Skip to main content

Nanostructured Transition Metal Oxides Produced by Electrodeposition for Application as Redox Electrodes for Supercapacitors

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

The increasing demand for energy and the need of cleaner production technologies have turned energy storage into a hot research topic. Development of more efficient energy storage devices, such as batteries and supercapacitors, is the key to boost renewable energy production and the use of electric/hybrid vehicles. Electrochemistry is one of the sciences behind these challenging technologies. The performance of these devices relies on the nature of the electrodes they use. 2D and 3D nanostructured architectures composed of transition metal oxides, or their composites with carbon, have recently emerged as new materials with high potential as electrodes for supercapacitors due to their pseudocapacitive contribution and high theoretical capacitances.

For application in supercapacitors, the electrodes must present high porosity and surface area. These are necessary properties to enhance charge-transfer and redox reactions at the film/electrolyte interface. One of the most promising techniques to produce transition metal films with such characteristics is electrodeposition because of its versatility and it is easy to do. Electrodeposition is a widespread cheap and clean one-step technique for the fabrication of metals, metal oxides, polymers, and composite coatings. By combining optimized deposition parameters with the required electrolyte composition, the morphology and the chemical composition of the deposited film can be tailored to achieve nanostructured architectures.

In this chapter, recent advances in 2D and 3D nanostructured architectures of transition metal oxide films produced by electrodeposition and their application as electrodes for electrochemical pseudo supercapacitors, including their electrochemical performance, are reviewed, and recent trends and results are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer/Plenum, New York

    Book  Google Scholar 

  2. Wu M-S, Lin K-H (2010) One-step electrophoretic deposition of Ni-decorated activated-carbon film as an electrode material for supercapacitors. J Phys Chem C 114:6190–6196

    Article  CAS  Google Scholar 

  3. Bondavalli P, Delfaure C, Legagneux P, Pribat D (2013) Supercapacitor electrode based on mixtures of graphite and carbon nanotubes deposited using a dynamic air-brush deposition technique. J Electrochem Soc 160:A601–A606

    Article  CAS  Google Scholar 

  4. Ghosh A, Lee YH (2012) Carbon-based electrochemical capacitors. ChemSusChem 5:480–499

    Article  CAS  Google Scholar 

  5. Choi H-J, Jung S-M, Seo J-M, Chang DW, Dai L, Baek J-B (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1:534–551

    Article  CAS  Google Scholar 

  6. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  7. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131

    Article  CAS  Google Scholar 

  8. Kim G-P, Nam I, Kim ND, Park J, Park S, Yi J (2012) A synthesis of graphene/Co3O4 thin films for lithium ion battery anodes by coelectrodeposition. Electrochem Commun 22:93–96

    Article  CAS  Google Scholar 

  9. Frackowiak E, Abbas Q, Béguin F (2013) Carbon/carbon supercapacitors. J Energy Chem 22:226–240

    Article  CAS  Google Scholar 

  10. Liu C, Li F, Ma L-P, Cheng H-M (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  11. Bicelli LP, Bozzini B, Mele C, D’Urzo L (2008) A review of nanostructural aspects of metal electrodeposition. Int J Electrochem Sci 3:356–408

    CAS  Google Scholar 

  12. Gurrappa I, Binder L (2008) Electrodeposition of nanostructured coatings and their characterization – a review. Sci Technol Adv Mater 9:043001

    Article  Google Scholar 

  13. Allongue P, Maroun F (2006) Metal electrodeposition on single crystal metal surfaces mechanisms, structure and applications. Curr Opin Solid State Mater Sci 10:173–181

    Article  CAS  Google Scholar 

  14. Siegfried MJ, Choi K-S (2005) Directing the architecture of cuprous oxide crystals during electrochemical growth. Angew Chem 117:3282–3287

    Article  Google Scholar 

  15. Despic A, Popov K (1972) Transport Controlled Deposition and Dissolution of Metals. In: Conway B, Bockris JM (eds) Modern aspects of electrochemistry, vol 7. Plenum, New York

    Google Scholar 

  16. Diggle JW, Despic AR, Bockris JOM (1969) The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 116:1503–1514

    Article  CAS  Google Scholar 

  17. Popov KI, Čekerevac MI (1989) Dendritic electrocrystallization of cadmium from acid sulphate solution II: the effect of the geometry of dendrite precursors on the shape of dendrites. Surf Coat Technol 37:435–440

    Article  CAS  Google Scholar 

  18. Li Y, Jia W-Z, Song Y-Y, Xia X-H (2007) Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template. Chem Mater 19:5758–5764

    Article  CAS  Google Scholar 

  19. Hsu P-C, Seol S-K, Lo T-N, Liu C-J, Wang C-L, Lin C-S, Hwu Y, Chen CH, Chang L-W, Je JH, Margaritondo G (2008) Hydrogen bubbles and the growth morphology of ramified zinc by electrodeposition. J Electrochem Soc 155:D400–D407

    Article  CAS  Google Scholar 

  20. Chen LY, Hou Y, Kang JL, Hirata A, Fujita T, Chen MW (2013) Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold. Adv Energy Mater 3:851–856

    Article  CAS  Google Scholar 

  21. Lokhande CD, Dubal DP, Joo O-S (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270

    Article  Google Scholar 

  22. Das RK, Liu B, Reynolds JR, Rinzler AG (2009) Engineered macroporosity in single-wall carbon nanotube films. Nano Lett 9:677–683

    Article  CAS  Google Scholar 

  23. Soin N, Roy SS, Mitra SK, Thundat T, McLaughlin JA (2012) Nanocrystalline ruthenium oxide dispersed few layered graphene (FLG) nanoflakes as supercapacitor electrodes. J Mater Chem 22:14944–14950

    Article  CAS  Google Scholar 

  24. Wu Z-S, Wang D-W, Ren W, Zhao J, Zhou G, Li F, Cheng H-M (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602

    Article  CAS  Google Scholar 

  25. Ragupathy P, Park DH, Campet G, Vasan HN, Hwang S-J, Choy J-H, Munichandraiah N (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309

    Article  CAS  Google Scholar 

  26. Wang Y-T, Lu A-H, Zhang H-L, Li W-C (2011) Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. J Phys Chem C 115:5413–5421

    Article  CAS  Google Scholar 

  27. Kang YJ, Chung H, Kim W (2013) 1.8-V flexible supercapacitors with asymmetric configuration based on manganese oxide, carbon nanotubes, and a gel electrolyte. Synth Met 166:40–44

    Article  CAS  Google Scholar 

  28. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Nanostructured ternary electrodes for energy-storage applications. Adv Energy Mater 2:381–389

    Article  CAS  Google Scholar 

  29. Han J, Li L, Fang P, Guo R (2012) Ultrathin MnO2 nanorods on conducting polymer nanofibers as a new class of hierarchical nanostructures for high-performance supercapacitors. J Phys Chem C 116:15900–15907

    Article  CAS  Google Scholar 

  30. Wei W, Cui X, Chen W, Ivey DG (2008) Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition: implications for high-rate capability electrochemical supercapacitors. J Phys Chem C 112:15075–15083

    Article  CAS  Google Scholar 

  31. Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23:2076–2081

    Article  CAS  Google Scholar 

  32. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  33. Nam K-W, Kim K-H, Lee E-S, Yoon W-S, Yang X-Q, Kim K-B (2008) Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates. J Power Sources 182:642–652

    Article  CAS  Google Scholar 

  34. Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115:15646–15654

    Article  CAS  Google Scholar 

  35. Deng M-J, Chang J-K, Wang C-C, Chen K-W, Lin C-M, Tang M-T, Chen J-M, Lu K-T (2011) High-performance electrochemical pseudo-capacitor based on MnO2 nanowires/Ni foam as electrode with a novel Li-ion quasi-ionic liquid as electrolyte. Energy Environ Sci 4:3942–3946

    Article  CAS  Google Scholar 

  36. Chou S-L, Wang J-Z, Chew S-Y, Liu H-K, Dou S-X (2008) Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem Commun 10:1724–1727

    Article  CAS  Google Scholar 

  37. Sun Z, Firdoz S, Ying-Xuan Yap E, Li L, Lu X (2013) Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. Nanoscale 5:4379–4387

    Article  CAS  Google Scholar 

  38. Duay J, Sherrill SA, Gui Z, Gillette E, Lee SB (2013) Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7:1200–1214

    Article  CAS  Google Scholar 

  39. Kang J, Chen L, Hou Y, Li C, Fujita T, Lang X, Hirata A, Chen M (2013) Electroplated thick manganese oxide films with ultrahigh capacitance. Adv Energy Mater 3:857–863

    Article  CAS  Google Scholar 

  40. Li Q, Wang Z-L, Li G-R, Guo R, Ding L-X, Tong Y-X (2012) Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett 12:3803–3807

    Article  CAS  Google Scholar 

  41. Chang J-K, Lee M-T, Huang C-H, Tsai W-T (2008) Physicochemical properties and electrochemical behavior of binary manganese – cobalt oxide electrodes for supercapacitor applications. Mater Chem Phys 108:124–131

    Article  CAS  Google Scholar 

  42. Mai L, Li H, Zhao Y, Xu L, Xu X, Luo Y, Zhang Z, Ke W, Niu C, Zhang Q (2013) Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor. Sci Rep 3:1–8

    Article  Google Scholar 

  43. Wang H, Yi H, Chen X, Wang X (2013) Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties. Electrochim Acta 105:353–361

    Article  Google Scholar 

  44. Xia XH, Tu JP, Zhang YQ, Mai YJ, Wang XL, Gu CD, Zhao XB (2011) Three-dimensional porous nano-Ni/Co(OH)2 nanoflake composite film: a pseudocapacitive material with superior performance. J Phys Chem C 115:22662–22668

    Article  CAS  Google Scholar 

  45. Eugénio S, Silva TM, Carmezim MJ, Duarte RG, Montemor MF (2014) Electrodeposition and characterization of nickel–copper metallic foams for application as electrodes for supercapacitors. J Appl Electrochem 44:455–465

    Article  Google Scholar 

  46. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett 8:2664–2668

    Article  CAS  Google Scholar 

  47. Kim J-H, Lee KH, Overzet LJ, Lee GS (2011) Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/mnox composites for high-performance energy storage devices. Nano Lett 11:2611–2617

    Article  CAS  Google Scholar 

  48. Ghosh A, Ra EJ, Jin M, Jeong H-K, Kim TH, Biswas C, Lee YH (2011) High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon-nanofiber paper. Adv Funct Mater 21:2541–2547

    Article  CAS  Google Scholar 

  49. Wu M-S, Lin Y-P, Lin C-H, Lee J-T (2012) Formation of nano-scaled crevices and spacers in NiO-attached graphene oxide nanosheets for supercapacitors. J Mater Chem 22:2442–2448

    Article  CAS  Google Scholar 

  50. Yuan B, Xu C, Deng D, Xing Y, Liu L, Pang H, Zhang D (2013) Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochim Acta 88:708–712

    Article  CAS  Google Scholar 

  51. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    Article  CAS  Google Scholar 

  52. Chen Y-S, Hu C-C (2003) Capacitive characteristics of binary manganese-nickel oxides prepared by anodic deposition. Electrochem Solid-State Lett 6:A210–A213

    Article  CAS  Google Scholar 

  53. Chang J-K, Hsieh W-C, Tsai W-T (2008) Effects of the Co content in the material characteristics and supercapacitive performance of binary Mn–Co oxide electrodes. J Alloys Compd 461:667–674

    Article  CAS  Google Scholar 

  54. Nakayama M, Suzuki K, Okamura K, Inoue R, Athouël L, Crosnier O, Brousse T (2010) Doping of cobalt into multilayered manganese oxide for improved pseudocapacitive properties. J Electrochem Soc 157:A1067–A1072

    Article  CAS  Google Scholar 

  55. Babakhani B, Ivey DG (2011) Investigation of electrochemical behavior of Mn–Co doped oxide electrodes for electrochemical capacitors. Electrochim Acta 56:4753–4762

    Article  CAS  Google Scholar 

  56. Sawangphruk M, Pinitsoontorn S, Limtrakul J (2012) Surfactant-assisted electrodeposition and improved electrochemical capacitance of silver-doped manganese oxide pseudocapacitor electrodes. J Solid State Electrochem 16:2623–2629

    Article  CAS  Google Scholar 

  57. Wang Y, Zhitomirsky I (2011) Cathodic electrodeposition of Ag-doped manganese dioxide films for electrodes of electrochemical supercapacitors. Mater Lett 65:1759–1761

    Article  CAS  Google Scholar 

  58. Kang J, Hirata A, Kang L, Zhang X, Hou Y, Chen L, Li C, Fujita T, Akagi K, Chen M (2013) Enhanced supercapacitor performance of MnO2 by atomic doping. Angew Chem Int Ed 52:1664–1667

    Article  CAS  Google Scholar 

  59. Tappan BC, Steiner SA, Luther EP (2010) Nanoporous metal foams. Angew Chem Int Ed 49:4544–4565

    Article  CAS  Google Scholar 

  60. Paunovic M, Schlesinger M, Snyder DD (2010) Fundamental considerations, ch1. In: Modern electroplating. Wiley, Hoboken, pp 1–32. doi:10.1002/9780470602638

    Google Scholar 

  61. Shin HC, Dong J, Liu M (2003) Nanoporous structures prepared by an electrochemical deposition process. Adv Mater 15:1610–1614

    Article  CAS  Google Scholar 

  62. Shin H-C, Liu M (2004) Copper foam structures with highly porous nanostructured walls. Chem Mater 16:5460–5464

    Article  CAS  Google Scholar 

  63. Nikolić ND, Branković G, Pavlović MG, Popov KI (2008) The effect of hydrogen co-deposition on the morphology of copper electrodeposits. II. Correlation between the properties of electrolytic solutions and the quantity of evolved hydrogen. J Electroanal Chem 621:13–21

    Article  Google Scholar 

  64. Nikolić ND, Popov KI, Lj JP, Pavlović MG (2006) Phenomenology of a formation of a honeycomb-like structure during copper electrodeposition. J Solid State Electrochem 11:667–675

    Article  Google Scholar 

  65. Nikolić ND, Popov KI, Lj JP, Pavlović MG (2006) Morphologies of copper deposits obtained by the electrodeposition at high overpotentials. Surf Coat Technol 201:560–566

    Article  Google Scholar 

  66. Nikolić N (2010) Fundamental aspects of copper electrodeposition in the hydrogen co-deposition range. Zaštita Materijala 51:197–203

    Google Scholar 

  67. Soares DM, Wasle S, Weil KG, Doblhofer K (2002) Copper ion reduction catalyzed by chloride ions. J Electroanal Chem 532:353–358

    Article  CAS  Google Scholar 

  68. Cherevko S, Xing X, Chung C-H (2010) Electrodeposition of three-dimensional porous silver foams. Electrochem Commun 12:467–470

    Article  CAS  Google Scholar 

  69. Yang G-M, Chen X, Li J, Guo Z, Liu J-H, Huang X-J (2011) Bubble dynamic templated deposition of three-dimensional palladium nanostructure catalysts: approach to oxygen reduction using macro-, micro-, and nano-architectures on electrode surfaces. Electrochim Acta 56:6771–6778

    Article  CAS  Google Scholar 

  70. Cherevko S, Chung C-H (2011) Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution. Electrochem Commun 13:16–19

    Article  CAS  Google Scholar 

  71. Choi W-S, Jung H-R, Kwon S-H, Lee J-W, Liu M, Shin H-C (2012) Nanostructured metallic foam electrodeposits on a nonconductive substrate. J Mater Chem 22:1028–1032

    Article  CAS  Google Scholar 

  72. Brenner A (1963) Electrodeposition of alloys: principles and practice, vol 1. Academic, New York

    Google Scholar 

  73. Chang JK, Hsu SH, Sun IW, Tsai WT (2008) Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel-copper alloys. J Phys Chem C 112:1371–1376

    CAS  Google Scholar 

  74. Yau S-L, Fan F-RF, Moffat TP, Bard AJ (1994) In situ scanning tunneling microscopy of Ni (100) in 1 M NaOH. J Phys Chem 98:5493–5499

    Article  CAS  Google Scholar 

  75. Hu C-C, Chang K-H, Hsu T-Y (2008) The synergistic influences of OH concentration and electrolyte conductivity on the redox behavior of Ni(OH)2/NiOOH. J Electrochem Soc 155:F196–F200

    Article  CAS  Google Scholar 

  76. De Medina AMCL, Marciano SL, Arvia AJ (1978) The potentiodynamic behaviour of copper in NaOH solutions. J Appl Electrochem 8:121–134

    Article  Google Scholar 

  77. Ismail K, Fathi A, Badawy W (2004) The influence of Ni content on the stability of copper-nickel alloys in alkaline sulphate solutions. J Appl Electrochem 34:823–831

    Article  CAS  Google Scholar 

  78. Zaky AM, Assaf FH (2002) Cyclic voltammetric behaviour of copper-nickel alloys in alkaline media. Br Corros J 37:48–55

    Article  CAS  Google Scholar 

  79. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  80. Jović VD, Jović BM, Pavlović MG (2006) Electrodeposition of Ni, Co and Ni–Co alloy powders. Electrochim Acta 51:5468–5477

    Article  Google Scholar 

  81. Maksimović VM, Lačnjevac UČ, Stoiljković MM, Pavlović MG, Jović VD (2011) Morphology and composition of Ni–Co electrodeposited powders. Mater Charact 62:1173–1179

    Article  Google Scholar 

  82. Jeong M-G, Zhuo K, Cherevko S, Kim W-J, Chung C-H (2013) Facile preparation of three-dimensional porous hydrous ruthenium oxide electrode for supercapacitors. J Power Sources 244:806–811

    Article  CAS  Google Scholar 

  83. Silva RP, Eugénio S, Silva TM, Carmezim MJ, Montemor MF (2012) Fabrication of three-dimensional dendritic Ni–Co films by electrodeposition on stainless steel substrates. J Phys Chem C 116:22425–22431

    Article  CAS  Google Scholar 

  84. Guo L, Searson PC (2010) On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochim Acta 55:4086–4091

    Article  CAS  Google Scholar 

  85. Fan C, Piron DL (1996) Study of anomalous nickel-cobalt electrodeposition with different electrolytes and current densities. Electrochim Acta 41:1713–1719

    Article  CAS  Google Scholar 

  86. Fan Z, Chen J, Cui K, Sun F, Xu Y, Kuang Y (2007) Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites. Electrochim Acta 52:2959–2965

    Article  CAS  Google Scholar 

  87. Niu Z, Zhang L, Liu L, Zhu B, Dong H, Chen X (2013) All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv Mater 25:4035–4042

    Article  CAS  Google Scholar 

  88. Kuang D, Xu L, Liu L, Hu W, Wu Y (2013) Graphene–nickel composites. Appl Surf Sci 273:484–490

    Article  CAS  Google Scholar 

  89. Rakhi RB, Chen W, Cha D, Alshareef HN (2011) High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. J Mater Chem 21:16197–16204

    Article  CAS  Google Scholar 

  90. Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8:1805–1834

    Article  CAS  Google Scholar 

  91. Du F, Yu D, Dai L, Ganguli S, Varshney V, Roy AK (2011) Preparation of tunable 3D pillared carbon nanotube – graphene networks for high-performance capacitance. Chem Mater 23:4810–4816

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge FCT for financial support under the projects PEst-OE/QUI/UI0100/2013 and PTDC/CTM-MET/119411/2010 “Electrodeposition of oxide spinel films on stainless steel substrates for the development of new electrodes for supercapacitors” and the COST Action MP 1004 “Hybrid Energy Storage Devices and Systems for Mobile and Stationary Applications.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fátima Montemor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Montemor, M.F., Eugénio, S., Tuyen, N., Silva, R.P., Silva, T.M., Carmezim, M.J. (2016). Nanostructured Transition Metal Oxides Produced by Electrodeposition for Application as Redox Electrodes for Supercapacitors. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_14

Download citation

Publish with us

Policies and ethics