Green synthesis of hexagonal-shaped WO3.0.33H2O nanodiscs composed of nanosheets. Cryst Growth Des 8:3993–3998

    Article  CAS  Google Scholar 

  24. Khoo E, Lee PS, Ma J (2010) Electrophoretic deposition (EPD) of WO3 nanorods for electrochromic application. J Eur Ceram Soc 30:1139–1144

    Article  CAS  Google Scholar 

  25. Takahashi K, Wang Y, Cao G (2005) Growth and electrochromic properties of single-crystal V2O5 nanorod arrays. Appl Phys Lett 86:053102

    Article  Google Scholar 

  26. Wang J, Lee PS, Ma J (2009) One-pot synthesis of hierarchically assembled tungsten oxide (hydrates) nano/microstructures by a crystal-seed-assisted hydrothermal process. Cryst Growth Des 9:2293–2299

    Article  CAS  Google Scholar 

  27. Bernacka-Wojcik I, Senadeera R, Wojcik PJ, Silva LB, Doria G, Baptista P, Aguas H, Fortunato E, Martins R (2010) Inkjet printed and “doctor blade” TiO2 photodetectors for DNA biosensors. Biosens Bioelectron 25:1229–1234

    Article  CAS  Google Scholar 

  28. Wojcik PJ, Cruz AS, Santos L, Pereira L, Martins R, Fortunato E (2012) Microstructure control of dual-phase inkjet-printed a-WO3/TiO2/WOX films for high-performance electrochromic applications. J Mater Chem 22:13268

    Article  CAS  Google Scholar 

  29. Wojcik PJ, Pereira L, Martins R, Fortunato E (2014) Statistical mixture design and multivariate analysis of inkjet printed a-WO3/TiO2/WOX electrochromic films. ACS Comb Sci 16:5–16

    Article  CAS  Google Scholar 

  30. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XWD (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180

    Article  CAS  Google Scholar 

  31. Woodward PM, Sleight AW, Vogt T (1997) Ferroelectric tungsten trioxide. J Solid State Chem 131:9–17

    Article  CAS  Google Scholar 

  32. Yamanaka K, Oakamoto H, Kidou H, Kudo T (1986) Peroxotungstic acid coated films for electrochromic display devices. Jpn J Appl Phys 25:1420–1426

    Article  CAS  Google Scholar 

  33. Frenzer G, Maier WF (2006) Amorphous porous mixed oxides: sol–gel ways to a highly versatile class of materials and catalysts. Annu Rev Mater Res 36:281–331

    Article  CAS  Google Scholar 

  34. Kim Y-H, Heo J-S, Kim T-H, Park S, Yoon M-H, Kim J, Oh MS, Yi G-R, Noh Y-Y, Park SK (2012) Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films. Nature 489:128–132

    Article  CAS  Google Scholar 

  35. Sandu I, Brousse T, Santos-Pena J (2002) Comparison of the electrochemical behaviour of SnO2 and PbO2 negative electrodes for lithium ion batteries. Ionics (Kiel) 8:27–35

    Article  CAS  Google Scholar 

  36. Granqvist CG (1993) Electrochromic materials: microstructure, electronic bands, and optical properties. Appl Phys A Solids Surf 57:3–12

    Article  Google Scholar 

  37. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  38. Yebka B, Pecquenard B, Julien C, Livage J (1997) Electrochemical Li + insertion in WO3 – xTiO2 mixed oxides. Solid State Ion 104:169–175

    Article  CAS  Google Scholar 

  39. Pyun S-I, Bae J-S (1996) Lithium ion transport in r.f.-magnetron sputtered WO3 film as a function of lithium content. J Alloys Compd 245:L1–L4

    Article  CAS  Google Scholar 

  40. Mohammad A (2009) Al: synthesis, separation and electrical properties of WO3 − x nanopowders via partial pressure high energy ball-milling. Acta Phys Pol A 116:240–244

    Google Scholar 

  41. Karunakaran C, Dhanalakshmi R, Manikandan G, Gomathisankar P (2011) Photodegradation of carboxylic acids on Al2O3 and SiO2 nanoparticles. Indian J Chem 50A:163–170

    CAS  Google Scholar 

  42. Nunes P, Fortunato E, Tonello P, Fernandes FB, Vilarinho P (2002) Effect of different dopant elements on the properties of ZnO thin films. Vacuum 64:281–285

    Article  CAS  Google Scholar 

  43. Nunes P, Costa D, Fortunato E, Martins R (2002) Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering. Vacuum 64:293–297

    Article  CAS  Google Scholar 

  44. Nunes PU, Fortunato E, Martins R (2001) Influence of the post-treatment on the properties of ZnO thin films. Thin Solid Films 383:277–280

    Article  CAS  Google Scholar 

  45. Assuncao V, Ferreira I, Martins R, Fortunato E, Marques A, Aguas H (2003) Influence of the deposition pressure on the properties of transparent and conductive ZnO Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films 427:401–405

    Article  CAS  Google Scholar 

  46. Fortunato E, Pimentel A, Gonçalves A, Marques A, Martins R (2006) High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature. Thin Solid Films 502:104–107

    Article  CAS  Google Scholar 

  47. Zhang Q, Chou TP, Russo B, Jenekhe SA, Cao G (2008) Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem Int Ed Engl 47:2402–2406

    Article  CAS  Google Scholar 

  48. Zhang Q, Dandeneau CS, Zhou X, Cao G (2009) ZnO nanostructures for dye-sensitized solar cells. Adv Mater 21:4087–4108

    Article  CAS  Google Scholar 

  49. Jolivet J-P, Cassaignon S, Chanéac C, Chiche D, Durupthy O, Portehault D (2010) Design of metal oxide nanoparticles: control of size, shape, crystalline structure and functionalization by aqueous chemistry. C R Chim 13:40–51

    Article  CAS  Google Scholar 

  50. Navrotsky A (2003) Energetics of nanoparticle oxides: interplay between surface energy and polymorphism. Geochem Trans 4:34

    Article  Google Scholar 

  51. Klabunde K, Richards RM (2001) Nanoscale materials in chemistry. Wiley, New York

    Book  Google Scholar 

  52. Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82

    Article  CAS  Google Scholar 

  53. Jayalakshmi M, Rao MM, Kim K (2006) Effect of particle size on the electrochemical capacitance of α-Ni(OH)2 in alkali solutions. Int J Electrochem Sci 1:324–333

    CAS  Google Scholar 

  54. Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, Jiang Y, Lagadic I, Zhang D (1996) Nanocrystals as stoichiometric reagents with unique surface chemistry. J Phys Chem 100:12142–12153

    Article  CAS  Google Scholar 

  55. Granqvist CG (2000) Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells 60:201–262

    Article  CAS  Google Scholar 

  56. Krasnov Y (2004) Electrochromism and reversible changes in the position of fundamental absorption edge in cathodically deposited amorphous WO3. Electrochim Acta 49:2425–2433

    Article  CAS  Google Scholar 

  57. Faughnan BW, Crandall RS, Lampert MA (1975) Model for the bleaching of WO3 electrochromic films by an electric field. Appl Phys Lett 27:275–277

    Article  CAS  Google Scholar 

  58. Kadam PM, Tarwal NL, Shinde PS, Mali SS, Patil RS, Bhosale AK, Deshmukh HP, Patil PS (2011) Enhanced optical modulation due to SPR in gold nanoparticles embedded WO3 thin films. J Alloys Compd 509:1729–1733

    Article  CAS  Google Scholar 

  59. Vidotti M, Torresi SICD (2008) Nanochromics: old materials, new structures and architectures for high performance devices. J Braz Chem Soc 19:1248–1257

    Article  CAS  Google Scholar 

  60. Baraton M-I, Merhari L (2001) Influence of the particle size on the surface reactivity and gas sensing properties of SnO2 nanopowders. Mater Trans 42:1616–1622

    Article  CAS  Google Scholar 

  61. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50

    Article  CAS  Google Scholar 

  62. Liu J, Guo Z, Zhu K, Wang W, Zhang C, Chen X (2011) Highly porous metal oxide polycrystalline nanowire films with superior performance in gas sensors. J Mater Chem 21:11412

    Article  CAS  Google Scholar 

  63. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  64. Lee J-H (2009) Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuators B Chem 140:319–336

    Article  CAS  Google Scholar 

  65. Gu Z, Zhai T, Gao B, Sheng X, Wang Y, Fu H (2006) Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. J Phys Chem B 110:23829–23836

    Article  CAS  Google Scholar 

  66. Mueller S, Llewellin EW, Mader HM (2009) The rheology of suspensions of solid particles. Proc R Soc A 466:1201–1228

    Article  Google Scholar 

  67. Duan F, Kwek D, Crivoi A (2011) Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids. Nanoscale Res Lett 6:248

    Google Scholar 

  68. Pastoriza-Gallego MJ, Casanova C, Páramo R, Barbés B, Legido JL, Piñeiro MM (2009) A study on stability and thermophysical properties (density and viscosity) of Al2O3 in water nanofluid. J Appl Phys 106:064301

    Article  Google Scholar 

  69. Cooper-White JJ, Fagan JE, Tirtaatmadja V, Lester DR, Boger DV (2002) Drop formation dynamics of constant low-viscosity, elastic fluids. J Nonnewton Fluid Mech 106:29–59

    Article  CAS  Google Scholar 

  70. Furbank RJ, Morris JF (2004) An experimental study of particle effects on drop formation. Phys Fluids 16:1777

    Article  CAS  Google Scholar 

  71. Tuladhar TR, Mackley MR (2008) Filament stretching rheometry and break-up behaviour of low viscosity polymer solutions and inkjet fluids. J Nonnewton Fluid Mech 148:97–108

    Article  CAS  Google Scholar 

  72. Khoo HS, Lin C, Huang S-H, Tseng F-G (2011) Self-assembly in micro- and nanofluidic devices: a review of recent efforts. Micromachines 2:17–48

    Article  Google Scholar 

  73. Huang Y, Duan X, Wei Q, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630–633

    Article  CAS  Google Scholar 

  74. Yayapao O, Thongtem T, Phuruangrat A, Thongtem S (2011) CTAB-assisted hydrothermal synthesis of tungsten oxide microflowers. J Alloys Compd 509:2294–2299

    Article  CAS  Google Scholar 

  75. Huang R, Shen Y, Zhao L, Yan M (2012) Effect of hydrothermal temperature on structure and photochromic properties of WO3 powder. Adv Powder Technol 23:211–214

    Article  CAS  Google Scholar 

  76. Sungpanich J, Thongtem T, Thongtem S (2012) Large-scale synthesis of WO3 nanoplates by a microwave-hydrothermal method. Ceram Int 38:1051–1055

    Article  CAS  Google Scholar 

  77. Huirache-Acuña R, Paraguay-Delgado F, Albiter MA, Lara-Romero J, Martínez-Sánchez R (2009) Synthesis and characterization of WO3 nanostructures prepared by an aged-hydrothermal method. Mater Charact 60:932–937

    Article  Google Scholar 

  78. Jiayin L, Jianfeng H, Jianpeng W, Liyun C, Yanagisawa K (2012) Morphology-controlled synthesis of tungsten oxide hydrates crystallites via a facile, additive-free hydrothermal process. Ceram Int 38:4495–4500

    Article  CAS  Google Scholar 

  79. Wang J, Lee P, Ma J (2009) Synthesis, growth mechanism and room-temperature blue luminescence emission of uniform WO3 nanosheets with W as starting material. J Cryst Growth 311:316–319

    Article  CAS  Google Scholar 

  80. Barbosa PC, Rodrigues LC, Silva MM, Smith MJ, Valente PB, Gonçalves A, Fortunato E (2011) Characterization of polyether-poly(methyl methacrylate)-lithium perchlorate blend electrolytes. Polym Adv Technol 22:1753–1759

    Article  CAS  Google Scholar 

Download references

Acknowledgments 

This work was funded by the Portuguese Science Foundation (FCT-MEC) through project Electra, PTDC/CTM/099124/2008, ERA-MNT/0005/2009, Strategic Project PEst-C/CTM/LA0025/2011, and the PhD grant SFRH/BD/45224/2008 given to P. J. Wojcik. Moreover, this work was also supported by E. Fortunato’s ERC 2008 Advanced Grant (INVISIBLE contract number 228144), “A3PLE” FP7-NMP-2010-SME/262782-2, “SMART-EC” FP7-ICT-2009.3.9/258203, and “POINTS” FP7-NMP-263042.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pawel Jerzy Wojcik or Elvira Fortunato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Wojcik, P.J., Pereira, L., Martins, R., Fortunato, E. (2016). Metal Oxide Nanoparticle Engineering for Printed Electrochemical Applications. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_31

Download citation

Publish with us

Policies and ethics