Skip to main content

Plasmonic Nanostructured Supports for Spectro-Electrochemistry of Enzymes on Electrodes

  • Living reference work entry
  • First Online:
  • 369 Accesses

Abstract

Nanoscaled noble metals exhibit unique optical properties. One of these is the ability to create localised surface plasmon resonances upon light illumination, which makes it possible to study adsorbed molecules via surface enhanced spectroscopy. Silver and gold nanostructured electrodes with plasmonic properties can be created via electrochemical roughening or electro deposition methods. For studying enzyme/electrode systems the metal surface has to be functionalised with a biocompatible surface layer. Once the electrode is incorporated in an electrochemical cell the system can be studied by spectro-electrochemistry. With this combinational approach catalytic efficiency can be tested via electrochemistry while the structural state of the enzyme is probed via surface enhanced Raman spectroscopy. Several techniques will be presented in this book chapter to create plasmonic electrode systems via electrochemical methods with defined optical and chemical properties. A focus will be given on the formation of hybrid electrode systems that make it possible to study enzyme/electrode interactions also on non plasmonic interfaces. Furthermore spectro-electrochemical investigations on several enzyme/electrode systems are discussed. It is shown how the combination of electrochemistry with spectroscopy can be used to get mechanistic insight into the functionality of enzymes on surfaces. This information can then be used for rational design of biosensors and biofuel cells.

This is a preview of subscription content, log in via an institution.

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  2. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611

    Article  CAS  Google Scholar 

  3. McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–11285

    Article  CAS  Google Scholar 

  4. Wouters D, Schubert US (2004) Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devices. Angew Chem Int Ed 43:2480–2495

    Article  CAS  Google Scholar 

  5. Siebert F, Hildebrandt P (2008) Vibrational spectroscopy in life science. Wiley-VCH, Weinheim

    Google Scholar 

  6. Scheller F, Lisdat F, Wollenberger U (2005) Application of electrically contacted enzymes for biosensors. In: Willner I, Katz E (eds) Bioelectronics. Wiley-VCH, Weinheim, pp 99–126

    Chapter  Google Scholar 

  7. Cammack R, Frey M, Robson R (2001) Hydrogen as a fuel: learning from nature. Taylor & Francis, London

    Book  Google Scholar 

  8. Reisner E, Fontecilla-Camps JC, Armstrong FA (2009) Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem Commun 2009:550–552

    Article  Google Scholar 

  9. Sarauli D, Riedel M, Wettstein C, Hahn R, Stiba K, Wollenberger U, Leimkuhler S, Schmuki P, Lisdat F (2012) Semimetallic TiO2 nanotubes: new interfaces for bioelectrochemical enzymatic catalysis. J Mater Chem 22:4615–4618

    Article  CAS  Google Scholar 

  10. Garrett RM, Bellissimo DB, Rajagopalan KV (1995) Molecular-cloning of human liver sulfite oxidase. Biochim Biophys Acta Gene Struct Expr 1262:147–149

    Article  Google Scholar 

  11. Frielingsdorf S, Schubert T, Pohlmann A, Lenz O, Friedrich B (2011) A trimeric supercomplex of the oxygen-tolerant membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha H16. Biochemistry 50:10836–43. doi:10.1021/bi201594m

    Article  CAS  Google Scholar 

  12. Tian ZQ, Ren B, Wu DY (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106:9463–9483

    Article  CAS  Google Scholar 

  13. Sanchez-Gil JA, Garcia-Ramos JV (1998) Calculations of the direct electromagnetic enhancement in surface enhanced Raman scattering on random self-affine fractal metal surfaces. J Chem Phys 108:317–325

    Article  CAS  Google Scholar 

  14. Murgida DH, Hildebrandt P (2001) Active-site structure and dynamics of cytochrome c immobilized on self-assembled monolayers – a time-resolved surface enhanced resonance Raman spectroscopic study. Angew Chem Int Ed 40:728–731

    Article  CAS  Google Scholar 

  15. Sivanesan A, Kozuch J, Ly HK, Kalaivani G, Fischer A, Weidinger IM (2012) Tailored silica coated Ag nanoparticles for non-invasive surface enhanced Raman spectroscopy of biomolecular targets. RSC Adv 2:805–808

    Article  CAS  Google Scholar 

  16. Sivanesan A, Kalaivani G, Fischer A, Stiba K, Leimkuhler S, Weidinger IM (2012) Complementary surface-enhanced resonance Raman spectroscopic biodetection of mixed protein solutions by Chitosan- and silica-coated plasmon-tuned silver nanoparticles. Anal Chem 84:5759–5764

    Article  CAS  Google Scholar 

  17. Murgida DH, Hildebrandt P (2001) Heterogeneous electron transfer of cytochrome c on coated silver electrodes. Electric field effects on structure and redox potential. J Phys Chem B 105:1578–1586

    Article  CAS  Google Scholar 

  18. Sivanesan A, Ly HK, Kozuch J, Sezer M, Kuhlmann U, Fischer A, Weidinger IM (2011) Functionalized Ag nanoparticles with tunable optical properties for selective protein analysis. Chem Commun 47:3553–3555

    Article  CAS  Google Scholar 

  19. Compagnini G, Galati C, Pignataro S (1999) Distance dependence of surface enhanced Raman scattering probed by alkanethiol self-assembled monolayers. Phys Chem Chem Phys 1:2351–2353

    Article  CAS  Google Scholar 

  20. Feng JJ, Gernert U, Sezer M, Kuhlmann U, Murgida DH, David C, Richter M, Knorr A, Hildebrandt P, Weidinger IM (2009) Novel Au-Ag hybrid device for electrochemical SE(R)R spectroscopy in a wide potential and spectral range. Nano Lett 9:298–303

    Article  CAS  Google Scholar 

  21. David C, Richter M, Knorr A, Weidinger IM, Hildebrandt P (2010) Image dipoles approach to the local field enhancement in nanostructured Ag-Au hybrid devices. J Chem Phys 132:024712-1–024712-8

    Article  Google Scholar 

  22. Sezer M, Feng JJ, Ly HK, Shen YF, Nakanishi T, Kuhlmann U, Hildebrandt P, Mohwald H, Weidinger IM (2010) Multi-layer electron transfer across nanostructured Ag-SAM-Au-SAM junctions probed by surface enhanced Raman spectroscopy. Phys Chem Chem Phys 12:9822–9829

    Article  CAS  Google Scholar 

  23. Feng JJ, Gernert U, Hildebrandt P, Weidinger IM (2010) Induced SER-activity in nanostructured Ag-Silica-Au supports via long-range plasmon coupling. Adv Funct Mater 20:1954–1961

    Article  CAS  Google Scholar 

  24. Ung T, Liz-Marzan LM, Mulvaney P (1998) Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir 14:3740–3748

    Article  CAS  Google Scholar 

  25. Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  26. Ly HK, Kohler C, Fischer A, Kabuss J, Schlosser F, Schoth M, Knorr A, Weidinger IM (2012) Induced surface enhancement in coral Pt island films attached to nanostructured Ag electrodes. Langmuir 28:5819–5825

    Article  CAS  Google Scholar 

  27. Hu SZ, Morris IK, Singh JP, Smith KM, Spiro TG (1993) Complete assignment of cytochrome-C resonance Raman-spectra via enzymatic reconstitution with isotopically labeled hemes. J Am Chem Soc 115:12446–12458

    Article  CAS  Google Scholar 

  28. Sivanesan A, Ly KH, Adamkiewicz W, Stiba K, Leimkuhler S, Weidinger IM (2013) Tunable electric field enhancement and redox chemistry on TiO2 island films via covalent attachment to Ag or Au nanostructures. J Phys Chem C 117:11866–11872

    Article  CAS  Google Scholar 

  29. Vittadini A, Selloni A, Rotzinger FP, Gratzel M (2000) Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations. J Phys Chem B 104:1300–1306

    Article  CAS  Google Scholar 

  30. Petrone L, McQuillan AJ (2011) Alginate ion adsorption on a TiO2 particle film and interactions of adsorbed alginate with calcium ions investigated by Attenuated Total Reflection Infrared (ATR-IR) spectroscopy. Appl Spectrosc 65:1162–1169

    Article  Google Scholar 

  31. Yang LB, Jiang X, Ruan WD, Yang JX, Zhao B, Xu WQ, Lombardi JR (2009) Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites. J Phys Chem C 113:16226–16231

    Article  CAS  Google Scholar 

  32. Promdromidis MI, Florou AB, Tzouwara-Karayanni SM, Karayannis MI (2000) The importance of surface coverage in the electrochemical study of chemically modified electrodes. Electroanalysis 12:1495

    Google Scholar 

  33. Wackerbarth H, Klar U, Gunther W, Hildebrandt P (1999) Novel time-resolved surface-enhanced (resonance) Raman spectroscopic technique for studying the dynamics of interfacial processes: application to the electron transfer reaction of cytochrome c at a silver electrode. Appl Spectrosc 53:283–291

    Article  CAS  Google Scholar 

  34. Spricigo R, Dronov R, Lisdat F, Leimkuhler S, Scheller F, Wollenberger U (2009) Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolyte-containing multilayer. Anal Bioanal Chem 393:225–233

    Article  CAS  Google Scholar 

  35. Sezer M, Spricigo R, Utesch T, Millo D, Leimkuehler S, Mroginski MA, Wollenberger U, Hildebrandt P, Weidinger IM (2010) Redox properties and catalytic activity of surface-bound human sulfite oxidase studied by a combined surface enhanced resonance Raman spectroscopic and electrochemical approach. Phys Chem Chem Phys 12:7894–7903

    Article  CAS  Google Scholar 

  36. Vincent KA, Cracknel JA, Lenz O, Zebger I, Friedrich B, Armstrong FA (2005) Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. Proc Natl Acad Sci U S A 102:16951–16954

    Article  CAS  Google Scholar 

  37. Sezer M, Frielingsdorf S, Millo D, Heidary N, Utesch T, Mroginski MA, Friedrich B, Hildebrandt P, Zebger I, Weidinger IM (2011) Role of the HoxZ subunit in the electron transfer pathway of the membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha immobilized on electrodes. J Phys Chem B 115:10368–10374

    Article  CAS  Google Scholar 

  38. Feng JJ, Murgida DH, Utesch T, Mroginski MA, Hildebrandt P, Weidinger IM (2008) Gated electron transfer of yeast Iso-1 Cytochrome c on SAM-coated electrodes. J Phys Chem B 112:15202–15211.

    Google Scholar 

  39. Frasca S, von Graberg T, Feng JJ, Thomas A, Smarsly BM, Weidinger IM, Scheller FW, Hildebrandt P, Wollenberger U (2010) Mesoporous Indium Tin Oxide as a novel platform for bioelectronics. Chem Cat Chem 2(7):839–845

    Google Scholar 

Download references

Acknowledgments

Financial support by the DFG (Cluster of Excellence UniCat) and the Fonds der Chemie is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inez M. Weidinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Weidinger, I.M. (2015). Plasmonic Nanostructured Supports for Spectro-Electrochemistry of Enzymes on Electrodes. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15207-3_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15207-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics