Skip to main content

Self-Assembled Monolayers on Nano-structured Composites for Electrochemical Sensing Applications

  • Living reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

Self-assembled monolayer (SAM) represents one of the methods to precisely modify surface structures in the nanoscale dimension. It has opened up a new era of exploration and has a profound impact on sensors and biosensors due to its unique properties. Different self-assemblies will be considered in this chapter: SAM of metallic nanoparticles on polymeric film, SAM of surfactant on polymeric film, and SAM of S-containing compounds on nanometallic films. The main goal of this chapter is to present comprehensive collection of the recent achievements in this area. Several issues will be discussed including the morphology, sensitivity, selectivity, stability, and electrochemical properties of the sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Prakash S, Chakrabarty T, Singh AK, Shahi VK et al (2013) Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens Bioelectron 41:43–53

    CAS  Google Scholar 

  2. Bello A, Giannetto M, Mori G, Seeber R, Terzi F, Zanardi C et al (2007) Optimization of the DPV potential waveform for determination of ascorbic acid on PEDOT-modified electrodes. Sens Actuators B 121:430–435

    CAS  Google Scholar 

  3. Lupu S (2011) In situ electrochemical preparation and characterization of PEDOT–Prussian blue composite materials. Synth Met 161:384–390

    CAS  Google Scholar 

  4. Pigani L, Foca G, Ionescu K, Martina V, Ulrici A, Terzi F, Vignali M, Zanardi C, Seeber R et al (2008) Amperometric sensors based on poly (3,4-ethylenedioxythiophene)-modified electrodes: discrimination of white wines. Anal Chim Acta 614:213–222

    CAS  Google Scholar 

  5. Istamboulie G, Sikora T, Jubete E, Ochoteco E, Marty J, Noguer T et al (2010) Screen-printed poly(3,4-ethylenedioxythiophene) (PEDOT): a new electrochemical mediator for acetylcholinesterase-based biosensors. Talanta 82:957–961

    CAS  Google Scholar 

  6. Ricardo A, Alves G, Ghica ME, Brett CMA et al (2011) Preparation and characterisation of poly(3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxythiophene)/poly(neutral red) modified carbon film electrodes, and application as sensors for hydrogen peroxide. Electrochim Acta 56:3685–3692

    Google Scholar 

  7. Atta NF, Galal A, Khalifa F et al (2007) Electrodeposited metals at conducting polymer electrodes I – effect of particle size and film thickness on electrochemical response. Appl Surf Sci 253:4273–4282

    CAS  Google Scholar 

  8. Selvaganesh SV, Mathiyarasu J, Phani KLN, Yegnaraman V et al (2007) Chemical synthesis of PEDOT–Au nanocomposite. Nanoscale Res Lett 2:546–549

    CAS  Google Scholar 

  9. Harish S, Mathiyarasu J, Phani KLN et al (2009) Generation of gold–PEDOT nanostructures at an interface between two immiscible solvents. Mater Res Bull 44:1828–1833

    CAS  Google Scholar 

  10. Atta NF, El-Kady MF, Galal A et al (2010) Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N methylpyrrole)/Pd-nanoclusters sensor. Anal Biochem 400:78–88

    CAS  Google Scholar 

  11. Atta NF, El-Kady MF (2010) Novel poly(3-methylthiophene)/Pd, Pt nanoparticle sensor: synthesis, characterization and its application to the simultaneous analysis of dopamine and ascorbic acid in biological fluids. Sens Actuators B 145:299–310

    CAS  Google Scholar 

  12. Atta NF, El-Kady MF (2009) Poly(3-methylthiophene)/palladium sub-micro-modified sensor electrode. Part II: voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen. Talanta 79:639–647

    CAS  Google Scholar 

  13. Atta NF, El-Kady MF, Galal A et al (2009) Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol. Sens Actuators B 141:566–574

    CAS  Google Scholar 

  14. Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V et al (2008) PEDOT-Au nanocomposite film for electrochemical sensing. Mater Lett 62:571–573

    CAS  Google Scholar 

  15. Ferreira VC, Melato AI, Silva AF, Abrantes LM et al (2011) Attachment of noble metal nanoparticles to conducting polymers containing sulphur – preparation conditions for enhanced electrocatalytic activity. Electrochim Acta 56:3567–3574

    CAS  Google Scholar 

  16. Galal A, Atta NF, Darwish SA, Ali SM et al (2008) Electrodeposited metals at conducting polymer electrodes. II: study of the oxidation of methanol at poly(3-methylthiophene) modified with Pt–Pd Co-catalyst. Top Catal 47:73–83

    CAS  Google Scholar 

  17. Ferreira VC, Melato AI, Silva AF, Abrantes LM et al (2011) Conducting polymers with attached platinum nanoparticles towards the development of DNA biosensors. Electrochem Commun 13:993–996

    CAS  Google Scholar 

  18. Li J, Lin X (2007) Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sens Actuators B 124:486–493

    CAS  Google Scholar 

  19. Harish S, Mathiyarasu J, Phani KLN, Yegnaraman V et al (2008) PEDOT/palladium composite material: synthesis, characterization and application to simultaneous determination of dopamine and uric acid. J Appl Electrochem 38:1583–1588

    CAS  Google Scholar 

  20. Namboothiry MAG, Zimmerman T, Coldren FM, Liu J, Kim K, Carroll DL et al (2007) Electrochromic properties of conducting polymer metal nanoparticles composites. Synth Met 157:580–584

    CAS  Google Scholar 

  21. Kim BY, Cho MS, Kim YS, Son Y, Lee Y et al (2005) Fabrication and characterization of poly(3,4-ethylenedioxythiophene)/gold nanocomposite via in-situ redox cycle system. Synth Met 153:149–152

    CAS  Google Scholar 

  22. Manesh KM, Santhosh P, Gopalan A, Lee KP et al (2008) Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing. Talanta 75:1307–1314

    CAS  Google Scholar 

  23. Hsiao Y, Su W, Cheng J, Cheng S et al (2011) Electrochemical determination of cysteine based on conducting polymers/gold nanoparticles hybrid nanocomposites. Electrochim Acta 56:6887–6895

    CAS  Google Scholar 

  24. Zanardi C, Terzi F, Seeber R et al (2010) Composite electrode coatings in amperometric sensors. Effects of differently encapsulated gold nanoparticles in poly(3,4-ethylendioxythiophene) system. Sens Actuators B 148:277–282

    CAS  Google Scholar 

  25. Kumar SS, Mathiyarasu J, Phani KL et al (2005) Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine. J Electroanal Chem 578:95–103

    CAS  Google Scholar 

  26. Zanardi C, Terzi F, Pigani L, Heras A, Colina A, Lopez-Palacios J, Seeber R et al (2008) Development and characterisation of a novel composite electrode material consisting of poly(3,4-ethylenedioxythiophene) including Au nanoparticles. Electrochim Acta 53:3916–3923

    CAS  Google Scholar 

  27. Atta NF, Galal A, El-Ads EH et al (2012) Gold nanoparticles-coated poly(3,4-ethylene-dioxythiophene) for the selective determination of sub-nano concentrations of dopamine in presence of sodium dodecyl sulfate. Electrochim Acta 69:102–111

    CAS  Google Scholar 

  28. Gopalan AI, Lee K, Manesha KM, Santhosh P, Kim JH, Kang JS et al (2007) Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. Talanta 71:1774–1781

    CAS  Google Scholar 

  29. Bian X, Lu X, Jin E, Kong L, Zhang W, Wang C et al (2010) Fabrication of Pt/polypyrrole hybrid hollow microspheres and their application in electrochemical biosensing towards hydrogen peroxide. Talanta 81:813–818

    CAS  Google Scholar 

  30. Li J, Lin X (2007) Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid. Anal Chim Acta 596:222–230

    CAS  Google Scholar 

  31. Atta NF, Galal A, El-Ads EH et al (2012) A novel sensor of cysteine self-assembled monolayers over gold nanoparticles for the selective determination of epinephrine in presence of sodium dodecyl sulfate. Analyst 137:2658–2668

    CAS  Google Scholar 

  32. Atta NF, Galal A, Ahmed RA et al (2011) Poly(3,4-ethylene-dioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate. Bioelectrochemistry 80:132–141

    CAS  Google Scholar 

  33. Nagarajan R, Ruckenstein E (1991) Theory of surfactant self -assembly: a predictive molecular thermodynamic approach. Langmuir 7:2934–2969

    CAS  Google Scholar 

  34. Malmsten M (2002) Surfactant and polymer in drug delivery. Marcel Dekker, New York

    Google Scholar 

  35. Fridrikhsberg DA (1986) A course in colloid chemistry. Mir Publishers, Moscow

    Google Scholar 

  36. Vittal R, Gomathi H, Kim K et al (2006) Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Adv Colloid Interface Sci 119:55–68

    CAS  Google Scholar 

  37. Rosen MJ (1989) Surfactants and interfacial phenomena, 2nd edn. Wiley-Inter-Science, New York

    Google Scholar 

  38. Rusling JF (1991) Controlling electrochemical catalysis with surfactant microstructures. Acc Chem Res 24:75–81

    CAS  Google Scholar 

  39. Rusling JF (1994) Reactions and synthesis in surfactant systems. In: Bard AJ (ed) Electroanalytical chemistry, vol 18. Marcel Dekker, New York, p 267

    Google Scholar 

  40. Franklin TC, Mathew S (1989) Surfactants in solution. In: Mittall KL (ed) vol 2. Plenum, New York 267–286

    Google Scholar 

  41. Shinozuka N, Hayano S (1979) Solution chemistry of surfactants. In: Mitall KL (ed) vol 2. Plenum, New York

    Google Scholar 

  42. Diaz A, Kaifer AZ (1988) Self-assembled surfactant monolayers on electrode surfaces: the formation of surfactant viologen monolayers on Au and Pt. J Electroanal Chem 249:333–338

    CAS  Google Scholar 

  43. Widrig CA, Majda M (1989) Self-assembly of ordered monolayers and bilayers of N-methyl-N′-octadecylviologen amphiphile on gold surfaces in aqueous solutions. Langmuir 5:639

    Google Scholar 

  44. Long HCD, Donohue JJ, Buttry DA et al (1991) Ionic interactions in electroactive self-assembled monolayers of ferrocene species. Langmuir 7:2196–2202

    Google Scholar 

  45. Grant LM, Ducker WA (1997) Effect of substrate hydrophobicity on surface − aggregate geometry: zwitterionic and nonionic surfactants. Phys Chem B 101:5337–5345

    CAS  Google Scholar 

  46. Grant LM, Tiberg F, Duker WA et al (1998) Nanometer-scale organization of ethylene oxide surfactants on graphite, hydrophilic silica, and hydrophobic silica. J Phys Chem B 102:4288

    CAS  Google Scholar 

  47. Rennie AR, Lee EM, Simister EA, Thomas RK et al (1990) Structure of a cationic surfactant layer at the silica-water interface. Langmuir 6:1031–1034

    CAS  Google Scholar 

  48. Manne S, Gaub HE (1995) Molecular organization of surfactants at solid–liquid interfaces. Science 270:1480–1482

    CAS  Google Scholar 

  49. Schulz JC, Warr GG, Bulter PD, Hamilton WA et al (2001) Adsorbed layer structure of cationic surfactants on quartz. Phys Rev E 63:041604–041608

    CAS  Google Scholar 

  50. Facci JS (1987) Langmuir 3:525–529

    CAS  Google Scholar 

  51. Rusling JF, Shi CN, Gosser DK, Shukla SS et al (1988) Electrocatalytic reactions in organized assemblies I. Reduction of 4-bromobiphenyl in cationic and nonionic micelles. J Electroanal Chem 240:201–216

    CAS  Google Scholar 

  52. Rusling JF (1988) Electrocatalytic systems organized by micelles. Trends Anal Chem 7:266–269

    Google Scholar 

  53. Boussaad S, Tao NJ (1999) Electron transfer and adsorption of myoglobin on self-assembled surfactant films: an electrochemical tapping-mode AFM study. J Am Chem Soc 121:4510–4515

    CAS  Google Scholar 

  54. Liu JF, Min G, Duker WA et al (2001) AFM study of adsorption of cationic surfactants and cationic polyelectrolytes at the silica − water interface. Langmuir 17:4895

    CAS  Google Scholar 

  55. Retter U, Avranas A (2001) On anion-induced formation of hemicylindrical and hemispherical surface micelles of amphiphiles at the metal/electrolyte interface. Langmuir 17:5039–5044

    CAS  Google Scholar 

  56. Schulz JC, Warr GG (2002) Adsorbed layer structure of cationic and anionic surfactants on mineral oxide surfaces. Langmuir 18:3191–3197

    CAS  Google Scholar 

  57. Petri M, Kolb DM (2002) Nanostructuring of a sodium dodecyl sulfate-covered Au(111) electrode. Phys Chem 4:1211–1216

    CAS  Google Scholar 

  58. Wanless EJ, Duker WA (1996) Organization of sodium dodecyl sulfate at the graphite-solution interface. J Phys Chem 100:3207

    CAS  Google Scholar 

  59. Duker WA, Grant LM (1996) Effect of substrate hydrophobicity on surfactant surface − aggregate geometry. J Phys Chem 100:11507–11511

    Google Scholar 

  60. Wolgemuth JL, Workman RK, Manne S et al (2000) Surfactant aggregates at a flat, isotropic hydrophobic surface. Langmuir 16:3077–3081

    CAS  Google Scholar 

  61. Wanless EJ, Duker WA (1997) Weak influence of divalent ions on anionic surfactant surface-aggregation. Langmuir 13:1463–1474

    CAS  Google Scholar 

  62. Subramanian V, Duker WA (2000) Counterion effects on adsorbed micellar shape: experimental study of the role of polarizability and charge. Langmuir 16:4447–4454

    CAS  Google Scholar 

  63. Burgess I, Jeffrey CA, Cai X, Szymanski G, Lipkowski J et al (1999) Direct visualization of the potential controlled transformation of hemimicellar aggregates of dodecyl sulfate into a condensed monolayer at the electrode surface. Langmuir 15:2607–2616

    CAS  Google Scholar 

  64. Burgess I, Zamlynny V, Szymanski G, Lipkowski J et al (2001) Electrochemical and neutron reflectivity characterization of dodecyl sulfate adsorption and aggregation at the gold-water interface. Langmuir 17:3355–3367

    CAS  Google Scholar 

  65. Cholewa E, Burgess I, Kunze J et al (2004) Adsorption of N-dodecyl-N, N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS), a model zwitterionic surfactant, on the Au(111) electrode surface. J Solid State Electrochem 8:693–705

    CAS  Google Scholar 

  66. Chandar P, Somasundaram P, Turro NJ et al (1987) Fluorescence probe studies on the structure of the adsorbed layer of dodecyl sulfate at the alumina – water interface. Colloid Interface Sci 117:31–46

    CAS  Google Scholar 

  67. Manne S (1997) Visualizing self-assembly: force microscopy of ionic surfactant aggregates at solid–liquid interfaces. Progr Colloid Polym Sci 103:226–233

    CAS  Google Scholar 

  68. Gao Y, Du J, Gu T et al (1987) Hemimicelle formation of cationic surfactants at silica gel–water interface. Chem Soc Faraday Trans 1:2671–2679

    Google Scholar 

  69. Fan A, Somasundaram P, Turro N et al (1997) Adsorption of alkyltrimethylammonium bromides on negatively charged alumina. Langmuir 13:506–510

    CAS  Google Scholar 

  70. Sharma BJ, Basu S, Sharma MM et al (1996) Characterization of adsorbed ionic surfactants on a mica substrate. Langmuir 12:6506–6512

    CAS  Google Scholar 

  71. Singh PK, Adler JJ, Rabinovich YI, Moudgil BM et al (2001) Investigation of self-assembled surfactant structures at the solid–liquid interface using FT-IR/ATR. Langmuir 17(2):468–473

    CAS  Google Scholar 

  72. Li H, Tripp CP (2002) Spectroscopic identification and dynamics of adsorbed cetyltrimethylammonium bromide structures on TiO2 surfaces. Langmuir 18:9441–9446

    CAS  Google Scholar 

  73. Atkin R, Craig VSJ, Wanless EJ, Biggs S et al (2003) Mechanism of cationic surfactant adsorption at the solid-aqueous interface. Adv Colloid Interface Sci 103:219–304

    CAS  Google Scholar 

  74. Gonzalez-Macia L, Smyth MR, Morrinb A, Killard AJ et al (2011) Enhanced electrochemical reduction of hydrogen peroxide at metallic electrodes modified with surfactant and salt. Electrochim Acta 58:562–570

    CAS  Google Scholar 

  75. Muray RW (1992) Molecular design of electrode surfaces, vol 22. Wiley, New York, p 18

    Google Scholar 

  76. Goldenberg M (1997) Use of electrochemical techniques to study the Langmuir–Blodgett films of redox active materials. Russ Chem Rev 66:1033–1052

    Google Scholar 

  77. Gomez M, Li J, Kaifer AE et al (1991) Surfactant monolayers on electrode surfaces: self-assembly of a series of amphiphilic viologens on gold and tin oxide. Langmuir 7:1797–1806

    CAS  Google Scholar 

  78. Ulman A (1991) An introduction to ultrathin organic films from Langmuir-Blodgett to self-assembly. Academic, San Diego

    Google Scholar 

  79. Kaifer A, Kaifer MG (1999) Supramolecular electrochemistry. Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto

    Google Scholar 

  80. Rusling JF (1997) Molecular aspects of electron transfer at electrodes in micellar solutions. Colloids Surf 123:81–88

    Google Scholar 

  81. Mackay RA (1994) Electrochemistry in association colloids. Colloids Surf A 82:1–28

    CAS  Google Scholar 

  82. Rusling JF, Zhang H, Willis WS et al (1990) Properties of octadecylsilyl-coated electrodes in ionic micellar media. Anal Chim Acta 235:307–315

    CAS  Google Scholar 

  83. Guidelli R, Foresti ML (1977) The inhibitory effect of neutral organic surfactants upon simple electrode reactions. Electroanal Chem 77:73

    CAS  Google Scholar 

  84. Marino A, Brajter-Toth A (1993) Ionic surfactants as molecular spacers at graphite electrodes. Anal Chem 65:370–374

    CAS  Google Scholar 

  85. Lee KAB (1990) Electron transfer into self-assembling monolayers on gold electrodes. Langmuir 6:709–712

    CAS  Google Scholar 

  86. Chidsey CED (1991) Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science 251:919–922

    CAS  Google Scholar 

  87. Abbott AP, Gounili G, Bobbitt JM, Rusling JF, Kumosinski TF et al (1992) Electron transfer between amphiphilic ferrocenes and electrodes in cationic micellar solution. J Phys Chem 96:11091–11095

    CAS  Google Scholar 

  88. Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155–196

    CAS  Google Scholar 

  89. Georges J, Desmettre S (1984) Electrochemistry of ferrocene in anionic, cationic and nonionic micellar solutions. Effect of the micelle solubilization of the half-wave potentials. Electrochim Acta 29:521–525

    CAS  Google Scholar 

  90. Fendler JH (1982) Membrane mimetic chemistry. Wiley, New York

    Google Scholar 

  91. Hosseinzadeh R, Sabzi RE, Ghasemlu K et al (2009) Effect of cetyltrimethyl ammonium bromide (CTAB) in determination of dopamine and ascorbic acid using carbon paste electrode modified with tin hexacyanoferrate. Colloids Surf B 68:213–217

    CAS  Google Scholar 

  92. Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloid Interface Sci 110:75–95

    CAS  Google Scholar 

  93. Love LJC, Habarta JG, Dorsey JG et al (1984) The micelle-analytical chemistry interface. Anal Chem 56:1132A–1148A

    CAS  Google Scholar 

  94. Yang C, Sang Q, Zhang S, Huang W et al (2009) Voltammetric determination of estrone based on the enhancement effect of surfactant and a MWNT film electrode. Mater Sci Eng C 29:1741–1745

    CAS  Google Scholar 

  95. Hu C, Yang C, Hu S et al (2007) Hydrophobic adsorption of surfactants on water-soluble carbon nanotubes: a simple approach to improve sensitivity and antifouling capacity of carbon nanotubes-based electrochemical sensors. Electrochem Commun 9:128–134

    CAS  Google Scholar 

  96. Jain R, Mishra R, Dwivedi A et al (2009) Effect of surfactant on voltammetric behaviour of ornidazole. Colloids Surf A 337:74–79

    CAS  Google Scholar 

  97. Liu S, Li J, Zhang S, Zhao J et al (2005) Study on the adsorptive stripping voltammetric determination of trace cerium at a carbon paste electrode modified in situ with cetyltrimethylammonium bromide. Appl Surf Sci 252:2078

    CAS  Google Scholar 

  98. Svancara I, Foret P, Vytras K et al (2004) A study on the determination of chromium as chromate at a carbon paste electrode modified with surfactants. Talanta 64:844–852

    CAS  Google Scholar 

  99. Hoyer B, Jensen N (2004) Use of sodium dodecyl sulfate as an antifouling and homogenizing agent in the direct determination of heavy metals by anodic stripping voltammetry. Analyst 129:751–754

    CAS  Google Scholar 

  100. Dar RA, Brahman PK, Tiwari S, Pitre KS et al (2012) Electrochemical studies of quinine in surfactant media using hanging mercury drop electrode: a cyclic voltammetric study. Colloids Surf B 98:72–79

    CAS  Google Scholar 

  101. Atta NF, Galal A, Ahmed RA et al (2011) Simultaneous determination of catecholamines and serotonin on poly(3,4-ethylene dioxythiophene) modified Pt electrode in presence of sodium dodecyl sulfate. J Electrochem Soc 158(4):F52–F60

    CAS  Google Scholar 

  102. Atta NF, Galal A, Abu-Attia FM, Azab SM et al (2011) Characterization and electrochemical investigations of micellar/drug interactions. Electrochim Acta 56:2510–2517

    CAS  Google Scholar 

  103. Castilho M, Almeida LE, Tabak M, Mazo LH et al (2000) The electrochemical oxidation of the antioxidant drug dipyridamole at glassy carbon and graphite electrodes in micellar solutions. Electrochim Acta 46:67–75

    CAS  Google Scholar 

  104. Goyal RN, Jain N, Gurnani V et al (2001) Electrooxidation of chlorpromazine in aqueous and micellar media and spectroscopic studies of the derived cationic free radical and dication species. Monatsh Chem 132:575–585

    CAS  Google Scholar 

  105. Wang LH, Tseng SW (2001) Direct determination of d-panthenol and salt of pantothenic acid in cosmetic and pharmaceutical preparations by differential pulse voltammetry. Anal Chim Acta 432:39–48

    CAS  Google Scholar 

  106. Zhang S, Wu K, Hu S et al (2002) Voltammetric determination of diethylstilbestrol at carbon paste electrode using cetylpyridine bromide as medium. Talanta 58:747–754

    CAS  Google Scholar 

  107. Zhang S, Wu K, Hu S et al (2002) Carbon paste electrode based on surface activation for trace adriamycin determination by a preconcentration and voltammetric method. Anal Sci 18:1089–1092

    CAS  Google Scholar 

  108. Fernandez SG, Lopez MCB, Castanon MJL, Ordieres AJM, Blanco PT et al (2004) Adsorptive stripping voltammetry of rifamycins at unmodified and surfactant-modified carbon paste electrodes. Electroanalysis 16:1660–1666

    Google Scholar 

  109. Atta NF, Galal A, Ahmed RA et al (2011) Direct and simple electrochemical determination of morphine at PEDOT modified Pt electrode. Electroanalysis 23(3):737–746

    CAS  Google Scholar 

  110. Atta NF, Galal A, Ahmed RA et al (2011) Voltammetric behavior and determination of isoniazid using PEDOT electrode in presence of surface active agents. Int J Electrochem Sci 6:5097–5113

    CAS  Google Scholar 

  111. Brahman PK, Dar RA, Tiwari S, Pitre KS et al (2012) Voltammetric determination of anticancer drug flutamide in surfactant media at polymer film modified carbon paste electrode. Colloids Surf A 396:8–15

    CAS  Google Scholar 

  112. Li C, Ya Y, Zhan G et al (2010) Electrochemical investigation of tryptophan at gold nanoparticles modified electrode in the presence of sodium dodecylbenzene sulfonate. Colloids Surf B 76:340–345

    CAS  Google Scholar 

  113. Yang G, Qu X, Shen M, Wang C, Qu Q, Hu X et al (2007) Preparation of glassy carbon electrode modified by hydrophobic gold nanoparticles and its application for the determination of ethamsylate in the presence of cetyltrimethylammonium bromide. Sens Actuators B 128:258–265

    CAS  Google Scholar 

  114. Chaki NK, Vijayamohanan K (2002) Self-assembled monolayers as a tunable platform for biosensor applications. Biosens Bioelectron 17:1–12

    CAS  Google Scholar 

  115. Park B, Yoon D, Kim D et al (2011) Formation and modification of a binary self-assembled monolayer on a nano-structured gold electrode and its structural characterization by electrochemical impedance spectroscopy. J Electroanal Chem 661(2):329–335

    CAS  Google Scholar 

  116. Goldmann M, Davidovits JV, Silberzan P et al (1998) Kinetics of self-assembled silane monolayers at various temperatures: evidence of 2D foam. Thin Solid Films 327–329:166–171

    Google Scholar 

  117. Maksymovych P, Voznyy O, Dougherty DB, Sorescu DC, Yates JT Jr et al (2010) Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au(111). Prog Surf Sci 85:206–240

    CAS  Google Scholar 

  118. Campuzano S, Pedrero M, Montemayor C, Fatàs E, Pingarrón JM et al (2006) Characterization of alkanethiol-self-assembled monolayers-modified gold electrodes by electrochemical impedance spectroscopy. J Electroanal Chem 586:112–121

    CAS  Google Scholar 

  119. Ozoemena KI, Nyokong T (2006) Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes. Electrochim Acta 51:2669–2677

    CAS  Google Scholar 

  120. Xian Y, Wang H, Zhou Y, Pan D, Liu F, Jin L et al (2004) Preparation of l-Cys–Au colloid self-assembled nanoarray electrode based on the microporous aluminium anodic oxide film and its application to the measurement of dopamine. Electrochem Commun 6:1270–1275

    CAS  Google Scholar 

  121. Freire RS, Kubota LT (2004) Application of self-assembled monolayer-based electrode for voltammetric determination of copper. Electrochim Acta 49:3795–3800

    CAS  Google Scholar 

  122. Wang T, Bai Y, Luo H, Yan X, Zheng W et al (2011) Electrochemical characteristic of selenocysteine self-assembly monolayers at Au electrode. J Electroanal Chem 657:74–78

    CAS  Google Scholar 

  123. Desikan R, Lee I, Thundat T et al (2006) Effect of nanometer surface morphology on surface stress and adsorption kinetics of alkanethiol self-assembled monolayers. Ultramicroscopy 106:795–799

    CAS  Google Scholar 

  124. Krysiński P, Brzostowska-Smolska M (1998) Capacitance characteristics of self-assembled monolayers on gold electrode. Bioelectrochem Bioenerg 44:163–168

    Google Scholar 

  125. Sun J, Xu J, Fang H, Chen H et al (1997) Electrocatalytic oxidation of NADH with dopamine covalently bound to self-assembled cysteamine monolayers on gold electrode. Bioelectrochem Bioenerg 44:45–50

    CAS  Google Scholar 

  126. Zhao YQ, Luo HQ, Li NB et al (2009) Electrochemical characterization of in situ functionalized gold p-aminothiophenol self-assembled monolayer with 4-formylphenylboronic acid for recognition of sugars. Sens Actuators B 137:722–726

    CAS  Google Scholar 

  127. Kühnle A (2009) Self-assembly of organic molecules at metal surfaces. Curr Opin Colloid Interface Sci 14:157–168

    Google Scholar 

  128. Lang P, Nogues C (2008) Self-assembled alkanethiol monolayers on a Zn substrate: interface studied by XPS. Surf Sci 602:2137–2147

    CAS  Google Scholar 

  129. Zhang H, Li N, Zhu Z et al (2000) Electrocatalytic response of dopamine at a dl-homocysteine self-assembled gold electrode. Microchem J 64:277–282

    CAS  Google Scholar 

  130. Duwez A (2004) Exploiting electron spectroscopies to probe the structure and organization of self-assembled monolayers: a review. J Electron Spectrosc Relat Phenom 134:97–138

    CAS  Google Scholar 

  131. Briand E, Salmain M, Compére C, Pradier C et al (2006) Immobilization of protein a on SAMs for the elaboration of immunosensors. Colloids Surf B 53:215–224

    CAS  Google Scholar 

  132. Arezki B, Delcorte A, Bertrand P et al (2004) Emission processes of molecule–metal cluster ions from self-assembled monolayers of octanethiols on gold and silver. Appl Surf Sci 231:122–126

    Google Scholar 

  133. Saga Y, Tamiaki H (2004) Facile synthesis of chlorophyll analog possessing a disulfide bond and formation of self-assembled monolayer on gold surface. J Photochem Photobiol B 73:29–34

    CAS  Google Scholar 

  134. Behera S, Raj CR (2007) Self-assembled monolayers of thio-substituted nucleobases on gold electrode for the electroanalysis of NADH, ethanol and uric acid. Sens Actuators B 128:31–38

    CAS  Google Scholar 

  135. Zhang X, Wang S (2005) Determination of ethamsylate in the presence of catecholamines using 4-amino-2-mercaptopyrimidine self-assembled monolayer gold electrode. Sens Actuators B 104:29–34

    CAS  Google Scholar 

  136. Zhong X, Yuan R, Chai Y, Liu Y, Dai J, Tang D et al (2005) Glucose biosensor based on self-assembled gold nanoparticles and double-layer 2d-network (3-mercaptopropyl)-trimethoxysilane polymer onto gold substrate. Sens Actuators B 104:191–198

    CAS  Google Scholar 

  137. Raj CR, Ohsaka T (2003) Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. J Electroanal Chem 540:69–77

    Google Scholar 

  138. Li X, Wu J, Gao N, Shen G, Yu R et al (2006) Electrochemical performance of l-cysteine–gold particle nanocomposite electrode interface as applied to preparation of mediator-free enzymatic biosensors. Sens Actuators B 117:35–42

    CAS  Google Scholar 

  139. Liu Z, He Q, Xiao P, Liang B, Tan J, He N, Lu Z et al (2003) Self-assembly monolayer of mercaptopropyltrimethoxysilane for electroless deposition of Ag. Mater Chem Phys 82:301–305

    CAS  Google Scholar 

  140. Hoffmann H, Mayer U, Brunner H, Krischanitz A et al (1995) Reflection-absorption infrared spectroscopy of self-assembled monolayers on gold and silicon surfaces. Vib Spectrosc 8:151–157

    CAS  Google Scholar 

  141. Wang S, Du D (2002) Studies on the electrochemical behaviour of hydroquinone at l-cysteine self-assembled monolayers modified gold electrode. Sensors 2:41–49

    CAS  Google Scholar 

  142. Giz MJ, Duong B, Tao NJ et al (1999) In situ STM study of self-assembled mercaptopropionic acid monolayers for electrochemical detection of dopamine. J Electroanal Chem 465:72–79

    CAS  Google Scholar 

  143. Dodero G, Michieli LD, Cavalleri O, Rolandi R, Oliveri L, Daccà A, Parodi R et al (2000) l-Cysteine chemisorption on gold: an XPS and STM study. Colloids Surf A 175:121–128

    CAS  Google Scholar 

  144. Wang Q, Dong D, Li N et al (2001) Electrochemical response of dopamine at a penicillamine self-assembled gold electrode. Bioelectrochemistry 54:169–175

    CAS  Google Scholar 

  145. Wang Q, Jiang N, Li N et al (2001) Electrocatalytic response of dopamine at a thiolactic acid self-assembled gold electrode. Microchem J 68:77–85

    CAS  Google Scholar 

  146. Li J, Cheng G, Dong S et al (1997) Electrochemical study of the interfacial characteristics of redox-active viologen thiol self-assembled monolayers. Thin Solid Films 293:200–205

    CAS  Google Scholar 

  147. Łuczak T (2009) Comparison of electrochemical oxidation of epinephrine in the presence of interfering ascorbic and uric acids on gold electrodes modified with S-functionalized compounds and gold nanoparticles. Electrochim Acta 54:5863–5870

    Google Scholar 

  148. Shervedani RK, Bagherzadeh M, Mozaffari SA et al (2006) Determination of dopamine in the presence of high concentration of ascorbic acid by using gold cysteamine self-assembled monolayers as a nanosensor. Sens Actuators B 115:614–621

    CAS  Google Scholar 

  149. Zhuo Y, Yu R, Yuan R, Chai Y, Hong C et al (2009) Enhancement of carcinoembryonic antibody immobilization on gold electrode modified by gold nanoparticles and SiO2/Thionine nanocomposite. J Electroanal Chem 628:90–96

    CAS  Google Scholar 

  150. El-Deab MS, Ohsaka T (2003) Quasi-reversible two-electron reduction of oxygen at gold electrodes modified with a self-assembled submonolayer of cysteine. Electrochem Commun 5:214–219

    CAS  Google Scholar 

  151. Raj CR, Ohsaka T (2001) Electroanalysis of ascorbate and dopamine at a gold electrode modified with a positively charged self-assembled monolayer. J Electroanal Chem 496:44–49

    CAS  Google Scholar 

  152. Liu T, Li M, Li Q et al (2004) Electroanalysis of dopamine at a gold electrode modified with N-acetylcysteine self-assembled monolayer. Talanta 63:1053–1059

    CAS  Google Scholar 

  153. Dalmia A, Liu CC, Savinell RF et al (1997) Electrochemical behavior of gold electrodes modified with self-assembled monolayers with an acidic end group for selective determination of dopamine. J Electroanal Chem 430:205–214

    CAS  Google Scholar 

  154. Aryal S, Dharmaraj N, Bhattarai N, Kim CH, Kim HY et al (2006) Spectroscopic identification of S Au interaction in cysteine capped gold nanoparticles. Spectrochim Acta A 63:160–163

    Google Scholar 

  155. Liu S, Li X, Li Y, Li Y, Li J, Jiang L et al (2005) The influence of gold nanoparticle modified electrode on the structure of mercaptopropionic acid self-assembly monolayer. Electrochim Acta 51:427–431

    CAS  Google Scholar 

  156. Galal A, Atta NF, El-Ads EH et al (2012) Probing cysteine self-assembled monolayers over gold nanoparticles – towards selective electrochemical sensors. Talanta 93:264–273

    CAS  Google Scholar 

  157. Yang G, Yuan R, Chai Y et al (2008) A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/l-cysteine/gold colloid/nanoparticles Pt–chitosan composite film-modified platinum disk electrode. Colloids Surf B 61:93–100

    CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to recognize the Cairo University financial support that was achieved through the vice president of research funds’ office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Galal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Atta, N.F., El-Ads, E.H., Galal, A. (2015). Self-Assembled Monolayers on Nano-structured Composites for Electrochemical Sensing Applications. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15207-3_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15207-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics