Skip to main content

Breccia

  • Reference work entry
  • First Online:
Encyclopedia of Lunar Science

Definition

A large proportion of the lunar sample suite is comprised of brecciated rocks, formed through impact bombardment and/or thermal weathering in the upper portion of the lunar surface. These rocks are composed of lithic and mineral clasts, glasses (volcanic or impact origin), and have a matrix ranging from clastic to glassy. The variety of distinct clasts controls the classification of these rocks as either monomict (one rock type), dimict (two rock types), or polymict (many rock types). The shape and morphology of breccia clastic components varies from angular to subrounded. Variation in the observable texture of a breccia occurs as a result of crater stratigraphy and morphology (where breccias are associated with a crater), but also as a result of the maturity of regolith, rapid variation in temperature, availability of lithic material, and proximity of lithic and suevitic ejecta. The lithological components of breccias are dependent on the rock type(s) present at the impact...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrell SO, Agrell JE, Arnold AR, Bristol CC (1973) Observations on glass from 15425, 15426, 15427. In: Chamberlain JW, Watkins C (eds) Lunar and planetary science conference IV. Lunar Science Institute, Houston

    Google Scholar 

  • Anders E, Ganapathy R, Krähenbühl U, Morgan JW (1973) Meteoritic material on the Moon. Moon 8:3–24

    Article  ADS  Google Scholar 

  • Arai T, Misawa K, Kojima H (2005) A new lunar meteorite MET 01210: mare breccia with a low-Ti ferrobasalt. In: Lunar and planetary science conference XXXVI, Houston

    Google Scholar 

  • Arai T, Takeda H, Yamaguchi A, Ohtake M (2008) A new model of lunar crust: asymmetry in crustal composition and evolution. Earth Planets Space 60(4):433–444

    Article  ADS  Google Scholar 

  • Arai T, Hawke BR, Giguere TA, Misawa K, Miyamoto M, Kojima H (2010) Antarctic lunar meteorites Yamato-793169, Asuka-881757, MIL 05035, and MET 01210 (YAMM): launch pairing and possible cryptomare origin. Geochim Cosmochim Acta 74:2231–2248

    Article  ADS  Google Scholar 

  • Artemieva N, Wünnemann K, Krien F, Reimold WU, Stöffler D (2013) Ries crater and suevite revisited – observations and modelling, part II: modeling. Meteorit Planet Sci 48:590–627

    Article  ADS  Google Scholar 

  • Barnes JJ, Tartèse R, Anand M, Mccubbin FM, Franchi IA, Starkey NA, Russell SS (2014) The origin of water in the primitive Moon as revealed by the lunar highlands samples. Earth Planet Sci Lett 390:244–252

    Article  ADS  Google Scholar 

  • Barnes JJ, Franchi IA, Mccubbin FM, Anand M (2019) Multiple reservoirs of volatiles in the Moon revealed by the isotopic composition of chlorine in lunar basalts. Geochim Cosmochim Acta 266:144–162

    Article  ADS  Google Scholar 

  • Bell AS, Shearer C, Demoor JM, Provencio P (2015) Using the sulfide replacement petrology in lunar breccia 67915 to construct a thermodynamic model of S-bearing fluid in the lunar crust. Geochim Cosmochim Acta 171:50–60

    Article  ADS  Google Scholar 

  • Besse S, Sunshine JM, Gaddis LR (2014) Volcanic glass signatures in new spectroscopy survey of newly proposed lunar pyroclastic deposits. J Geophys Res Planets 119(2):355–372

    Article  ADS  Google Scholar 

  • Bickel CE (1977) Petrology of 78155: an early, thermally metamorphosed polymict breccia. In: Lunar and planetary science conference

    Google Scholar 

  • Bickel CE, Warner JL (1978) Survey of lunar plutonic and granulitic lithic fragments. In: Lunar and planetary science conference

    Google Scholar 

  • Bischoff A, Horstmann M, Laubenstein M, Haberer S (2010) Asteroid 2008 TC3 – Almahata Sitta: not only a ureilitic meteorite, but a breccia containing many different achondritic and chondritic lithologies. In: Lunar and planetary science conference

    Google Scholar 

  • Blanchard DP, Budahn JR (1979) Remnants of the ancient lunar crust: clasts from consortium breccia 73255. In: 10th lunar and planetary science conference

    Google Scholar 

  • Blewett DT, Taylor GJ, Lucey PG, Hawke BR, Gillis J (1999) High-resolution, quantitative remote sensing of South Pole-Aitken Basin. In: Lunar and planetary science conference

    Google Scholar 

  • Bogard DD, Garrison DH, Shih CY, Nyquist LE (1994) 39Ar-40Ar dating of two lunar granites: the age of Copernicus. Geochim Cosmochim Acta 58(14):3093–3100

    Article  ADS  Google Scholar 

  • Boyce JW, Kanee SA, Mccubbin FM, Barnes JJ, Bricker H, Treiman AH (2018) Early loss, fractionation, and redistribution of chlorine in the Moon as revealed by the low-Ti lunar mare basalt suite. Earth Planet Sci Lett 500:205–214

    Article  ADS  Google Scholar 

  • Carter JL, Taylor HCJ, Padovani E (1973) Morphology and chemistry of particles from Apollo 17 soils 74220, 74241, 75081. Trans Am Geophys Union 54:582–584

    Google Scholar 

  • Černok A, White LF, Darling J, Dunlop J, Anand M (2019) Shock-induced microtextures in lunar apatite and merrillite. Meteorit Planet Sci 54(6):1262–1282

    Article  ADS  Google Scholar 

  • Chapman CR, Cohen BA, Grinspoon DH (2007) What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus 189:233–245

    Article  ADS  Google Scholar 

  • Cohen BA, Swindle TD, Kring DA (2005) Geochemistry and 40Ar-39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: implications for lunar bombardment history. Meteorit Planet Sci 40(5):755–777

    Article  ADS  Google Scholar 

  • Cushing JA, Taylor GJ, Norman MD, Keil K (1999) The granulitic impactite suite: impact melts and metamorphic breccias of the early lunar crust. Meteorit Planet Sci 34:185–195

    Article  ADS  Google Scholar 

  • Database, M. B (2021) The meteoritical bulletin database [Online]. The Meteoritical Society. https://www.lpi.usra.edu/meteor/

  • Day JMD (2020) Metal grains in lunar rocks as indicators of igneous and impact processes. Meteorit Planet Sci 55(8)

    Google Scholar 

  • Day JMD, Floss C, Taylor LA, Anand M, Patchen AD (2006) Evolved mare basalt magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogensis of Antarctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007. Geochim Cosmochim Acta 70:5957–5989

    Article  ADS  Google Scholar 

  • Day JMD, Brandon AD, Walker RJ (2016) Highly siderophile elements in Earth, Mars, the Moon, and asteroids. Rev Mineral Geochem 81(1):161–238

    Article  Google Scholar 

  • Delano JW (1986) Pristine lunar glasses: criteria, data, and implications. J Geophys Res 91(B4):201–213

    Article  Google Scholar 

  • Dressler BO, Reimold WU (2001) Terrestrial impact melt rocks and glasses. Earth-Sci Rev 56(1–4):205–285

    Article  ADS  Google Scholar 

  • Duncan AR, Grieve R a F, Weill DF (1975) The life and times of Big Bertha: lunar breccia 14321. Geochim Cosmochim Acta 39(3):265–273

    Article  ADS  Google Scholar 

  • Fagan AL, Joy KH, Bogard DD, Kring DA (2014a) Ages of globally distributed lunar palaeregoliths and soils from 3.9 Ga to the present. Earth Moon Planets 112:59–71

    Article  ADS  Google Scholar 

  • Fagan TJ, Kashima D, Wakabayashi Y, Suginohara A (2014b) Case study of magmatic differentiation trends on the Moon based on lunar meteorite Northwest Africa 773 and comparison with Apollo 15 quartz monzodiorite. Geochim Cosmochim Acta 133:97–127

    Article  ADS  Google Scholar 

  • Fischer-Gödde M, Becker H (2012) Osmium isotope and highly siderophile element constraints on ages and nature of meteoritic components in ancient lunar impact rocks. Geochim Cosmochim Acta 77:135–156

    Article  ADS  Google Scholar 

  • Fisher RV (1961) Proposed classification of volcaniclastic sediments and rocks. Bull Geol Soc Am 72:1409–1414

    Article  Google Scholar 

  • Fogel RA, Rutherford MC (1995) Magmatic volatiles in primitive lunar glasses: I. FTIR and EPMA analyses of Apollo 15 green and yellow glasses and revision of the volatile-assisted fire-fountain theory. Geochim Cosmochim Acta 59(1):201–215

    Article  ADS  Google Scholar 

  • Folk RL (1954) The distinction between grain size and mineral composition in sedimentary rock nomenclature. J Geol 62:344–359

    Article  ADS  Google Scholar 

  • Folk RL (1974) Petrology of sedimentary rocks. Hemphill Publishing, Austin

    Google Scholar 

  • Folk RL, Andrews PB, Lewis DW (1970) Detrital sedimentary rock classification and nomenclature for use in New Zealand. N Z J Geol Geophys 13:937–968

    Article  Google Scholar 

  • Fritz J, Greshake A, Fernandes VA (2017) Revising the shock classification of meteorites. Meteorit Planet Sci 52(6):1216–1232

    Article  ADS  Google Scholar 

  • Gaddis LR, Staid MI, Tyburczy JA, Hawke BR, Petro NE (2003) Compositional analyses of lunar pyroclastic deposits. Icarus 161(2):262–280

    Article  ADS  Google Scholar 

  • Gibson RL, Reimold WU (2000) Deeply exhumed impact structures: a case study of the Vredefort structure, South Africa. In: Gilmour L, Koeberl C (eds) Impacts and the early Earth. Springer, Berlin, pp 249–277

    Chapter  Google Scholar 

  • Gibson RL, Reimold WU, Ashley AJ, Koeberl C (2002) Metamorphism on the Moon: a terrestrial analogue in the Vredefort dome, South Africa? Geology 30(5):475–478

    Article  ADS  Google Scholar 

  • Glazner AF, Bartley JM, Law BS (2021) Immiscibility and the origin of ladder structures, mafic layering and schlieren in plutons. Geology 49:86–90

    Article  ADS  Google Scholar 

  • Gleißner P, Becker H (2017) Formation of Apollo 16 impactites and the composition of late accreted material: constraints from Os isotopes, highly siderophile elements and sulfur abundances. Geochim Cosmochim Acta 200:1–24

    Article  ADS  Google Scholar 

  • Gleißner P, Becker H (2020) New constraints on the formation of lunar mafic impact melt breccias from S-Se-Te and highly siderophile elements. Meteorit Planet Sci 55(9):2044–2065

    Article  ADS  Google Scholar 

  • Gnos E, Hofmann BA, Al-Kathiri A, Lorenzetti S, Eugster O, Whitehouse MJ, Villa IM, Jull AJT, Eikenberg J, Spettel B, Krähenbühl U, Franchi IA, Greenwood RC (2004) Pinpointing the source of a lunar meteorite: implications for the evolution of the Moon. Science 305(5684):657–659

    Article  ADS  Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nat Lett 435:466–469

    Article  ADS  Google Scholar 

  • Grieve RaF (2005) Impact Structures. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of geology. Academic, pp 277–285

    Chapter  Google Scholar 

  • Gross J, Treiman AH, Mercer CN (2014) Lunar feldspathic meteorites: constraints on the geology of the lunar highlands, and the origin of the lunar crust. Earth Planet Sci Lett 388:318–328

    Article  ADS  Google Scholar 

  • Gross J, Hilton A, Prissel TC, Setera JB, Korotev RL, Calzada-Diaz A (2020) Geochemistry and petrogenesis of Northwest Africa 10401: a new type of the Mg-suite rocks. J Geophys Res Planets 125(5):e2019JE006225

    Article  ADS  Google Scholar 

  • Gustafson JO, Bell JF, Gaddis LR, Hawke BR, Giguere TA (2012) Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera data. J Geophys Res Planets 120(3):570–587

    Google Scholar 

  • Hallsworth CR, Knox RWOB (1999) BGS rock classification scheme – volume 3 – Classification of sediments and sedimentary rocks. British Geological Survey Research report RR 99-03

    Google Scholar 

  • Hartmann WK, Morbidelli A (2020) Effects of early intense bombardment on megaregolith evolution and on lunar (and planetary) surface samples. Meteorit Planet Sci 55(11):2472–2492

    Article  ADS  Google Scholar 

  • Hartmann WK, Ryder G, Dones L, Grinspoon D (2000) The time-dependent intense bombardment of the primordial Earth/Moon system. In: Origin of the Earth and Moon. University of Arizona Press, pp 493–512

    Chapter  Google Scholar 

  • Haskin L, Warren PH (1991) Lunar chemistry. In: Heiken GH, Vaniman DT, French BM (eds) Lunar sourcebook: a user’s guide to the Moon. Cambridge University Press, Cambridge, pp 357–474

    Google Scholar 

  • Hayden TS, Barrett TJ, Zhao X, Degli-Alessandrini G, Anand M, Franchi IA (2021) Chlorine and hydrogen in brecciated lunar meteorites: implications for lunar volatile history. In: Lunar and planetary science conference

    Google Scholar 

  • Heiken GH, Mckay DS, Brown RW (1974) Lunar deposits of possible pyroclastic origin. Geochim Cosmochim Acta 38:1708–1718

    Article  ADS  Google Scholar 

  • Heiken G, Vaniman D, French BM (1991) Lunar sourcebook: a user’s guide to the Moon. Cambridge University Press, Cambridge

    Google Scholar 

  • Huber H, Warren PH (2005) MET 01210: another lunar mare meteorite (regolith breccia) with extensive pyroxene exsolution, and not part of the YQ launch pair. In: Lunar and planetary science conference XXXVI, Houston

    Google Scholar 

  • Hudgins JA, Spray JG, Kelley SP, Korotev RL, Sherlock SC (2008) A laser probe 40Ar/39Ar and INAA investigation of four Apollo granulitic breccias. Geochim Cosmochim Acta 72(23):5781–5798

    Article  ADS  Google Scholar 

  • Institute, L. a. P (2019) Lunar samples [Online]. https://www.lpi.usra.edu/lunar/samples/

  • Jolliff BL, Korotev RL, Haskin LA (1993) Lunar basaltic meteorites Yamato-793169 and Asuka-881757: samples of the same low-Ti mare-lava? In: 18th symposium of Antarctic meteorites

    Google Scholar 

  • Jolliff BL, Korotev RL, Zeigler RA, Foss C (2003) Northwest Africa 773: lunar mare breccia with a shallow-formed olivine-cumulate component, inferred very-low-Ti (VLT) heritage, and a KREEP connection. Geochim Cosmochim Acta 67:4857–4879

    Article  ADS  Google Scholar 

  • Jolliff BL, Zeigler RA, Korotev RL (2007) Compositional characteristics and petrogenetic relationships among the NWA 773 clan of lunar meteorites. In: 38th lunar and planetary science conference

    Google Scholar 

  • Jolliff BL, Korotev RL, Ziegler RA, Prettyman TH (2009) Connecting lunar meteorite Dhofar 961 to the South Pole-Aitken basin through Lunar Prospector gamma-ray data. In: 40th lunar and planetary science conference, The Woodlands, Houston

    Google Scholar 

  • Joy KH, Arai T (2013) Lunar meteorites: new insights into the geological history of the Moon. Astron Geophys 54(4):4–28

    Article  Google Scholar 

  • Joy KH, Crawford IA, Anand M, Greenwood RC, Franchi IA, Russell SS (2008) The petrology and geochemistry of Miller Range 05035: A new lunar gabbroic meteorite. Geochim Cosmochim Acta 72(15):3822–3844

    Article  ADS  Google Scholar 

  • Joy KH, Crawford IA, Russell SS, Kearsley AT (2010) Lunar meteorite regolith breccias: an in situ study of impact melt composition using LA-ICP-MS with implications for the composition of the lunar crust. Meteorit Planet Sci 45(6):917–946

    Article  ADS  Google Scholar 

  • Joy KH, Nemchin A, Grange M, Lapen TJ, Peslier AH, Ross DK, Zolensky ME, Kring DA (2014) Petrography, geochronology and source terrain characteristics of lunar meteorites Dhofar 925, 961 and Sayh al Uhaymir 449. Geochim Cosmochim Acta 144:299–325

    Article  ADS  Google Scholar 

  • Joy KH, Crawford IA, Curran NM, Zolensky M, Fagan AF, Kring DA (2016) The Moon: an archive of small body migration in the Solar System. Earth Moon Planet 118:133–158

    Article  ADS  Google Scholar 

  • Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylite breccias and granophyre. Earth Planet Sci Lett 144:369–388

    Article  ADS  Google Scholar 

  • Kenkmann T, Poelchau MH, Wulf G (2014) Structural geology of impact craters. J Struct Geol 62:156–182

    Article  ADS  Google Scholar 

  • Klima RL, Dyar MD, Pieters CM (2011) Near-infrared spectra of clinopyroxenes: effects of calcium content and crystal structure. Meteorit Planet Sci 46(3):379–395

    Article  ADS  Google Scholar 

  • Knauth PL (1994) Petrogenesis of chert. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica: physical behavior, geochemistry, and materials applications. De Gruyter, Berlin/Boston, pp 233–258

    Chapter  Google Scholar 

  • Korotev RL (2005) Lunar geochemistry as told by lunar meteorites. Geochemistry 65(4):297–346

    Article  Google Scholar 

  • Korotev RL (2021) List of lunar meteorites [Online]. http://meteorites.wustl.edu/lunar/moon_meteorites_list_alumina.htm

  • Korotev RL, Jolliff BL (2001) The curious case of the lunar magnesian granulitic breccias. In: Lunar and planetary science conference XXXII, Houston

    Google Scholar 

  • Korotev RL, Jolliff BL, Ziegler RA, Gillis JJ, Haskin LA (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim Cosmochim Acta 67(24):4895–4923

    Article  ADS  Google Scholar 

  • Korotev RL, Zeigler RA, Jolliff BL, Irvin AJ, Bunch TE (2009) Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron concentrations. Meteorit Planet Sci 44(9):1287–1322

    Article  ADS  Google Scholar 

  • Kring DA, Cohen BA (2002) Cataclysmic bombardment throughout the inner Solar System 3.9-4.0 Ga. J Geophys Res Planets 107(E2):4–10

    Article  Google Scholar 

  • Laznicka P (1988) Breccias and coarse fragmentites: petrology, environments, associations, ores. Elsevier Science

    Google Scholar 

  • Lindstrom MM, Lindstrom DJ (1986) Lunar granulites and their precursor anorthositic norites of the early lunar crust. J Geophys Res 91(B4):D263–D276

    Article  MathSciNet  Google Scholar 

  • Liu T, Michael G, Wünnemann K, Becker H, Oberst J (2020) Lunar megaregolith mixing by impacts: spatial diffusion of basin melt and its implications for sample interpretation. Icarus 339:113609

    Article  Google Scholar 

  • Lucey PG, Taylor GJ, Hawke BR, Spudis PD (1998) FeO and TiO2 concentrations in the South Pole-Aitken Basin: implications for mantle composition and basin formation. J Geophys Res 103(E2):3701–3708

    Article  ADS  Google Scholar 

  • Mckay DS, Heiken GH (1973) Petrography and scanning electron microscope study of Apollo 17 orange and black glass. Trans Am Geophys Union 54:599–600

    Google Scholar 

  • Mckay DS, Clanton US, Ladle G (1973) Scanning electron microscope study of Apollo 15 green glass. Geochim Cosmochim Acta Suppl 4(1):755–773

    Google Scholar 

  • Mckay DS, Bogard DD, Morris RV, Korotev RL, Johnson P, Wentworth SJ (1986) Apollo 16 regolith breccias: characterization and evidence for early formation in the mega-regolith. J Geophys Res 91(B4):D277–D303

    Article  Google Scholar 

  • Mckay DS, Heiken G, Basu A, Blanford G, Simon S, Reedy R, French BM, Papike J (1991) The lunar regolith. In: Heiken GH, Vaniman DT, French BM (eds) Lunar sourcebook: a user’s guide to the Moon. Cambridge University Press, Cambridge

    Google Scholar 

  • Meyer C (2003) The lunar petrographic education thin section set study guide. In: NASA (ed) Houston

    Google Scholar 

  • Meyer C (2012) Lunar sample compendium [Online]. Astromaterials Research & Exploration Science. https://curator.jsc.nasa.gov/lunar/lsc/index.cfm

  • Meyer Jr C, Brett R, Hubbard NJ, Morrison DA, Mckay DS, Aitken FK, Takeda H, Schonfeld E (1971) Mineralogy, chemistry, and origin of the KREEP component in soil samples from the Ocean of Storms. In: Lunar and planetary science conference

    Google Scholar 

  • Miyamoto M, Takeda H, Ishii T (1984) Mineralogical comparison and cooling history of lunar and chondritic vesicular melt breccias. J Geophys Res 89(B13):11581–11588

    Article  ADS  Google Scholar 

  • Molaro J, Byrne S (2012) Rates of temperature change of airless landscapes and implications for thermal stress weathering. J Geophys Res 117:E10011

    Article  ADS  Google Scholar 

  • Morbidelli A, Marchi S, Bottke WF, Kring DA (2012) A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet Sci Lett 355:144–151

    Article  ADS  Google Scholar 

  • Morbidelli A, Nesvorny D, Laurenz V, Marchi S, Rubie DC, Elkins-Tanton L, Wieczorek M, Jacobson S (2018) The timeline of the lunar bombardment: revisited. Icarus 305:262–276

    Article  ADS  Google Scholar 

  • Morgan JW, Higuchi H, Ganapathy R, Anders E (1975) Meteoritic material in four terrestrial meteorite craters. In: Lunar science conference, vol 7

    Google Scholar 

  • Moriarty DPI, Pieters CM (2016) South Pole-Aitken Basin as a probe to the lunar interior. In: 47th lunar and planetary science conference

    Google Scholar 

  • Naney MT, Crowl DM, Papike JJ (1976) The Apollo 16 drill core: statistical analysis of glass chemistry and the characterization of a High Alumina-Silica Poor (HASP) glass. In: Lunar and planetary science conference, Houston

    Google Scholar 

  • Nishiizumi K, Caffee MW, Jull AJT, Reedy RC (1996) Exposure history of lunar meteorites Queen Alexandra Range 93069 and 94269. Meteorit Planet Sci 31:893–896

    Article  ADS  Google Scholar 

  • Nishiizumi K, Hillegonds DJ, Welton KC (2006) Exposure and terrestrial histories of lunar meteorites LAP 02205/02224/02226/02436, MET 01210 and PCA 02007. In: Lunar and planetary science conference XXXVIII, Houston

    Google Scholar 

  • Norman MD (2009) The lunar cataclysm: reality or myth conception? Elements 5:23–28

    Article  Google Scholar 

  • Norman MD, Keil K, Griffin WL, Ryan CG (1995) Fragments of ancient lunar crust: petrology and geochemistry of ferroan noritic anorthosites from the Descartes region of the Moon. Geochim Cosmochim Acta 59(4):831–847

    Article  ADS  Google Scholar 

  • Norman MD, Duncan RA, Huard JJ (2006) Identifying impact events within the lunar cataclysm from 40Ar–39Ar ages and compositions of Apollo 16 impact melt rocks. Geochim Cosmochim Acta 70(24):6032–6049

    Article  ADS  Google Scholar 

  • Norman MD, Duncan RA, Huard JJ (2010) Imbrium provenance for the Apollo 16 Descartes terrain: Argon ages and geochemistry of lunar breccias 67016 and 67455. Geochim Cosmochim Acta 74(2):763–783

    Article  ADS  Google Scholar 

  • O’keefe JD, Ahrens TJ (1977) Impact-induced energy partitioning, melting, and vaporization on terrestrial planets. In: Lunar science conference

    Google Scholar 

  • Ohtake M, Uemoto K, Yokota Y, Morota T, Yamamoto S, Nakamura R, Haruyama J, Iwata T, Matsunaga T, Ishihara Y (2014) Geologic structure generated by large-impact basin formation observed at the South Pole-Aitken basin on the Moon. Geophys Res Lett 41(8):2738–2745

    Article  ADS  Google Scholar 

  • Onorato PIK, Uhlmann DR, Simonds CH (1976) Heat flow in impact melts: Apollo 17 Station 6 Boulder and some application to other breccias and xenolith laden melts. In: 7th lunar science conference

    Google Scholar 

  • Osinski GR, Grieve R a F, Bleacher JE, Neish CD, Pilles EA, Tornabene LL (2018) Igneous rocks formed by hypervelocity impact. J Volcanol Geotherm Res 353:25–54

    Article  ADS  Google Scholar 

  • Palme H, Janssens M-J, Takahashi H, Anders E, Hertogen J (1978) Meteoritic material at five large impact craters. Geochim Cosmochim Acta 42:313–323

    Article  ADS  Google Scholar 

  • Paniello RC, Day JMD, Moynier F (2012) Zinc isotopic evidence for the origin of the Moon. Nature 490:376–379

    Article  ADS  Google Scholar 

  • Papanastassiou DA, Wasserburg GJ (1971a) Lunar chronology and evolution from Rb-Sr studies of Apollo 11 and 12 samples. Earth Planet Sci Lett 11:37–62

    Article  ADS  Google Scholar 

  • Papanastassiou DA, Wasserburg GJ (1971b) Rb-Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro formation. Earth Planet Sci Lett 12:36–48

    Article  ADS  Google Scholar 

  • Papike JJ, Taylor L, Simon S (1991) Lunar minerals. In: Heiken G, Vaniman D, French BM (eds) Lunar sourcebook: a user’s guide to the Moon. Cambridge University Press, Cambridge, pp 121–181

    Google Scholar 

  • Papike JJ, Spilde MN, Adcock CT, Fowler GW, Shearer CK (1997) Trace-element fractionation by impact-induced volatilization; SIMS study of lunar HASP samples. Am Mineral 82(5–6):630–634

    Article  ADS  Google Scholar 

  • Papike JJ, Ryder G, Shearer CK (1998) Lunar samples. In: Papike JJ (ed) Planetary materials: reviews in mineralogy. Mineralogical Society of America, Washington, DC

    Chapter  Google Scholar 

  • Patchen AD, Taylor LA, Day JMD (2005) Mineralogy and petrography of lunar mare regolith breccia Meteorite MET 01-210. In: Lunar and planetary science conference XXXVI, Houston

    Google Scholar 

  • Pernet-Fisher J, Joy K (2016) The lunar highlands: old crust, new ideas. Astron Geophys 57:26–30

    Article  Google Scholar 

  • Pernet-Fisher JF, Joy K (2022) Thermal metamorphism on the Moon as recorded by the granulite suite. J Geol Soc 179(2)

    Google Scholar 

  • Pernet-Fisher JF, Joy KH, Martin DJP, Donaldson KL (2017) Assessing the shock state of the lunar highlands: implications for the petrogenesis and chronology of crustal anorthosites. Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Pieters CM, Head JW, Gaddis LR, Jolliff BL, Duke M (2001) Rock types of South Pole-Aitken Basin and extent of basaltic volcanism. J Geophys Res 106(E11):28001–28022

    Article  ADS  Google Scholar 

  • Putchel IS, Walker RJ, James OB, Kring DA (2008) Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: implications for the late accretion history of the Moon and Earth. Geochim Cosmochim Acta 72:3022–3042

    Article  ADS  Google Scholar 

  • Reid AM, Lofgren GE, Heiken GH, Brown RW, Moreland G (1973) Apollo 17 orange glass, Apollo 15 green glass and Hawaiian lava fountain glass. Trans Am Geophys Union 54:606–607

    Google Scholar 

  • Renggli CJ, Klemme S (2021) Experimental investigation of Apollo 16 “Rusty Rock” Alyeration by a Lunar Fumarolic Gas. J Geophys Res Planets 126(2):e2020JE006609

    Article  ADS  Google Scholar 

  • Roedder E, Weiblen PW (1974) Petrology of clasts in lunar breccia 67915. In: Lunar and planetary science conference

    Google Scholar 

  • Russell SS, Joy KH, Jeffries TE, Consolmagno GJ, Kearsley A (2014) Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model. Philos Trans R Soc A Math Phys Eng Sci 372:20130241

    Article  ADS  Google Scholar 

  • Saal AE, Hauri EH, Cascio ML, Van Orman JA, Rutherford MC, Cooper RF (2008) Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454(7201):192–195

    Article  ADS  Google Scholar 

  • Schediwy S, Rosman KJR, De Laeter JR (2006) Isotope fractionation of cadmium in lunar material. Earth Planet Sci Lett 243:326–335

    Article  ADS  Google Scholar 

  • Schmid R (1981) Descriptive nomenclature and classification of pyroclastic rocks and fragments: recommendations of the IUGS sub commission on the systematics of Igneous Rocks. Geology 9:41–43

    Article  ADS  Google Scholar 

  • Schmidt GJ, Palme J, Kratz K-L (1997) Highly siderophile elements (Re, Os, Ir, Ru, Rh, Pd, Au) in impact melts from three European impact craters (Sääksjärvi, Mien, and Dellen): clues to the nature of the impacting bodies. Geochim Cosmochim Acta 61:2977–2987

    Article  ADS  Google Scholar 

  • Scholz CH (1990) The mechanics of earthquakes and faulting. Cambridge University Press

    Google Scholar 

  • Schuindt S, Darling JR, Staddon LG, Schwarz WH, Dunlop J, White LF, Storey CD, Tait KT (2021) Microstructural geochronology of lunar feldspathic breccia Northwest Africa 10272: a major event at ~3.48 Ga in the lunar crust. In: 52nd lunar and planetary science conference

    Google Scholar 

  • Shearer CK, Papike JJ (1993) Basaltic magmatism on the Moon: a perspective from volcanic picritic glass beads. Geochim Cosmochim Acta 57(19):4785–4812

    Article  ADS  Google Scholar 

  • Shearer CK, Hess PC, Weiczorek MA, Pritchard ME, Parmentier EM, Borg LE, Longhi J, Elkins-Tanton LT, Neal CR, Antonenko I, Canup RM, Halliday AN, Grove TL, Hager BH, Lee DC, Wiechert U (2006) Thermal and magmatic evolution of the Moon. In: Jolliff BL, Wieczorek MA, Shearer CK, Neal CR (eds) New views of the Moon: reviews in mineralogy & geochemistry. De Gruyter, pp 365–518

    Chapter  Google Scholar 

  • Shearer CK, Burger PV, Guan Y, Papike JJ, Sutton SR, Atudorei NV (2012) Origin of sulfide replacement textures in lunar breccias. Implications for vapor element transport in the lunar crust. Geochim Cosmochim Acta 83:138–158

    Article  ADS  Google Scholar 

  • Shukla MK, Sharma A (2018) A brief review on breccia: it’s contrasting origin and diagnostic signatures. Solid Earth Sci 3:50–59

    Article  Google Scholar 

  • Simonds CH, Warner JL, Phinney WC, Mcgee PE (1976) Thermal model for impact breccia lithification: Manicouagan and the moon. In: 8th lunar science conference

    Google Scholar 

  • Snape JF, Curran NM, Whitehouse MJ, Nemchin AA, Joy KH, Hopkinson T, Anand M, Bellucci JJ, Kenny GG (2018) Ancient volcanism on the Moon: insights from Pb isotopes in the MIL 13317 and Kalahari 009 lunar meteorites. Earth Planet Sci Lett 502:84–95

    Article  ADS  Google Scholar 

  • Sokol AK, Fernandes VA, Schulz T, Bischoff A, Burgess R, Clayton RN, Münker C, Nishiizumi K, Palme H, Schultz L, Weckwerth G, Mezger K, Horstmann M (2008) Geochemistry, petrology and ages of the lunar meteorites Kalahari 008 and 009: new constraints on early lunar evolution. Geochim Cosmochim Acta 72(19):4845–4873

    Article  ADS  Google Scholar 

  • Spray JG (2016) Lithification mechanisms for planetary regoliths: the glue that binds. Annu Rev Earth Planet Sci 44:139–174

    Article  ADS  Google Scholar 

  • Spudis PD (2015) Volcanism on the Moon. In: Sigurdsson H, Houghton B, Mcnutt SR, Rymer H, Stix J (eds) Encylopaedia of volcanoes, 2nd edn. Academic/Elsevier, Amsterdam

    Google Scholar 

  • Stähle V (1972) Impact glasses from the suevite of the Nördlinger Ries. Earth Planet Sci Lett 17:275–293

    Article  ADS  Google Scholar 

  • Stephant A, Anand M, Zhao X, Chan QH, Bonifacie M, Franchi IA (2019) The chlorine isotope composition of the Moon: insights from melt inclusions. Earth Planet Sci Lett 523:115715

    Article  Google Scholar 

  • Stöffler D, Grieve RaF (1994) Classification and nomenclature of impact metamorphic rocks: a proposal to the IUGS subcommission on the systematics of metamorphic rocks. In: Lunar and planetary science conference XXV

    Google Scholar 

  • Stöffler D, Grieve R a F (2007) Impactites. In: Fettes D, Desmons J (eds) Metamorphic rocks: a classification and glossary of terms, recommendations of the International Union of Geological Sciences. Cambridge University Press, Cambridge, pp 82–91, 111–125, 126–242

    Google Scholar 

  • Stöffler D, Knöll H-D, Stähle V, Ottemann J (1978) Textural variations of the crystalline marix of Fra Mauro breccias and a model of breccia formation. In: Lunar and planetary science IX. Lunar and Planetary Institute, Houston

    Google Scholar 

  • Stöffler D, Knöll H-D, Maerz U (1979) Terrestrial and lunar impact breccias and the classification of lunar highlands rocks. In: 10th lunar and planetary science conference

    Google Scholar 

  • Stöffler D, Knöll H-D, Marvin UB, Simonds CH, Warren PH (1980) Recommended classification and nomenclature of lunar highlands rocks – a committee report. In: Papike JJ, Merrill RB (eds) Lunar highlands crust. Pergamon

    Google Scholar 

  • Stöffler D, Keil K, Scott ERD (1991) Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta 55(12):3845–3867

    Article  ADS  Google Scholar 

  • Stöffler D, Ryder G, Ivanov BA, Artemieva NA, Cintala MJ, Grieve R a F (2006) Cratering history and lunar chronology. In: Jolliff BL, Wieczorek MA, Shearer CK, Neal CR (eds) New views of the Moon. De Gruyter, Berlin/Boston, pp 519–596

    Chapter  Google Scholar 

  • Stöffler D, Artemieva N, Wünnemann K, Reimold WU, Jacob J, Hansen BK, Summerson, I. a. T. (2013) Ries crater and suevite revisited – observations and modelling. Part I: Observations. Meteorit Planet Sci 48:515–589

    Article  ADS  Google Scholar 

  • Stöffler D, Hamann C, Metzler K (2018) Shock metamorphism of planetary silicate rocks and sediments: proposal for an updated classification system. Meteorit Planet Sci 53(1):5–49

    Article  ADS  Google Scholar 

  • Tagle R (2005) LL-ordinary chondrite impact on the Moon: results from the 3.9 Ga impact melt at the landing site of Apollo 17. In: Lunar and planetary science conference XXXVI

    Google Scholar 

  • Takeda H, Arai T, Saiki K (1993) Mineralogical study of lunar meteorites Yamato 793169, a mare basalt. Antarctic Meteorit Res 6:3

    ADS  Google Scholar 

  • Tartèse R, Anand M, Barnes JJ, Starkey NA, Franchi IA, Sano Y (2013) The abundance, distribution, and isotopic composition of hydrogen in the Moon as revealed by basaltic lunar samples: implications for the volatile inventory of the Moon. Geochim Cosmochim Acta 122:58–74

    Article  ADS  Google Scholar 

  • Tartèse R, Anand M, Joy KH, Franchi IA (2014a) H and Cl isotope systematics of apatite in brecciated lunar meteorites Northwest Africa 4472, Northwest Africa 773, Sayh al Uhaymir 169, and Kalahari 009. Meteorit Planet Sci 49(12):2266–2289

    Article  ADS  Google Scholar 

  • Tartèse R, Anand M, Mccubbin FM, Elardo SM, Shearer CK, Franchi IA (2014b) Apatite in lunar KREEP basalts: the missing link to understanding the H isotope systematics of the Moon. Geology 42(4):363–366

    Article  ADS  Google Scholar 

  • Taylor SR (1975) Lunar science: a post-Apollo view. Pergamon, New York

    Google Scholar 

  • Taylor SR (1982) Planetary science: a lunar perspective. Lunar and Planetary Institute, Houston

    Google Scholar 

  • Taylor GJ, Warren P, Ryder G, Delano J, Pieters C, Lofgren G (1991) Lunar rocks. In: Heiken GH, Vaniman DT, French BM (eds) Lunar sourcebook. Cambridge University Press, Cambridge, pp 183–284

    Google Scholar 

  • Taylor GJ, Martel LM, Lucey PG, Gillis-Davis JJ, Blake DF, Sarrazin P (2019) Model analyses of lunar soils by quantitative X-ray diffraction analysis. Geochim Cosmochim Acta 266:17–28

    Article  ADS  Google Scholar 

  • Team APE (1973) Apollo 17 lunar samples: chemical and petrographic description. Science 182:659–672

    Article  ADS  Google Scholar 

  • Tera F, Papanastassiou DA, Wasserburg GJ (1974) Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett 22:1–21

    Article  ADS  Google Scholar 

  • Terada K, Anand M, Sokol AK, Bischoff A, Sano Y (2007) Cryptonmare magmatism 4.35 Gyr ago recorded in lunar meteorites Kalahari 009. Nature 450:849–852

    Article  ADS  Google Scholar 

  • Thalmann C, Eugster O, Herzog GF, Klein J, Krähenbühl U, Vogt S (1996) History of lunar meteorites Queen Alexandra Range 93069, Askua 881757, and Yamato 793169 based on noble gas isotopic abundances, radionuclide concentrations, and chemical composition. Meteorit Planet Sci 31(6):857–868

    Article  ADS  Google Scholar 

  • Treiman AH, Boyce JW, Gross J, Guan Y, Eiler JM, Stolper EM (2014) Phosphate-halogen metasomatism of lunar granulite 79215: impact-induced fractionation of volatiles and incompatible elements. Am Mineral 99(10):1860–1870

    Article  ADS  Google Scholar 

  • Turner G, Cadogan PH, Yonge CJ (1973) Apollo 17 age determinations. Nature 242:513–515

    Article  ADS  Google Scholar 

  • Udden JA (1914) Mechanical composition of clastic sediments. Geol Soc Am Bull 25:655–744

    Article  Google Scholar 

  • Valencia SN, Jolliff BL, Korotev RL (2019) Petrography, relationships, and petrogenesis of the gabbroic lithologies in Northwest Africa 773 clan members Northwest Africa 773, 2727, 3160, 3170, 70107, and 10656. Meteorit Planet Sci 54(9):2083–2115

    Article  ADS  Google Scholar 

  • Vanderleik DM, Becker H, Rocholl A (2017) Impact-generated zircon and the history of lunar breccia 67955. Goldschmidt conference (Paris 2017)

    Google Scholar 

  • Walker RJ, Bermingham K, Liu J, Putchel IS, Touboul M, Worsham EA (2015) In search of late-stage planetary building blocks. Chem Geol 411:125–142

    Article  ADS  Google Scholar 

  • Warner JL, Phinney WC, Bickel CE, Simonds CH (1977) Feldspathic granulitic impactites and pre-final bombardment lunar evolution. In: 8th lunar and planetary science conference

    Google Scholar 

  • Warren PH (2001) Porosities of lunar meteorites: strength, porosity, and petrologic screening during the meteorite delivery process. J Geophys Res 106(E5):10101–10111

    Article  ADS  Google Scholar 

  • Warren PH, Kallemeyn GW (1993) Geochemical investigation of two lunar mare meteorites: Yamato-793169 and Asuka-881757. Antarctic Meteorit Res 6:35

    ADS  Google Scholar 

  • Warren PH, Wasson JT (1977) Pristine non-mare rocks and the nature of the lunar crust. In: Lunar and planetary science conference

    Google Scholar 

  • Warren PH, Jerde EA, Kallemeyn GW (1990) Pristine moon rocks: an alkali anorthosite suite with coarse augite exsolution from plagioclase, a magnesian hazburgite, and other oddities. In: 20th lunar and planetary science conference

    Google Scholar 

  • Warren PH, Haack H, Rasmussen KL (1991) Megaregolith insulation and the duration of cooling to isotopic closure within differentiated asteroids and the Moon. J Geophys Res 96:5909–5923

    Article  ADS  Google Scholar 

  • Wasserburg GJ, Papanastassiou DA (1971) Age of an Apollo 15 mare basalt: lunar crust and mantle evolution. Earth Planet Sci Lett 13:97–104

    Article  ADS  Google Scholar 

  • Wentworth SJ, Mckay DS, Lindstrom DJ, Basu A, Martinez RR, Bogard DD, Garrison DH (1994) Apollo 12 ropy glasses revisited. Meteoritics 29(3):323–333

    Article  ADS  Google Scholar 

  • Wetherill GW (1975) Late heavy bombardment of the moon and terrestrial planets. Lunar and planetary science conference

    Google Scholar 

  • Wetherill GW (1986) Accumulation of the terrestrial planets and implications concerning lunar origin. In: Origin of the Moon. Lunar and Planetary Institute, pp 519–550

    Google Scholar 

  • White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34:677–680

    Article  ADS  Google Scholar 

  • Wolf R, Woodrow AB, Grieve, R. a. F. (1980) Meteoritic material at four Canadian impact craters. Geochim Cosmochim Acta 44:1015–1022

    Article  ADS  Google Scholar 

  • Wolf SF, Wang M-S, Lipschutz ME (2009) Labile trace elements in basaltic achondrites: can they distinguish between meteorites from the Moon, Mars and V-type asteroids. Meteorit Planet Sci 44(6):891–903

    Article  ADS  Google Scholar 

  • Xu X, Hui H, Chen W, Huang S, Neal CR, Xu X (2020) Formation of lunar highlands anorthosites. Earth Planet Sci Lett 536:116138

    Article  Google Scholar 

  • Zeigler RA, Korotev RL, Jolliff BL, Haskin LA (2005) Petrography of lunar meteorite MET 01210, a new basaltic regolith breccia. Lunar and planetary science conference XXXVI, Houston

    Google Scholar 

  • Zeigler RA, Korotev RL, Jolliff BL, Haskin L, Floss C (2006) The geochemistry and provenance of Apollo 16 mafic glasses. Geochim Cosmochim Acta 70(24):6050–6067

    Article  ADS  Google Scholar 

  • Zeigler RA, Korotev RL, Jolliff BL (2007) Petrography, geochemistry and pairing relationship of basaltic lunar meteorite stones NWA 773, NWA 2700, NWA 2727, NWA 2977 and NWA 3160. Lunar and planetary science conference XXXVIII

    Google Scholar 

  • Zellner NEB (2017) Cataclysm no more: new views on the timing and delivery of lunar impactors. Orig Life Evol Biosph 47(3):261–280

    Article  ADS  Google Scholar 

  • Zeng X, Joy KH, Li S, Pernet-Fisher JF, Li X, Martin DJP, Li Y, Wang S (2018) Multiple lithic clasts in lunar breccia Northwest Africa 7948 and implication for the lithologic components of lunar crust. Meteorit Planet Sci 53(5):1030–1050

    Article  ADS  Google Scholar 

  • Zeng X, Li X, Martin D, Tang H, Yu W, Liu J, Wang S (2019a) Micro-FTIR spectroscopy of lunar pyroclastic and impact glasses as a new diagnostic tool to discern them. J Geophys Res Planets 124(12):3267–3282

    Article  ADS  Google Scholar 

  • Zeng Z, Li S, Joy K, Li X, Li Y, Wang S (2019b) Occurrence and implications of secondary olivine veinlets in lunar highland breccia Northwest Africa 11273. In: 82nd annual meeting of the meteoritical society

    Google Scholar 

  • Zeng X, Li X, Liu J, Mo B, Yu W, Tang H (2020) Discerning lunar pyroclastic and impact glasses via Raman spectroscopy. J Geophys Res Planets 125:e2020JE006674

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank NASA/JSC for the use of images from the Apollo sample catalogue (see Meyer 2012). We would like to thank Prof Mahesh Anand from The Open University, Mr Graham Ensor, and Mr Dustin Dickens for provision of NWA 11228, NWA 12592, and NWA 12593 as shown in Fig. 2. TSH would like to thank NASA’S Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM) for allocation of lunar meteorite EET 96008 for study, as shown in Fig. 2. The US Antarctic meteorite samples are recovered by the Antarctic Search for Meteorites (ANSMET) program which has been funded by NSF and NASA and characterized and curated by the Department of Mineral Sciences of the Smithsonian Institution and Astromaterials Acquisition and Curation Office at NASA Johnson Space Center. TSH receives funding from an STFC studentship and The Open University. KHJ receives funding from the Royal Society (URF\R\201009), STFC (ST/R000751/1), and the Leverhulme Trust (RPG-2019-222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara S. Hayden .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hayden, T.S., Joy, K.H., Barrett, T.J. (2023). Breccia. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-14541-9_136

Download citation

Publish with us

Policies and ethics