Skip to main content

Implementation of Nanostructured Catalysts in the Electrochemical Promotion of Catalysis

  • Living reference work entry
  • First Online:
  • 459 Accesses

Abstract

In the last 30 years, electrochemical promotion of catalysis (EPOC), also referred to as the non-Faradaic electrochemical modification of catalytic activity (NEMCA), has been extensively studied by research groups due to its ability to considerably enhance catalytic activity of heterogeneous catalysts. Application of a very small electrical stimulus to a catalyst-working electrode results in the modification of its electronic properties due to the controlled in situ addition or removal of the ionic species. Modification of the electronic properties alters the adsorption strength of the reaction components resulting in a distinct change in catalytic performance. Throughout the years, it has been shown that this phenomenon can be applied to various types of reactions, solid electrolytes, and conductive catalysts. Recent studies have been focused on developing these catalytic systems toward a more practical application. One aspect in regard to this includes introducing nanostructured catalysts in the form of nanoparticles or nano-thin films as the working electrode to lower manufacturing costs or with the goal of applying EPOC to commercial highly dispersed catalysts. This involves the synthesis of new nano-sized catalysts as well as altering the electrochemical cell design. A review of the current progress (from 2005 up to date) and challenges encountered in EPOC with nanoparticle catalysts using various ionic conducting ceramic and polymer supports will be discussed.

This is a preview of subscription content, log in via an institution.

References

  1. Dumesic JA, Huber GW, Boudart M (2008) Introduction. In: Ertl G (ed) Handbook of heterogenous catalysis, 2nd edn. Wiley-VCH, Weinheim/Chichester, pp 1–15

    Google Scholar 

  2. Mattox DM (1998) Introduction. In: Handbook of physical vapor deposition, Film formation, adhesion, surface preparation and contamination control. Noyes Publications, Westwood, pp 29–55

    Google Scholar 

  3. Fee M, Ntais S, Weck A, Baranova EA (2014) Electrochemical behavior of silver thin films interfaced with yttria-stabilized zirconia. J Solid State Electrochem 18:2267–2277

    Google Scholar 

  4. Junes AC, Hitchman ML (2009) Chapter 1 Overview of Chemical Deposition Vapor Deposition In: Chemical vapour deposition precursors, processes and applications. Royal Society of Chemistry, Cambridge, UK, pp 1–36

    Google Scholar 

  5. Oh T, Haile SM (2015) Electrochemical behavor of thin-film Sm-doped ceria: insights from the point-contact configuration. Phys Chem Chem Phys 17:13501–13511

    Google Scholar 

  6. Pinna N, Knez M (2011) Atomic lay deposition of nanostructured materials. Wiley-VCH Verlag & Co, Weinheim, Germany

    Google Scholar 

  7. Mamun MA, Gu D, Baumgart H, Elmustafa AA (2015) Nanomechanical properties of platinum thin films synthesized by atomic layer deposition. Sur Coat Tech 265:185–190

    Google Scholar 

  8. Li W, Comotti M, Schuth F (2006) Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition–precipitation or impregnation. J Catal 237:190–196

    CAS  Google Scholar 

  9. Alcala M, Real C (2006) Synthesis based on the wet impregnation method and characterization of iron and iron oxide-silica nanocomposites. Solid State Ion 177:955–960

    CAS  Google Scholar 

  10. Mitsui T, Tsutsui K, Matsui T et al (2008) Support effect on complete oxidation of volatile organic compounds over Ru catalysts. Appl Catal B Environ 81:56–63

    CAS  Google Scholar 

  11. Fortunato MA, Aubert D, Capdeillayre C et al (2011) Dispersion measurement of platinum supported on yttria-stabilised zirconia by pulse H2 chemisorption. Appl Catal A Gen 403:18–24

    CAS  Google Scholar 

  12. Fortunateo MA, Princivalle A, Capdeillayre et al (2014) Role of Lattice Oxygen in the Propane Combustion Over Pt/Yttria-Stabilized Zirconia: Isotopic Studies. Top Catal 57:1277–1286

    Google Scholar 

  13. Toledo-Antonio JA, Ángeles-Chávez C, Cortés-Jácome MA et al (2012) Highly dispersed Pt–Ir nanoparticles on titania nanotubes. Appl Catal A Gen 437–438:155–165

    Google Scholar 

  14. Radnik J, Wilde L, Schneider M et al (2006) Influence of the precipitation agent in the deposition-precipitation on the formation and properties of Au nanoparticles supported on Al2O3. J Phys Chem B 110:23688–23693

    CAS  Google Scholar 

  15. Sandoval A, Gómez-Cortés A, Zanella R et al (2007) Gold nanoparticles: support effects for the WGS reaction. J Mol Catal A Chem 278:200–208

    CAS  Google Scholar 

  16. Sandoval A, Aguilar A, Louis C et al (2011) Bimetallic Au–Ag/TiO2 catalyst prepared by deposition–precipitation: high activity and stability in CO oxidation. J Catal 281:40–49

    CAS  Google Scholar 

  17. Qian K, Luo L, Bao H et al (2013) Catalytically active structures of SiO2-supported Au nanoparticles in low-temperature CO oxidation. Catal Sci Technol 3:679–687

    CAS  Google Scholar 

  18. Bokhimi X, Zanella R, Maturano V, Morales A (2013) Nanocrystalline Ag, and Au–Ag alloys supported on titania for CO oxidation reaction. Mater Chem Phys 138:490–499

    CAS  Google Scholar 

  19. Liang H, Raitano JM, He G et al (2011) Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth. J Mater Sci 47:299–307

    Google Scholar 

  20. Petcharoen K, Sirivat A (2012) Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater Sci Eng B 177:421–427

    CAS  Google Scholar 

  21. Kumar AP, Kumar BP, Kumar ABVK et al (2013) Preparation of palladium nanoparticles on alumina surface by chemical co-precipitation method and catalytic applications. Appl Surf Sci 265:500–509

    CAS  Google Scholar 

  22. Sharifi I, Shokrollahi H (2013) Structural, magnetic and mössbauer evaluation of Mn substituted Co–Zn ferrite nanoparticles synthesized by co-precipitation. J Magn Magn Mater 334:36–40

    CAS  Google Scholar 

  23. Wang S, Yang H, Feng L et al (2013) A simple and inexpensive synthesis route for LiFePO4/C nanoparticles by co-precipitation. J Power Sources 233:43–46

    CAS  Google Scholar 

  24. Fernandes DM, Silva R, Hechenleitner AAW et al (2009) Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide. Mater Chem Phys 115:110–115

    CAS  Google Scholar 

  25. Gopalan EV, Joy PA, Al-Omari IA et al (2009) On the structural, magnetic and electrical properties of sol–gel derived nanosized cobalt ferrite. J Alloys Compd 485:711–717

    CAS  Google Scholar 

  26. Aziz M, Saber Abbas S, Wan Baharom WR (2013) Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Mater Lett 91:31–34

    CAS  Google Scholar 

  27. Batoo KM, El-sadek M-SA (2013) Electrical and magnetic transport properties of Ni–Cu–Mg ferrite nanoparticles prepared by sol–gel method. J Alloys Compd 566:112–119

    CAS  Google Scholar 

  28. Liu C, Wu X, Klemmer T et al (2004) Polyol process synthesis of monodispersed FePt nanoparticles. J Phys Chem B 108:6121–6123

    CAS  Google Scholar 

  29. Bock C, Paquet C, Couillard M et al (2004) Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J Am Chem Soc 126:8028–8037

    CAS  Google Scholar 

  30. Wiley B, Herricks T, Sun Y, Xia Y (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4:1733–1739

    CAS  Google Scholar 

  31. Herricks T, Chen J, Xia Y (2004) Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Lett 4:2367–2371

    CAS  Google Scholar 

  32. Baranova EA, Bock C, Ilin D et al (2006) Infrared spectroscopy on size-controlled synthesized Pt-based nano-catalysts. Surf Sci 600:3502–3511

    CAS  Google Scholar 

  33. Park BK, Jeong S, Kim D et al (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311:417–424

    CAS  Google Scholar 

  34. Baranova EA, Le Page Y, Ilin D et al (2009) Size and composition for 1–5nm Ø PtRu alloy nano-particles from Cu Kα X-ray patterns. J Alloys Compd 471:387–394

    CAS  Google Scholar 

  35. Baranova EA, Amir T, Mercier PHJ et al (2010) Single-step polyol synthesis of alloy Pt7Sn3 versus bi-phase Pt/SnOx nano-catalysts of controlled size for ethanol electro-oxidation. J Appl Electrochem 40:1767–1777

    CAS  Google Scholar 

  36. Isaifan RJ, Dole HAE, Obeid E et al (2011) Catalytic CO oxidation over Pt nanoparticles prepared from the polyol reduction method supported on yttria-stabilized zirconia. Electrocatal 5, ECS Trans 35:43–57

    CAS  Google Scholar 

  37. Isaifan RJ, Ntais S, Coulliard M, Baranova EA (2015) Size-dependent activity of Pt/yttria-stabilized zirconia catalyst for ethylene and carbon monoxide oxidation in oxygen-free gas environment. J Catal 324:32–40

    Google Scholar 

  38. Isaifan RJ, Baranova EA (2015) Effect of ionically conductive supports on the catalytic activity of platinum and ruthenium nanoparticles for ethylene complete oxidation. Catal Today 241:107–113

    Google Scholar 

  39. Ntais S, Isaifan RJ, Baranova EA (2014) An x-ray photoelectron spectroscopy study of platinum nanoparticles on yttria-stabilized zirconia ionic support: Insight into metal support interaction. Mat Chem Phys 148:673–679

    Google Scholar 

  40. Dole HAE, Safady LF, Ntais S et al (2014) Electrochemically enhanced metal-support interaction of highly-dispersed Ru nanoparticles with a CeO2 support. J Catal 318:85–94

    Google Scholar 

  41. Overbury SH, Ortiz-soto L, Zhu H et al (2004) Comparison of Au catalysts supported on mesoporous titania and silica: investigation of Au particle size effects and metal-support interactions. Catal Lett 95:99–106

    CAS  Google Scholar 

  42. Wang Z, Li B, Chen M et al (2010) Size and support effects for CO oxidation on supported Pd catalysts. Sci China Chem 53:2047–2056

    CAS  Google Scholar 

  43. Kimura K, Einaga H, Teraoka Y (2011) Preparation of highly dispersed platinum catalysts on various oxides by using polymer-protected nanoparticles. Catal Today 164:88–91

    CAS  Google Scholar 

  44. Vayenas CG, Bebelis S, Ladas S (1990) Dependence of catalytic rates on catalyst work function. Nature 343:625–627

    CAS  Google Scholar 

  45. Vayenas CG, Bebelis S, Pliangos C et al (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion, and metal-support interactions. Kluwer Academic/Plenum, New York

    Google Scholar 

  46. Vayenas C, Brosda S, Pliangos C (2001) Rules and mathematical modeling of electrochemical and chemical promotion 1. Reaction classification and promotional rules. J Catal 203:329–350

    CAS  Google Scholar 

  47. Brosda S, Vayenas CG (2002) Rules and mathematical modeling of electrochemical and classical promotion 2. Modeling. J Catal 208:38–53

    CAS  Google Scholar 

  48. Brosda S, Vayenas C, Wei J (2006) Rules of chemical promotion. Appl Catal B Environ 68:109–124

    CAS  Google Scholar 

  49. Van Santen RA (1991) Chemical basis of metal catalyst promotion. Surf Sci 251(252):6–11

    Google Scholar 

  50. Ertl G, Lee SB, Weiss M (1982) Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces. Surf Sci 114:527–545

    CAS  Google Scholar 

  51. Bécue T, Davis RJ, Garces JM (1998) Effect of cationic promoters on the kinetics of ammonia synthesis catalyzed by ruthenium supported on zeolite X. J Catal 179:129–137

    Google Scholar 

  52. Shekhah O, Ranke W, Schlogl R (2004) Styrene synthesis: in situ characterization and reactivity studies of unpromoted and potassium-promoted iron oxide model catalysts. J Catal 225:56–68

    CAS  Google Scholar 

  53. Zhu XM, Schön M, Bartmann U et al (2004) The dehydrogenation of ethylbenzene to styrene over a potassium-promoted iron oxide-based catalyst: a transient kinetic study. Appl Catal A Gen 266:99–108

    CAS  Google Scholar 

  54. Yentekakis IV, Lambert RM, Tikhov MS et al (1998) Promotion by sodium in emission control catalysis: a kinetic and spectroscopic study of the Pd- catalyzed reduction of NO by propene. J Catal 176:82–92

    CAS  Google Scholar 

  55. Yentekakis I, Konsolakis M, Lambert R et al (1999) Extraordinarily effective promotion by sodium in emission control catalysis: NO reduction by propene over Na-promoted Pt/γ-Al2O3. Appl Catal B Environ 22:123–133

    CAS  Google Scholar 

  56. Konsolakis M, Macleod N, Isaac J et al (2000) Strong promotion by Na of Pt/γ-Al2O3 catalysts operated under simulated exhaust conditions. J Catal 193:330–337

    CAS  Google Scholar 

  57. Pliangos C, Raptis C, Badas T et al (2000) Electrochemical promotion of a classically promoted Rh catalyst for the reduction of NO. Electrochim Acta 46:331–339

    CAS  Google Scholar 

  58. Ibrahim N, Poulidi D, Metcalfe IS (2013) The role of sodium surface species on electrochemical promotion of catalysis in a Pt/YSZ system: the case of ethylene oxidation. J Catal 303:100–109

    CAS  Google Scholar 

  59. Özbek MO, van Santen RA (2013) The mechanism of ethylene epoxidation catalysis. Catal Lett 143:131–141

    Google Scholar 

  60. Konsolakis M, Yentekakis IV (2001) The reduction of NO by propene over Ba-promoted Pt/γ-Al2O3 catalysts. J Catal 198:142–150. doi:10.1006/jcat.2000.3123

    CAS  Google Scholar 

  61. Hereijgers BPC, Weckhuysen BM (2009) Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides. ChemSusChem 2:743–748

    CAS  Google Scholar 

  62. Nagaraju P, Lingaiah N, Sai Prasad PS et al (2008) Preparation, characterization and catalytic properties of promoted vanadium phosphate catalysts. Catal Commun 9:2449–2454

    CAS  Google Scholar 

  63. Rodriguez P, Kwon Y, Koper MTM (2012) The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat Chem 4:177–182

    CAS  Google Scholar 

  64. Tong YJ (2012) Unconventional promoters of catalytic activity in electrocatalysis. Chem Soc Rev 41:8195–8209

    CAS  Google Scholar 

  65. Schwab GM, Block J, Muller W, Schultze D (1957) Zur Natur der katalytischen Verstärker-Wirkung, Naturwissenschaften 44:582–584

    Google Scholar 

  66. Schwab GM, Block J, Schultze D (1958) Kontaktkatalytische Verstärkung durch dotierte Träger. Angew Chem 71:101–104

    Google Scholar 

  67. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100:170–175

    CAS  Google Scholar 

  68. Lewera A, Timperman L, Roguska A, Alonso-Vante N (2011) Metal-support interactions between nanosized Pt and metal oxides (WO3 and TiO2) studied using X-ray photoelectron spectroscopy. J Phys Chem C 115:20153–20159

    CAS  Google Scholar 

  69. Jin M, Park J-N, Shon JK et al (2012) Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides. Catal Today 185:183–190

    CAS  Google Scholar 

  70. Metcalfe IS, Sundaresan S (1988) Oxygen transfer between metals and oxygen-ion conducting supports. AIChE J 34:195–208

    CAS  Google Scholar 

  71. Dow W-P, Huang T-J (1994) Effects of oxygen vacancy of yttria-stabilized zirconia support on carbon monoxide oxidation over copper catalyst. J Catal 147:322–332

    CAS  Google Scholar 

  72. Dow W-P, Wang Y-P, Huang T-J (1996) Yttria-stabilized zirconia supported copper oxide catalyst I. Effect of oxygen vacancy of support on copper oxide reduction. J Catal 160:155–170

    CAS  Google Scholar 

  73. Dow W-P, Huang T-J (1996) Yttria-stabilized zirconia supported copper oxide catalyst II. Effect of oxygen vacancy of support on catalytic activity for CO oxidation. J Catal 160:171–182

    CAS  Google Scholar 

  74. Isaifan RJ, Dole HAE, Obeid E et al (2012) Metal-support interaction of Pt nanoparticles with ionically and non-ionically conductive supports for CO oxidation. Electrochem Solid State Lett 15:E14

    CAS  Google Scholar 

  75. Isaifan RJ, Baranova EA (2013) Catalytic electrooxidation of volatile organic compounds by oxygen-ion conducting ceramics in oxygen-free gas environment. Electrochem Commun 27:164–167

    CAS  Google Scholar 

  76. Park JB, Graciani J, Evans J et al (2009) High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level. Proc Natl Acad Sci U S A 106:4975–4980

    CAS  Google Scholar 

  77. Jiménez-Borja C, Matei F, Dorado F, Valverde JL (2012) Characterization of Pd catalyst-electrodes deposited on YSZ: influence of the preparation technique and the presence of a ceria interlayer. Appl Surf Sci 261:671–678

    Google Scholar 

  78. Dole HAE, Isaifan RJ, Sapountzi FM et al (2013) Low temperature toluene oxidation over Pt nanoparticles supported on yttria stabilized-zirconia. Catal Lett 143:996–1002

    CAS  Google Scholar 

  79. Toshima N (2010) Chapter 17: Inorganic nanoparticles for catalysis. In: Altavilla C, Ciliberto E (eds) Inorganic nanoparticles: synthesis, applications, and perspectives. CRC Press, Boca Raton, pp 475–505

    Google Scholar 

  80. Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20:389–394

    CAS  Google Scholar 

  81. Vernoux P, Lizarraga L, Tsampas MN et al (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113:8192–8260

    Google Scholar 

  82. Sato H (1977) Some theoretical aspects of solid electrolytes. In: Geller S (ed) Solid electrolytes. Springer, Berlin/Heidelberg, pp 3–39

    Google Scholar 

  83. Bagotsky VS (2006) Nonaqueous electrolytes. In: Fundamentals of electrochemistry, 2nd edn. Wiley, Hoboken, pp 127–137

    Google Scholar 

  84. Heyne L (1977) Electrochemistry of mixed ionic-electronic conductors. In: Geller S (ed) Solid electrolytes. Springer, Berlin/Heidelberg, pp 169–221

    Google Scholar 

  85. Stimming U, Hengyong T, Bagotsky VS (2006) Solid-state electrochemistry. In: Fundamentals of electrochemistry, 2nd edn. Wiley, Hoboken, pp 419–447

    Google Scholar 

  86. Chadwick AV, Savin SLP (2009) Ion-conducting nanocrystals: theory, methods, and applications. In: Kharton VV (ed) Solid state electrochemistry I: fundamentals, materials and their applications. Wiley-VCH Verlag GmbH/Betz-Druck GmbH, Weinheim, pp 79–132

    Google Scholar 

  87. Vernoux P, Guth M, Li X (2009) Ionically conducting ceramics as alternative catalyst supports. Electrochem Solid State Lett 12:E9–E11

    CAS  Google Scholar 

  88. Stoukides M, Vayenas C (1981) The effect of electrochemical oxygen pumping on the rate and selectivity of ethylene oxidation on polycrystalline. J Catal 70:137–146

    CAS  Google Scholar 

  89. Yentekakis IV, Vayenas CG (1988) The effect of electrochemical oxygen pumping on the steady-state and oscillatory behavior of CO oxidation on polycrystalline Pt. J Catal 111:170–188

    CAS  Google Scholar 

  90. Bebelis S, Vayenas CG (1989) Non-Faradaic electrochemical modification. J Catal 146:125–146

    Google Scholar 

  91. Cavalca CA, Larson G, Vayenas CG, Haller GL (1993) Electrochemical modification of CH3OH oxidation selectivity and activity on a Pt single-pellet catalytic reactor. J Phys Chem 97:6115–6119

    CAS  Google Scholar 

  92. Neophytides SG, Vayenas CG (1995) TPD and cyclic voltammetric investigation of the origin of electrochemical promotion in catalysis. J Phys Chem 99:17063–17067

    CAS  Google Scholar 

  93. Pacchioni G, Illas F, Neophytides S, Vayenas CG (1996) Quantum-chemical study of electrochemical promotion in catalysis. J Phys Chem 100:16653–16661

    CAS  Google Scholar 

  94. Vayenas CG, Bebelis S (1999) Electrochemical promotion of heterogeneous catalysis. Catal Today 51:581–594

    CAS  Google Scholar 

  95. Vayenas C, Brosda S, Pliangos C (2003) The double-layer approach to promotion, electrocatalysis, electrochemical promotion, and metal–support interactions. J Catal 216:487–504

    CAS  Google Scholar 

  96. Piram A, Li X, Gaillard F et al (2005) Electrochemical promotion of environmental catalysis. Ionics 11:327–332

    CAS  Google Scholar 

  97. De Lucas-Consuegra A, Dorado F, Jiménez-Borja C, Valverde JL (2008) Electrochemical promotion of Pt impregnated catalyst for the treatment of automotive exhaust emissions. J Appl Electrochem 38:1151–1157

    Google Scholar 

  98. Toghan A, Rösken LM, Imbihl R (2010) The electrochemical promotion of ethylene oxidation at a Pt/YSZ catalyst. Chemphyschem 11:1452–1459

    CAS  Google Scholar 

  99. Pliangos C, Raptis C, Bolzonella I et al (2002) Electrochemical promotion of conventional and bipolar reactor configurations for NO reduction. Ionics 8:372–382

    CAS  Google Scholar 

  100. Tsiplakides D, Balomenou S (2009) Milestones and perspectives in electrochemically promoted catalysis. Catal Today 146:312–318

    CAS  Google Scholar 

  101. Vayenas CG, Ladas S, Bebelis S et al (1994) Electrochemical promotion in catalysis: non-Faradaic electrochemical modification of catalytic activity. Electrochim Acta 39:1849–1855

    CAS  Google Scholar 

  102. Vayenas CG, Yentekakis IV, Bebelis S, Neophytides SG (1995) In-situ controlled promotion of catalyst surfaces via solid electrolytes – the NEMCA effect. Phys Chem Chem Phys 99:1393–1401

    CAS  Google Scholar 

  103. Vayenas G, Bebelis SI (1997) Electrochemical promotion. Solid State Ion 94:267–277

    CAS  Google Scholar 

  104. Metcalfe I (2001) Electrochemical promotion of catalysis I: thermodynamic considerations. J Catal 199:247–258

    CAS  Google Scholar 

  105. Metcalfe I (2001) Electrochemical promotion of catalysis II: the role of a stable spillover species and prediction of reaction rate modification. J Catal 199:259–272

    CAS  Google Scholar 

  106. Katsaounis A (2008) Electrochemical promotion of catalysis (EPOC) perspectives for application to gas emissions treatment. Glob Nest J 10:226–236

    Google Scholar 

  107. Tsiplakides D, Balomenou S (2008) Electrochemical promoted catalysis: towards practical utilization. Chem Ind Chem Eng Q 14:97–105

    CAS  Google Scholar 

  108. Vayenas CG, Koutsodontis CG (2008) Non-Faradaic electrochemical activation of catalysis. J Chem Phys 128:182506

    Google Scholar 

  109. Anastasijevic NA (2009) NEMCA – from discovery to technology. Catal Today 146:308–311

    CAS  Google Scholar 

  110. Imbihl R (2010) Electrochemical promotion of catalytic reactions. Prog Surf Sci 85:241–278

    CAS  Google Scholar 

  111. Katsaounis A (2010) Recent developments and trends in the electrochemical promotion of catalysis (EPOC). J Appl Electrochem 40:885–902

    CAS  Google Scholar 

  112. Garagounis I, Kyriakou V, Anagnostou C et al (2011) Solid electrolytes: applications in heterogeneous catalysis and chemical cogeneration. Indust Eng Chem Res 50:431–472

    CAS  Google Scholar 

  113. Vayenas CG (2011) Bridging electrochemistry and heterogeneous catalysis. J Solid State Electrochem 15:1425–1435

    CAS  Google Scholar 

  114. Vayenas CG (1993) Electrochemical activation of catalysed reactions. In: Joyner RW, van Santen RA (eds) Elementary reaction steps in heterogeneous catalysis, 398th edn. Springer, Dordrecht, pp 73–92

    Google Scholar 

  115. Foti G, Bolzonella I, Comninellis C (2003) Electrochemical promotion of catalysis. In: Vayenas CG, Conway BE, White RE (eds) Modern aspects of electrochemistry, 36th edn. Plenum Press, New York, pp 191–254

    Google Scholar 

  116. Lambert RM (2003) Electrochemical and chemical promotion by alkalis with metal films and nanoparticles. In: Wieckowski A, Savinova ER, Vayenas CG (eds) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker, New York, pp 583–612

    Google Scholar 

  117. Vayenas CG, Pliangos C, Brosda S, Tsiplakides D (2003) Promotion, electrochemical promotion, and metal-support interactions: the unifying role of spillover. In: Wieckowski AER, Savinova ER, Vayenas CG (eds) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker, New York, pp 667–744

    Google Scholar 

  118. Jiménez-Borja C, de Lucas-Consuegra A, Valverde JL et al (2012) One of the recent discoveries in catalysis: the phenomenon of electrochemical promotion. In: Taylor JC (ed) Advances in chemistry research, 14th edn. Nova, New York, pp 99–132

    Google Scholar 

  119. Skriver HL, Rosengaard NM (1992) Surface energy and work function of elemental metals. Phys Rev B 46:7157–7168

    CAS  Google Scholar 

  120. Nicole J, Tsiplakides D, Wodiunig S, Comninellis C (1997) Activation of catalyst for gas-phase combustion by electrochemical pretreatment. J Electrochem Soc 144:L312–L314

    CAS  Google Scholar 

  121. Vayenas CG, Bebelis S, Neophytides S (1988) Non-Faradaic electrochemical modification of catalytic activity. J Phys Chem 92:5083–5085

    CAS  Google Scholar 

  122. Koutsodontis C, Katsaounis A, Figueroa JC et al (2006) The effect of catalyst film thickness on the electrochemical promotion of ethylene oxidation on Pt. Top Catal 39:97–100

    CAS  Google Scholar 

  123. Yentekakis IV, Bebelis S (1992) Study of the NEMCA effect in a single-pellet catalytic reactor. J Catal 137:278–283

    CAS  Google Scholar 

  124. Brosda S, Badas T, Vayenas CG (2011) Study of the mechanism of the electrochemical promotion of Rh/YSZ catalysts for C2H4 oxidation via AC impedance spectroscopy. Top Catal 54:708–717

    CAS  Google Scholar 

  125. Varkaraki E, Nicole J, Plattner E et al (1995) Electrochemical promotion of IrO2 catalyst for the gas phase combustion of ethylene. J Appl Electrochem 25:978–981

    CAS  Google Scholar 

  126. Nicole J, Comninellis C (1998) Electrochemical promotion of IrO2 catalyst activity for the gas phase combustion of ethylene. J Appl Electrochem 28:223–226

    CAS  Google Scholar 

  127. Tsiplakides D, Nicole J, Vayenas CG, Comninellis C (1998) Work function and catalytic activity measurements of an IrO2 film deposited on YSZ subjected to in situ electrochemical promotion. J Electrochem Soc 145:905–908

    CAS  Google Scholar 

  128. Kaloyannis AC, Pliangos CA, Tsiplakides DT et al (1995) Electrochemical promotion of catalyst surfaces deposited on ionic and mixed conductors. Ionics 1:414–420

    CAS  Google Scholar 

  129. Poulidi D, Castillo-del-Rio MA, Salar R et al (2003) Electrochemical promotion of catalysis using solid-state proton-conducting membranes. Solid State Ion 162–163:305–311

    Google Scholar 

  130. Poulidi D, Mather GC, Tabacaru CN et al (2009) Electrochemical promotion of a platinum catalyst supported on the high-temperature proton conductor La0.99Sr0.01NbO4−δ. Catal Today 146:279–284

    CAS  Google Scholar 

  131. Yentekakis IV, Moggridge G, Vayenas CG, Lambert RM (1994) In situ controlled promotion of catalyst surfaces via NEMCA: the effect of Na on the Pt-catalyzed CO qxidation. J Catal 146:292–305

    CAS  Google Scholar 

  132. Lambert RM, Harkness IR, Yentekakis IV, Vayenas CG (1995) Electrochemical promotion in emission control catalysis. Ionics 1:29–31

    CAS  Google Scholar 

  133. Dorado F, de Lucas-Consuegra A, Jiménez C, Valverde JL (2007) Influence of the reaction temperature on the electrochemical promoted catalytic behaviour of platinum impregnated catalysts for the reduction of nitrogen oxides under lean burn conditions. Appl Catal A Gen 321:86–92

    CAS  Google Scholar 

  134. Dorado F, de Lucas-Consuegra A, Vernoux P, Valverde JL (2007) Electrochemical promotion of platinum impregnated catalyst for the selective catalytic reduction of NO by propene in presence of oxygen. Appl Catal B Environ 73:42–50

    CAS  Google Scholar 

  135. De Lucas-Consuegra A, Dorado F, Valverde JL et al (2008) Electrochemical activation of Pt catalyst by potassium for low temperature CO deep oxidation. Catal Commun 9:17–20

    Google Scholar 

  136. Tsiplakides D, Neophytides SG, Enea O et al (1997) Nonfaradaic electrochemical modification of the catalytic activity of Pt-black electrodes deposited on nafion 117 solid polymer electrolytes. J Electrochem Soc 144:2072–2078

    CAS  Google Scholar 

  137. Marwood M, Vayenas CG (1998) Electrochemical promotion of a dispersed platinum catalyst. J Catal 178:429–440

    CAS  Google Scholar 

  138. Jiménez-Borja C, Delgado B, Díaz-Díaz LF et al (2012) Enhancing the combustion of natural gas by electrochemical promotion of catalysis. Electrochem Commun 23:9–12

    Google Scholar 

  139. Li N, Gaillard F (2009) Catalytic combustion of toluene over electrochemically promoted Ag catalyst. Appl Catal B Environ 88:152–159

    CAS  Google Scholar 

  140. Theleritis D, Souentie S, Siokou A et al (2012) Hydrogenation of CO2 over Ru/YSZ electropromoted catalysts. ACS Catal 2:770–780

    CAS  Google Scholar 

  141. Wodiunig S, Bokeloh F, Nicole J, Comninellis C (1999) Electrochemical promotion of RuO2 catalyst dispersed on an yttria-stabilized zirconia monolith. Electrochem Solid State Lett 2:281–283

    CAS  Google Scholar 

  142. Xia C, Hugentobler M, Li Y et al (2010) Electrochemical promotion of CO combustion over non-percolated Pt particles supported on YSZ using a novel bipolar configuration. Electrochem Commun 13:99–101

    Google Scholar 

  143. Xia C, Hugentobler M, Comninellis C, Harbich W (2010) Quantifying electrochemical promotion of induced bipolar Pt particles supported on YSZ. Electrochem Commun 12:1551–1554

    CAS  Google Scholar 

  144. Papaioannou EI, Souentie S, Sapountzi FM et al (2010) The role of TiO2 layers deposited on YSZ on the electrochemical promotion of C2H4 oxidation on Pt. J Appl Electrochem 40:1859–1865

    CAS  Google Scholar 

  145. Karoum R, Roche V, Pirovano C et al (2010) CGO-based electrochemical catalysts for low temperature combustion of propene. J Appl Electrochem 40:1867–1873

    CAS  Google Scholar 

  146. Souentie S, Lizarraga L, Papaioannou EI et al (2010) Permanent electrochemical promotion of C3H8 oxidation over thin sputtered Pt films. Electrochem Commun 12:1133–1135

    CAS  Google Scholar 

  147. Lizarraga L, Souentie S, Mazri L et al (2010) Investigation of the CO oxidation rate oscillations using electrochemical promotion of catalysis over sputtered-Pt films interfaced with YSZ. Electrochem Commun 12:1310–1313

    CAS  Google Scholar 

  148. Lizarraga L, Guth M, Billard A, Vernoux P (2010) Electrochemical catalysis for propane combustion using nanometric sputtered-deposited Pt films. Catal Today 157:61–65

    CAS  Google Scholar 

  149. Hammad A, Souentie S, Papaioannou EI et al (2011) Electrochemical promotion of the SO2 oxidation over thin Pt films interfaced with YSZ in a monolithic electropromoted reactor. Appl Catal B Environ 103:336–342

    CAS  Google Scholar 

  150. Baranova EA, Thursfield A, Brosda S et al (2005) Electrochemical promotion of ethylene oxidation over Rh catalyst thin films sputtered on YSZ and TiO2/YSZ supports. J Electrochem Soc 152:E40–E49

    CAS  Google Scholar 

  151. Balomenou S, Tsiplakides D, Katsaounis A et al (2004) Novel monolithic electrochemically promoted catalytic reactor for environmentally important reactions. Appl Catal B Environ 52:181–196

    CAS  Google Scholar 

  152. Balomenou S, Tsiplakides D, Katsaounis A et al (2006) Monolithic electrochemically promoted reactors: a step for the practical utilization of electrochemical promotion. Solid State Ion 177:2201–2204

    CAS  Google Scholar 

  153. Koutsodontis C, Hammad A, Lepage M et al (2008) Electrochemical promotion of NO reduction by C2H4 in excess O2 using a monolithic electropromoted reactor and Pt–Rh sputtered electrodes. Top Catal 50:192–199

    CAS  Google Scholar 

  154. Roche V, Revel R, Vernoux P (2010) Electrochemical promotion of YSZ monolith honeycomb for deep oxidation of methane. Catal Commun 11:1076–1080

    CAS  Google Scholar 

  155. Dole HAE, Safady LF, Ntais S et al (2014) Improved catalytic reactor for electrochemical promotion of highly dispersed Ru nanoparticles with CeO2 support. ECS Trans 61:65–74

    Google Scholar 

  156. Lintanf A (2008) Pt/YSZ electrochemical catalysts prepared by electrostatic spray deposition for selective catalytic reduction of NO by C3H6. Solid State Ion 178:1998–2008

    CAS  Google Scholar 

  157. Vayenas CG, Bebelis S, Yentekakis IV, Lintz H-G (1992) Non-Faradaic electrochemical modification of catalytic activity: a status report. Catal Today 11:303–442

    CAS  Google Scholar 

  158. Baranova EA, Thursfield A, Brosda S et al (2005) Electrochemically induced oscillations of C2H4 oxidation over thin sputtered Rh catalyst films. Catal Lett 105:15–21

    CAS  Google Scholar 

  159. Baranova EA, Fóti G, Jotterand H, Comninellis C (2007) Electrochemical modification of the catalytic activity of TiO2/YSZ supported rhodium films. Top Catal 44:355–360

    CAS  Google Scholar 

  160. Constantinou I, Archonta D, Brosda S et al (2007) Electrochemical promotion of NO reduction by C3H6 on Rh catalyst-electrode films supported on YSZ and on dispersed Rh/YSZ catalysts. J Catal 251:400–409

    CAS  Google Scholar 

  161. Jiménez-Borja C, Dorado F, de L -Consuegra A et al (2011) Electrochemical promotion of CH4 combustion over a Pd/CeO2-YSZ catalyst. Fuel Cells 11:131–139

    Google Scholar 

  162. Kambolis A, Lizarraga L, Tsampas MN et al (2012) Electrochemical promotion of catalysis with highly dispersed Pt nanoparticles. Electrochem Commun 19:5–8

    CAS  Google Scholar 

  163. Marwood M (1997) Electrochemical promotion of electronically isolated Pt catalysts on stabilized zirconia. J Catal 168:538–542

    CAS  Google Scholar 

  164. Balomenou S, Pitselis G, Polydoros D et al (2000) Electrochemical promotion of Pd, Fe and distributed Pt. Solid State Ion 137:857–862

    Google Scholar 

  165. Poulidi D, Mather G, Metcalfe I (2007) Wireless electrochemical modification of catalytic activity on a mixed protonic–electronic conductor. Solid State Ion 178:675–680

    CAS  Google Scholar 

  166. Poulidi D, Thursfield A, Metcalfe IS (2007) Electrochemical promotion of catalysis controlled by chemical potential difference across a mixed ionic-electronic conducting ceramic membrane – an example of wireless NEMCA. Top Catal 44:435–449

    CAS  Google Scholar 

  167. Poulidi D, Metcalfe IS (2008) Comparative studies between classic and wireless electrochemical promotion of a Pt catalyst for ethylene oxidation. J Appl Electrochem 38:1121–1126

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Baranova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Dole, H.A.E., Baranova, E.A. (2015). Implementation of Nanostructured Catalysts in the Electrochemical Promotion of Catalysis. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15207-3_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15207-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics