Advertisement

Real-Time Full Body Motion Control

  • John Collomosse
  • Adrian Hilton
Reference work entry

Abstract

This chapter surveys techniques for interactive character animation, exploring data-driven and physical simulation-based methods. Interactive character animation is increasingly data driven, with animation produced through the sampling, concatenation, and blending of pre-captured motion fragments to create movement. The chapter therefore begins by surveying commercial technologies and academic research into performance capture. Physically based simulations for interactive character animation are briefly surveyed, with a focus upon technique proven to run in real time. The chapter focuses upon concatenative synthesis approaches to animation, particularly upon motion graphs and their parametric extensions for planning skeletal and surface motion for interactive character animation.

Keywords

Animation 3D motion capture Real-time motion Virtual reality Augmented reality 4D mesh calculation Parametric motion 

References

  1. Agarwal A, Triggs B (2006) Recovering 3d human pose from monocular images. IEEE Trans PAMI 28(1):44–58CrossRefGoogle Scholar
  2. Andriluka M, Roth S, Schiele B (2009) Pictorial structures revisited: people detection and articulated pose estimation. In: Proceedings of computer vision and pattern recognition, IEEEGoogle Scholar
  3. Arikan O, Forsyth D (2002) Synthesizing constrained motions from examples. ACM Trans Graph 21(3):483–490CrossRefzbMATHGoogle Scholar
  4. Armstrong W, Green M (1985) The dynamics of articulated rigid bodies for purposes of animation. Vis Comput 4(1):231–240CrossRefGoogle Scholar
  5. Botsch M, Sorkine O (2008) On linear variational surface deformation methods. IEEE Trans Vis Comput Graph 14(1):213–230CrossRefGoogle Scholar
  6. Brand M, Hertzmann A (2000) Style machines. In: Proceedings of ACM SIGGRAPH, ACM Press, pp 183–192Google Scholar
  7. Budd C, Huang P, Klaudiny M, Hilton A (2013) Global non-rigid alignment of surface sequences. Int J Comput Vis 102(1):256–270MathSciNetCrossRefGoogle Scholar
  8. Casas D, Tejera M, Guillemaut JY, Hilton A (2012) 4d parametric motion graphs for interactive animation. In: Proceedings of Symposium on Interactive 3D Graphics and Games (I3D), IEEEGoogle Scholar
  9. Casas D, Tejera M, Guillemaut JY, Hilton A (2013) Interactive animation of 4d performance capture. IEEE Trans Vis Comput Graph (TVCG) 19(5):762–773CrossRefGoogle Scholar
  10. Casas D, Volino M, Collomosse J, Hilton A (2014) 4d video textures for interactive character appearance. In: Proceedings of Computer Graphics Forum (Eurographics 2014), IEEEGoogle Scholar
  11. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of Computer Vision and Pattern Recognition, IEEE, vol 3. pp 886–893Google Scholar
  12. Eichner M, Ferrari V (2009) Better appearance models for pictorial structures. In: Proceedings of British Machine Vision Conference (BMVC), IEEEGoogle Scholar
  13. Elhayek A, Aguiar E, Tompson J, Jain A, Pishchulin L, Andriluka M, Bregler C, Schiele B, Theobalt C (2015) Efficient convnet-based marker-less motion capture in general scenes with a low number of cameras. In: Proceedings of computer vision and pattern recognition, IEEEGoogle Scholar
  14. Geijtenbeek T, Bogert AJVD, Basten B, Egges A (2010) Evaluating the physical realism of character animations using musculoskeletal models. In: Proceedings of Conference on Motion in Games, vol 5. Springer-Verlag, Heidelberg, pp 11–22Google Scholar
  15. Grauman K, Shakhnarovich G, Darrell T (2003) A Bayesian approach to image-based visual hull reconstruction. In: Proceedings of CVPR, IEEEGoogle Scholar
  16. Heck R, Gleicher M (2007) Parametric motion graphs. In: Proceedings of Symposium on Interactive 3D Graphics and Games (I3D), IEEE, pp 129–136Google Scholar
  17. Hodgins J (1991) Biped gait transition. In: Proceedings of Conference on robotics and automation, IEEE, pp 2092–2097Google Scholar
  18. Holden D, Saito J, Komura T (2016) A deep learning framework for character motion synthesis and editing. In: Proceedings of ACM SIGGRAPH, ACMGoogle Scholar
  19. Huang P, Hilton A, Starck J (2009) Human motion synthesis from 3d video. In: Proceedings of CVPR, IEEEGoogle Scholar
  20. Kovar L, Gleicher M, Pighin F (2002) Motion graphs. ACM Trans Graph 21(3):473–482CrossRefGoogle Scholar
  21. Kwon T, Hodgins J (2010) Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In: Proceedings of Eurographics Symposium on Computer Animation (SCA), BlackwellGoogle Scholar
  22. Laszlo J, Fiume EVD (1996) Limit cycle control and its application to the animation of balancing and walking. ACM Trans on graphics, ACMGoogle Scholar
  23. Lorensen W, Cline H (1987) Marching cubes: a high resolution 3d surface construction algorithm. ACM Comput Graph 21(4):163–169CrossRefGoogle Scholar
  24. Mori G, Ren X, Efros A, Malik J (2004) Recovering human body configurations: combining segmentation and recognition. In: Proceedings of computer vision and pattern recognition, IEEE, pp 326–333Google Scholar
  25. Ning H, Xu W, Gong Y, Huang T (2008) Discriminative learning of visual words for 3D human pose estimation. In: Proceedings of CVPR, IEEEGoogle Scholar
  26. Pollack J, Lipson H, Ficici S, Funes P (2000) Evolutionary techniques in physical robotics. In: Proceedings of International Conference Evolvable Systems (ICES). Springer-VerlagGoogle Scholar
  27. Raibert M, Hodjins K (1991) Animation of dynamic legged locomotion. ACM Comput Graph 25(4):349–358CrossRefGoogle Scholar
  28. Ren X, Berg E, Malik J (2005) Recovering human body configurations using pairwise constraints between parts. In: Proceedings of International Conference on computer vision, IEEE, vol 1. pp 824–831Google Scholar
  29. Rohan A (2015) 3D motion capture system market – global forecast to 2020. Tech. rep. Markets and Markets Inc., VancouverGoogle Scholar
  30. Sims K (1994) Evolving virtual creatures. ACM Trans. on Graphics, ACMGoogle Scholar
  31. Srinivasan P, Shi J (2007) Bottom-up recognition and parsing of the human body. In: Proceedings of computer vision and pattern recognition, IEEE, pp 1–8Google Scholar
  32. Tejera M, Casas D, Hilton A (2013) Animation control of surface motion capture. ACM Trans. on Graphics, IEEE, pp 1532–1545Google Scholar
  33. Tin K, Coros S, Beaudoin P (2008) Continuation methods for adapting simulated skills. ACM Trans. on Graphics, IEEE, vol 27(3)Google Scholar
  34. Trumble M, Gilbert A, Hilton A, Collomosse J (2016) Learning markerless human pose estimation from multiple viewpoint video. In: Proceedings of ECCV workshops, ACMGoogle Scholar
  35. Viola P, Jones M (2004) Robust real-time object detection. Int J Comput Vis 2(57):137–154CrossRefGoogle Scholar
  36. Wampler K, Popovic Z (2009) Optimal gait and form for animal locomotion. ACM Trans. on Graphics, ACM, vol 28(3)Google Scholar
  37. Witkin A, Popovic Z (1995) Motion warping. ACM Trans. on Graphics, ACM, pp 105–108Google Scholar
  38. Yao X (1999) Evolving artificial neural networks. In: Proceedings of the IEEE, IEEE, vol 87Google Scholar
  39. Zhao T, Nevatia R (2003) Bayesian human segmentation in crowded situations. In: Proceedings of computer vision and pattern recognition, IEEE, vol 2. pp 459–466Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Vision Speech and Signal Processing (CVSSP)University of SurreySurreyUK

Section editors and affiliations

  • Zhigang Deng
    • 1
  1. 1.Department of Computer Science,University of HoustonHoustonUSA

Personalised recommendations