Skip to main content

Characterization of Metallic Micro(Nano)cluster-Based Contacts for High-Effective Photovoltaic Devices

  • Living reference work entry
  • First Online:
Handbook of Nanoelectrochemistry
  • 402 Accesses

Abstract

We present unique results on methods for producing electric contacts on the illuminated side of solar cells based on novel wet chemical processes [1]. We are describing about the copper–nickel–tin deposition on the silver pores in contradiction of the rule based on the standard electrode potentials (or the electrochemical series). The special feature of this process is the deposition of metal from a water solution on a silver surface and pores under the action of intrinsic electrical fields in solar cell absorber. Silver technologies are widely used for manufacture of crystalline silicon-based photovoltaic devices [2]. The role of small particles in solar cells was described previously [3]. The inclusion of nanoparticles into pores of photon absorbers increases their efficiency. Copper micro(nano)clusters were chemically introduced into pores of a silver contact. They changed the electrical properties of the contact: the dark current, which is unknown for metals, was detected [4]. The experimental data on electrical properties of the structures fabricated by the technique mentioned above are discussed in the framework of semiclassical nanoscaled metal–semiconductor junctions.

Halyna Khlyap: Deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Laptev VI, Demicheva OV (registration 20.02.2012). Patent of Russian Federation No. 2443037

    Google Scholar 

  2. Laptev VI, Demicheva OV (registration 20.05.2011). Patent of Russian Federation No. 104775

    Google Scholar 

  3. Kozar’ TV, Karapuzova Na, Laptev GV, Laptev VI, Khlyap GM, Demicheva OV, Tomishko AG, Alekseev AM (2010) Silicon solar cells: electrical properties of copper nanoclusters positioned in micropores of silver stripe-geometry elements. Nanotechnologies in Russia, 2010, vol 5, Nos 7–8, pp 549–553. © Pleiades Publishing Ltd. (Original Russian text © Kozar’ TV, Karapuzova NA, Laptev GV, Laptev VI, Khlyap GM, Demicheva OV, Tomishko AG, Alekseev AM (2010), published in Rossiiskie nanotekhnologii, vol 5, No 7–8)

    Google Scholar 

  4. Laptev VI, Khlyap HM (2012) Electrical Properties of copper clusters in porous silver of silicon solar cells. Doklady physical chemistry, 2009, vol 424, Part 2, pp 40–42. See also: “solar cell.” Encyclopædia Britannica. Encyclopædia Britannica Ultimate Reference Suite. Encyclopædia Britannica, Chicago

    Google Scholar 

  5. Greenwood MA (2007) Solar cells, array films constructed from nanotubes. Photon Spectra 41(9):114–116

    Google Scholar 

  6. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101(9):093105.1–093105.8

    Article  Google Scholar 

  7. Han H, Bach U, Cheng YB, Caruso RA (2007) Increased nanopore filling: effect on monolithic all solid state dye sensitized solar cell. Appl Phys Lett 90(21):213510.1–213510.3

    Article  Google Scholar 

  8. Johnson DC, Ballard LM, Barnham KWJ, Connolly JP, Mazzer M, Bessiere A, Calder C, Hill G, Roberts JS (2007) Observation of photon recycling in strain balanced quantum well solar cells. Appl Phys Lett 90(21):213505.1–213505.3

    Article  Google Scholar 

  9. Pearton SJ, Corbett JW, Shi TS (1987) Hydrogen in crystalline semiconductors. Appl Phys A 43:153–198

    Article  Google Scholar 

  10. Härkönen J et al (1997) 26th PVSC; Sept. 30–Oct. 3, pp 163–165

    Google Scholar 

  11. Lee EJ, Kim DS, Lee SH (2002) Ni/Cu metallization for low-cost high-efficiency PERC cells. Solar Energ Mater Solar Cells 74:65–70

    Article  CAS  Google Scholar 

  12. Teng KF, Vest RW (1988) Metallization of solar cells with ink jet printing and silver metallo-organic inks. IEEE Trans Comp Hybrid Manufact Technol 11(N.3):291–297

    Article  CAS  Google Scholar 

  13. Hong CM, Wagner S (2000) Inkjet printed copper source/drain metallization for amorphous silicon thin-film transistors. IEEE Electron Device Lett 21(8):384–386

    Article  CAS  Google Scholar 

  14. Wang Z, Ida T, Sakaue H, Shingubara S, Takahagi T (2003) Electroless plating of copper on metal-nitride diffusion barriers initiated by displacement plating. Electrochem Solid-State Lett 6(3):C38–C41

    Article  CAS  Google Scholar 

  15. Chu SZ, Sakairi M, Takahashi H (2000) Copper electroless plating at selected areas on aluminum with pulsed Nd-YAG laser. J Electrochem Soc 147(4):1423–1434

    Article  CAS  Google Scholar 

  16. http://www.secfinishes.co.uk

  17. Laptev VI, Khlyap H (2008) High-effective solar energy conversion: thermodynamics, crystallography and clusters. In: Carson JA (ed) Solar cell research progress. Nova, New York, pp 181–204

    Google Scholar 

  18. Qi W, Li Y, Yan X, Rathi M, Ropp M, Galipeau D, Jiang J (2008) Organic photovoltaic cells made from sandwich-type rare earth phthalocyaninato double and triple deckers. Appl Phys Lett 93(7):073303-1–073303-3

    Google Scholar 

  19. Zatirostami A (2011) Analysis parameters and waste output in nano structured solar cells. J Appl Sci Res 7(11):389

    Google Scholar 

  20. Kuznetsov AS, Tikhomirov VK, Shestakov MV, Moshchalkov VV (2013) Ag nanocluster functionalized glasses for efficient photonic conversion in light sources, solar cells and flexible screen monitors. Nanoscale 5:10065–10075

    Article  CAS  Google Scholar 

  21. Zhang D et al (2013) Al-TiO2 composite modified single-layer graphene as an efficient transparent cathode for organic solar cells. NanoLetters 7(2):1740–1747

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Laptev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Laptev, V., Khlyap, H. (2015). Characterization of Metallic Micro(Nano)cluster-Based Contacts for High-Effective Photovoltaic Devices. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_49-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15207-3_49-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15207-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics