Skip to main content

Real-Time Full Body Motion Control

  • Reference work entry
  • First Online:
Handbook of Human Motion

Abstract

This chapter surveys techniques for interactive character animation, exploring data-driven and physical simulation-based methods. Interactive character animation is increasingly data driven, with animation produced through the sampling, concatenation, and blending of pre-captured motion fragments to create movement. The chapter therefore begins by surveying commercial technologies and academic research into performance capture. Physically based simulations for interactive character animation are briefly surveyed, with a focus upon technique proven to run in real time. The chapter focuses upon concatenative synthesis approaches to animation, particularly upon motion graphs and their parametric extensions for planning skeletal and surface motion for interactive character animation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agarwal A, Triggs B (2006) Recovering 3d human pose from monocular images. IEEE Trans PAMI 28(1):44–58

    Article  Google Scholar 

  • Andriluka M, Roth S, Schiele B (2009) Pictorial structures revisited: people detection and articulated pose estimation. In: Proceedings of computer vision and pattern recognition, IEEE

    Google Scholar 

  • Arikan O, Forsyth D (2002) Synthesizing constrained motions from examples. ACM Trans Graph 21(3):483–490

    Article  MATH  Google Scholar 

  • Armstrong W, Green M (1985) The dynamics of articulated rigid bodies for purposes of animation. Vis Comput 4(1):231–240

    Article  Google Scholar 

  • Botsch M, Sorkine O (2008) On linear variational surface deformation methods. IEEE Trans Vis Comput Graph 14(1):213–230

    Article  Google Scholar 

  • Brand M, Hertzmann A (2000) Style machines. In: Proceedings of ACM SIGGRAPH, ACM Press, pp 183–192

    Google Scholar 

  • Budd C, Huang P, Klaudiny M, Hilton A (2013) Global non-rigid alignment of surface sequences. Int J Comput Vis 102(1):256–270

    Article  MathSciNet  Google Scholar 

  • Casas D, Tejera M, Guillemaut JY, Hilton A (2012) 4d parametric motion graphs for interactive animation. In: Proceedings of Symposium on Interactive 3D Graphics and Games (I3D), IEEE

    Google Scholar 

  • Casas D, Tejera M, Guillemaut JY, Hilton A (2013) Interactive animation of 4d performance capture. IEEE Trans Vis Comput Graph (TVCG) 19(5):762–773

    Article  Google Scholar 

  • Casas D, Volino M, Collomosse J, Hilton A (2014) 4d video textures for interactive character appearance. In: Proceedings of Computer Graphics Forum (Eurographics 2014), IEEE

    Google Scholar 

  • Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of Computer Vision and Pattern Recognition, IEEE, vol 3. pp 886–893

    Google Scholar 

  • Eichner M, Ferrari V (2009) Better appearance models for pictorial structures. In: Proceedings of British Machine Vision Conference (BMVC), IEEE

    Google Scholar 

  • Elhayek A, Aguiar E, Tompson J, Jain A, Pishchulin L, Andriluka M, Bregler C, Schiele B, Theobalt C (2015) Efficient convnet-based marker-less motion capture in general scenes with a low number of cameras. In: Proceedings of computer vision and pattern recognition, IEEE

    Google Scholar 

  • Geijtenbeek T, Bogert AJVD, Basten B, Egges A (2010) Evaluating the physical realism of character animations using musculoskeletal models. In: Proceedings of Conference on Motion in Games, vol 5. Springer-Verlag, Heidelberg, pp 11–22

    Google Scholar 

  • Grauman K, Shakhnarovich G, Darrell T (2003) A Bayesian approach to image-based visual hull reconstruction. In: Proceedings of CVPR, IEEE

    Google Scholar 

  • Heck R, Gleicher M (2007) Parametric motion graphs. In: Proceedings of Symposium on Interactive 3D Graphics and Games (I3D), IEEE, pp 129–136

    Google Scholar 

  • Hodgins J (1991) Biped gait transition. In: Proceedings of Conference on robotics and automation, IEEE, pp 2092–2097

    Google Scholar 

  • Holden D, Saito J, Komura T (2016) A deep learning framework for character motion synthesis and editing. In: Proceedings of ACM SIGGRAPH, ACM

    Google Scholar 

  • Huang P, Hilton A, Starck J (2009) Human motion synthesis from 3d video. In: Proceedings of CVPR, IEEE

    Google Scholar 

  • Kovar L, Gleicher M, Pighin F (2002) Motion graphs. ACM Trans Graph 21(3):473–482

    Article  Google Scholar 

  • Kwon T, Hodgins J (2010) Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In: Proceedings of Eurographics Symposium on Computer Animation (SCA), Blackwell

    Google Scholar 

  • Laszlo J, Fiume EVD (1996) Limit cycle control and its application to the animation of balancing and walking. ACM Trans on graphics, ACM

    Google Scholar 

  • Lorensen W, Cline H (1987) Marching cubes: a high resolution 3d surface construction algorithm. ACM Comput Graph 21(4):163–169

    Article  Google Scholar 

  • Mori G, Ren X, Efros A, Malik J (2004) Recovering human body configurations: combining segmentation and recognition. In: Proceedings of computer vision and pattern recognition, IEEE, pp 326–333

    Google Scholar 

  • Ning H, Xu W, Gong Y, Huang T (2008) Discriminative learning of visual words for 3D human pose estimation. In: Proceedings of CVPR, IEEE

    Google Scholar 

  • Pollack J, Lipson H, Ficici S, Funes P (2000) Evolutionary techniques in physical robotics. In: Proceedings of International Conference Evolvable Systems (ICES). Springer-Verlag

    Google Scholar 

  • Raibert M, Hodjins K (1991) Animation of dynamic legged locomotion. ACM Comput Graph 25(4):349–358

    Article  Google Scholar 

  • Ren X, Berg E, Malik J (2005) Recovering human body configurations using pairwise constraints between parts. In: Proceedings of International Conference on computer vision, IEEE, vol 1. pp 824–831

    Google Scholar 

  • Rohan A (2015) 3D motion capture system market – global forecast to 2020. Tech. rep. Markets and Markets Inc., Vancouver

    Google Scholar 

  • Sims K (1994) Evolving virtual creatures. ACM Trans. on Graphics, ACM

    Google Scholar 

  • Srinivasan P, Shi J (2007) Bottom-up recognition and parsing of the human body. In: Proceedings of computer vision and pattern recognition, IEEE, pp 1–8

    Google Scholar 

  • Tejera M, Casas D, Hilton A (2013) Animation control of surface motion capture. ACM Trans. on Graphics, IEEE, pp 1532–1545

    Google Scholar 

  • Tin K, Coros S, Beaudoin P (2008) Continuation methods for adapting simulated skills. ACM Trans. on Graphics, IEEE, vol 27(3)

    Google Scholar 

  • Trumble M, Gilbert A, Hilton A, Collomosse J (2016) Learning markerless human pose estimation from multiple viewpoint video. In: Proceedings of ECCV workshops, ACM

    Google Scholar 

  • Viola P, Jones M (2004) Robust real-time object detection. Int J Comput Vis 2(57):137–154

    Article  Google Scholar 

  • Wampler K, Popovic Z (2009) Optimal gait and form for animal locomotion. ACM Trans. on Graphics, ACM, vol 28(3)

    Google Scholar 

  • Witkin A, Popovic Z (1995) Motion warping. ACM Trans. on Graphics, ACM, pp 105–108

    Google Scholar 

  • Yao X (1999) Evolving artificial neural networks. In: Proceedings of the IEEE, IEEE, vol 87

    Google Scholar 

  • Zhao T, Nevatia R (2003) Bayesian human segmentation in crowded situations. In: Proceedings of computer vision and pattern recognition, IEEE, vol 2. pp 459–466

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Collomosse .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Collomosse, J., Hilton, A. (2018). Real-Time Full Body Motion Control. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_9

Download citation

Publish with us

Policies and ethics