Skip to main content

Nanostructured Hybrid Graphene-Conducting Polymers for Electrochemical Supercapacitor Electrodes

  • Living reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

Recently, advanced nanohybrid electrodes based on graphene-conducting polymers have shown a rapid growth in electrochemical energy storage (EES) systems, such as fuel cells, batteries, and supercapacitors. The supercapacitors are unique among the EES systems due to their long cycle life, high power density, and environmental compatibility. The mitigation of the drawbacks of electrode materials for supercapacitor applications, such as low energy density and fast self-discharge due to leakage current, is the focus of extensive research at the present time. Transition metal oxides (ruthenium oxides, manganese oxide, etc.) and conducting polymers (polyaniline, polypyrrole, and polythiophene) have been studied extensively with carbon-based materials as nanocomposites to address some of these issues related to supercapacitors. In the manuscript, we present the applications of (G)-CPs nanocomposite materials, such as G-polyanilines (G-PANIs), G-poly(pyrrole) (G-PPY), G-poly(hexylthiophene) (G-PHTh), and G-poly(3–4 ethylenedioxythiophene) (G-PEDOT), as supercapacitor electrodes. The G-PANIs, G-PPY, G-PHTh, and G-PEDOT electrode materials were synthesized chemically using the oxidative polymerization method and characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscope (FTIR), thermo gravimetric analysis (TGA), and Raman spectroscope techniques. The electrochemical behavior of various G-CP electrode materials for supercapacitor applications have been understood using cyclic voltammetry, charging–discharging, and electrochemical impedance spectroscopy techniques. The studied G-CP-based nanocomposite electrode-based supercapacitors hold great promise for the use in future commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. New York Kluwer Academic/Plenum Publishers

    Google Scholar 

  2. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  3. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  4. Burke AF (2007) Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc IEEE 95:806–820

    Article  Google Scholar 

  5. Prashanth J, Manivannan A, Kumta PN (2010) Advancing the supercapacitor materials and technology frontier for improving power quality. Electrochem Soc Interface 57–62

    Google Scholar 

  6. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  7. Rolison DR, Nazar LF (2011) Electrochemical energy storage to power the 21st century. MRS Bull 36:486–493

    Article  CAS  Google Scholar 

  8. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  9. Jayalakshmi M, Balasubramanian K (2008) Simple capacitors to supercapacitors – an overview. Int J Electrochem Sci 3:1196–1217

    CAS  Google Scholar 

  10. Arbizzani C, Mastragostino M, Soavi F (2001) New trends in electrochemical supercapacitors. J Power Sources 100:164–170

    Article  CAS  Google Scholar 

  11. Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8:1805–1834

    Article  CAS  Google Scholar 

  12. Algharaibeh Z, Liu X, Pickup PG (2009) An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor. J Power Sources 187:640–643

    Article  CAS  Google Scholar 

  13. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196:5990–5996

    Article  CAS  Google Scholar 

  14. Da-Wei Wang, Feng Li, Jinping Zhao, Wencai Ren, Zhi-Gang Chen, Jun Tan, Zhong-Shuai Wu, Ian Gentle, Gao Qing Lu, Hui-Ming Cheng (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752

    Google Scholar 

  15. Kumar NA, Choi H-J, Shin YR, Chang DW, Dai L, Baek J-B (2012) Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6:1715–1723

    Article  CAS  Google Scholar 

  16. Aaron D, Yu A (2011) Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene. Can J Chem Eng 89:1342–1357

    Article  Google Scholar 

  17. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  18. Xia H, Shirley Y, Meng B, Guoliang Y, Chong Cui, Li Luc (2012) A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem Solid-State Lett 15:A60–A63

    Google Scholar 

  19. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  20. Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos EL, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196:4102–4108

    Google Scholar 

  21. Yu A, Chabot V, Zhang J (2013) Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications, 1st edn, Electrochemical energy storage and conversion. CRC Press, Boca Raton

    Google Scholar 

  22. Chen Y, Zhang X, Zhang H, Sun X, Zhang D, Ma Y (2012) High-performance supercapacitors based on a graphene–activated carbon composite prepared by chemical activation. RSC Adv 2:7747–7753

    Article  CAS  Google Scholar 

  23. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene & CNT composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13:17615–17624

    Article  CAS  Google Scholar 

  24. Oh J, Kozlov ME, Novitski DM, Baughman RH (2010) Preparation and characterization of electrochemical supercapacitors based on SWNT/PPy nanocomposites. In: 2010 10th IEEE conference on nanotechnology (IEEE-NANO). Presented at the 2010 10th IEEE conference on nanotechnology (IEEE-NANO), pp 499–502. Seoul, Korea

    Google Scholar 

  25. Sharma AK 1, Sharma Y, Malhotra R, Sharma JK (2012) Solvent tuned PANI-CNT composites as advanced electrode materials for supercapacitor application. Adv Materials Lett 3:82–86

    Google Scholar 

  26. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

  27. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2:2164–2170

    Article  CAS  Google Scholar 

  28. Alvi F, Ram MK, Basnayaka PA, Stefanakos E, Goswami Y, Kumar A (2011) Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim Acta 56:9406–9412

    Article  CAS  Google Scholar 

  29. Bose S, Kim NH, Kuila T, Lau K, Lee JH (2011) Electrochemical performance of a graphene–polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology 22:295202

    Article  Google Scholar 

  30. Chang H-H, Chang C-K, Tsai Y-C, Liao C-S (2012) Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon 50:2331–2336

    Article  CAS  Google Scholar 

  31. Zhangpeng Li ab, Yongjuan Mi ab, Xiaohong Liu a, Sheng Liu ab, Shengrong Yang, Jinqing Wang (2011) Flexible graphene /MnO2 composite papers for supercapacitor electrodes. J Mater Chem 21:14706–14711

    Google Scholar 

  32. Khomenko V, Raymundo-Piñero E, Frackowiak E, Béguin F (2006) High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl Phys A 82:567–573

    Article  CAS  Google Scholar 

  33. Kurzweil P, Chwistek M (2008) Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products. J Power Sources 176:555–567

    Article  CAS  Google Scholar 

  34. Ruiz V, Huynh T, Sivakkumar SR, Pandolfo AG (2012) Ionic liquid–solvent mixtures as supercapacitor electrolytes for extreme temperature operation. RSC Adv 2:5591–5598

    Article  CAS  Google Scholar 

  35. Balducci A, Dugas R, Taberna PL, Simon P, Plée D, Mastragostino M, Passerini S (2007) High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 165:922–927

    Article  CAS  Google Scholar 

  36. Noorden ZA, Sugawara S, Matsumoto S (2012) Electrical properties of hydrocarbon-derived electrolytes for supercapacitors. IEEJ Trans Electr Electron Eng 7:S25–S31

    Article  CAS  Google Scholar 

  37. Yang X, Zhang F, Zhang L, Zhang T, Huang Y, Chen Y (2013) A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications. Adv Funct Mater 23:3353–3360

    Article  CAS  Google Scholar 

  38. Sivaraman P, Thakur A, Kushwaha RK, Ratna D, Samui AB (2006) Poly(3-methyl thiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte. Electrochem Solid-State Lett 9:A435–A438

    Article  CAS  Google Scholar 

  39. Basnayaka PA, Ram MK, Stefanakos L, Kumar A (2013) High performance graphene-poly (o-anisidine) nanocomposite for supercapacitor applications. Mater Chem Phys 141:263–271

    Article  CAS  Google Scholar 

  40. Hasik M, Drelinkiewicz A, Wenda E, Paluszkiewicz C, Quillard S (2001) FTIR spectroscopic investigations of polyaniline derivatives–palladium systems. J Mol Struct 596:89–99

    Article  CAS  Google Scholar 

  41. Basnayaka PA, Ram MK, Stefanakos EK, Kumar A (2013) Supercapacitors based on graphene–polyaniline derivative nanocomposite electrode materials. Electrochim Acta 92:376–382

    Article  CAS  Google Scholar 

  42. Wei Y, Hsueh KF (1989) Thermal analysis of chemically synthesized polyaniline and effects of thermal aging on conductivity. J Polymer Sci Part A Polymer Chem 27:4351–4363

    Article  CAS  Google Scholar 

  43. Yue J, Epstein AJ (1990) Synthesis of self-doped conducting polyaniline. J Am Chem Soc 112:2800–2801

    Article  CAS  Google Scholar 

  44. Alvi F, Ram MK, Basnayaka P, Stefanakos E, Goswami Y, Hoff A, Kumar A (2011) Electrochemical supercapacitors based on graphene-conducting polythiophenes nanocomposite. ECS Trans 35:167–174

    Article  CAS  Google Scholar 

  45. Liu S, Liu X, Li Z, Yang S, Wang J (2011) Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors. New J Chem 35:369–374

    Article  CAS  Google Scholar 

  46. Basnayaka PA, Ram MK, Stefanakos L, Kumar A (2013) Graphene/polypyrrole nanocomposite as electrochemical supercapacitor electrode: electrochemical impedance studies. Graphene 2:81–87

    Article  CAS  Google Scholar 

  47. Daniel V (1967) Dielectric Relaxation, Academic Press, London and New York

    Google Scholar 

  48. Basnayaka PA (2013) Development of nanostructured graphene/Conducting polymer composite materials for supercapacitor applications, graduate theses and dissertations

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the Nanotechnology Research and Education Center (NREC) and Clean Energy Research Center (CERC) at the University of South Florida in the characterization of the G-CP nanocomposites. The internal grant (USF01 TPA 18326 211200 000000 0080042) from the Office of Research, University of South Florida, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punya A. Basnayaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Basnayaka, P.A., Ram, M.K., Stefanakos, E.K., Kumar, A. (2015). Nanostructured Hybrid Graphene-Conducting Polymers for Electrochemical Supercapacitor Electrodes. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15207-3_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15207-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics