Shoulder Joint Replacement and Upper Extremity Activities of Daily Living

  • Hendrik Bruttel
  • David M. Spranz
  • Jan M. Eckerle
  • Michael W. Maier
Reference work entry

Abstract

3D motion analysis is mainly used for lower extremity, especially gait analysis. Upper extremity is a comparably new application and less standardized. The large range of motion and complex anatomy of the shoulder are challenging. However 3D motion analysis can provide deeper insight in the coordinated motion of the upper extremity as multiple joints can be monitored over the whole movement. Anatomical and reverse total shoulder arthroplasty are effective surgical treatment options for patients with osteoarthritis, rheumatic arthritis, cuff tear arthropathy, and traumatic shoulder injuries. 3D motion analysis helps to understand how prostheses influence movement patterns and improve shoulder function. Thus it may help to improve design of future prostheses and could potentially become an objective tool for examination of patients pre- and postoperatively. Although there are no standardized protocols yet, range of motion tasks and activities of daily living have been used in many protocols and proved to be effective tasks for analysis of shoulder function.

Keywords

Shoulder kinematics Shoulder arthroplasty Shoulder joint replacement Motion analysis Upper extremity Activities of daily living Range of motion Proprioception Upper extremity model 

References

  1. Aaron D, Parsons BO, Sirveaux F, Flatow EL (2013) Proximal humeral fractures: prosthetic replacement. Instr Course Lect 62:155–162Google Scholar
  2. Alta TD, Bergmann JH, Veeger DJ, Janssen TW, Burger BJ, Scholtes VA, Willems WJ (2011) Kinematic and clinical evaluation of shoulder function after primary and revision reverse shoulder prostheses. J Shoulder Elbow Surg 20(4):564–570.  https://doi.org/10.1016/j.jse.2010.08.022CrossRefGoogle Scholar
  3. Alta TD, de Toledo JM, Veeger HE, Janssen TW, Willems WJ (2014) The active and passive kinematic difference between primary reverse and total shoulder prostheses. J Shoulder Elbow Surg 23(9):1395–1402.  https://doi.org/10.1016/j.jse.2014.01.040CrossRefGoogle Scholar
  4. American Academy of Orthopaedic Surgeons (1965) Joint motion: method of measuring and recording. American Academy of Orthopedic Surgeons, ChicagoGoogle Scholar
  5. Bell SN, Coghlan JA (2014) Short stem shoulder replacement. Int J Shoulder Surg 8(3):72–75.  https://doi.org/10.4103/0973-6042.140113CrossRefGoogle Scholar
  6. Bergmann JH, de Leeuw M, Janssen TW, Veeger DH, Willems WJ (2008) Contribution of the reverse endoprosthesis to glenohumeral kinematics. Clin Orthop Relat Res 466(3):594–598.  https://doi.org/10.1007/s11999-007-0091-5CrossRefGoogle Scholar
  7. Berth A, Pap G (2013) Stemless shoulder prosthesis versus conventional anatomic shoulder prosthesis in patients with osteoarthritis: a comparison of the functional outcome after a minimum of two years follow-up. J Orthop Traumatol 14(1):31–37.  https://doi.org/10.1007/s10195-012-0216-9CrossRefGoogle Scholar
  8. Braman JP, Thomas BM, Laprade RF, Phadke V, Ludewig PM (2010) Three-dimensional in vivo kinematics of an osteoarthritic shoulder before and after total shoulder arthroplasty. Knee Surg Sports Traumatol Arthros 18(12):1774–1778.  https://doi.org/10.1007/s00167-010-1167-4CrossRefGoogle Scholar
  9. Brochard S, Lempereur M, Remy-Neris O (2011) Accuracy and reliability of three methods of recording scapular motion using reflective skin markers. Proc Inst Mech Eng H 225(1):100–105CrossRefGoogle Scholar
  10. Constant CR, Murley AH (1987) A clinical method of functional assessment of the shoulder. Clin Orthop Relat Res 214:160–164Google Scholar
  11. Cuomo F, Birdzell MG, Zuckerman JD (2005) The effect of degenerative arthritis and prosthetic arthroplasty on shoulder proprioception. J Shoulder Elbow Surg 14(4):345–348.  https://doi.org/10.1016/j.jse.2004.07.009CrossRefGoogle Scholar
  12. Cutti AG, Paolini G, Troncossi M, Cappello A, Davalli A (2005) Soft tissue artefact assessment in humeral axial rotation. Gait Posture 21(3):341–349.  https://doi.org/10.1016/j.gaitpost.2004.04.001CrossRefGoogle Scholar
  13. de Toledo JM, Loss JF, Janssen TW, van der Scheer JW, Alta TD, Willems WJ, Veeger DH (2012) Kinematic evaluation of patients with total and reverse shoulder arthroplasty during rehabilitation exercises with different loads. Clin Biomech 27(8):793–800.  https://doi.org/10.1016/j.clinbiomech.2012.04.009CrossRefGoogle Scholar
  14. Deshmukh AV, Koris M, Zurakowski D, Thornhill TS (2005) Total shoulder arthroplasty: long-term survivorship, functional outcome, and quality of life. J Shoulder Elbow Surg 14(5):471–479.  https://doi.org/10.1016/j.jse.2005.02.009CrossRefGoogle Scholar
  15. Doorenbosch CA, Harlaar J, Veeger DH (2003) The globe system: an unambiguous description of shoulder positions in daily life movements. J Rehabil Res Dev 40(2):147–155CrossRefGoogle Scholar
  16. Ecklund KJ, Lee TQ, Tibone J, Gupta R (2007) Rotator cuff tear arthropathy. J Am Acad Orthop Surg 15(6):340–349CrossRefGoogle Scholar
  17. Ehrig RM, Taylor WR, Duda GN, Heller MO (2006) A survey of formal methods for determining the centre of rotation of ball joints. J Biomech 39(15):2798–2809.  https://doi.org/10.1016/j.jbiomech.2005.10.002CrossRefGoogle Scholar
  18. Gamage SS, Lasenby J (2002) New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech 35(1):87–93CrossRefGoogle Scholar
  19. Grammont PM, Baulot E (1993) Delta shoulder prosthesis for rotator cuff rupture. Orthopedics 16(1):65–68Google Scholar
  20. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144CrossRefGoogle Scholar
  21. Halvorsen K (2003) Bias compensated least squares estimate of the center of rotation. J Biomech 36(7):999–1008CrossRefGoogle Scholar
  22. Halvorsen K, Lesser M, Lundberg A (1999) A new method for estimating the axis of rotation and the center of rotation. J Biomech 32(11):1221–1227CrossRefGoogle Scholar
  23. Hannah DC, Scibek JS (2015) Collecting shoulder kinematics with electromagnetic tracking systems and digital inclinometers: a review. World J Orthop 6(10):783–794.  https://doi.org/10.5312/wjo.v6.i10.783CrossRefGoogle Scholar
  24. Hudak PL, Amadio PC, Bombardier C (1996) Development of an upper extremity outcome measure: the DASH (disabilities of the arm, shoulder and hand) [corrected]. The Upper Extremity Collaborative Group (UECG). Am J Ind Med 29(6):602–608.  https://doi.org/10.1002/(SICI)1097-0274(199606)29:6<602::AID-AJIM4>3.0.CO;2-LCrossRefGoogle Scholar
  25. Huguet D, DeClercq G, Rio B, Teissier J, Zipoli B, Group T (2010) Results of a new stemless shoulder prosthesis: radiologic proof of maintained fixation and stability after a minimum of three years’ follow-up. J Shoulder Elbow Surg 19(6):847–852.  https://doi.org/10.1016/j.jse.2009.12.009CrossRefGoogle Scholar
  26. Inman VT, JBdM S, Abbott LC (1944) Observations on the function of the shoulder joint. J Bone Joint Surg 26(1):1–30Google Scholar
  27. Jobin CM, Brown GD, Bahu MJ, Gardner TR, Bigliani LU, Levine WN, Ahmad CS (2012) Reverse total shoulder arthroplasty for cuff tear arthropathy: the clinical effect of deltoid lengthening and center of rotation medialization. J Shoulder Elbow Surg 21(10):1269–1277.  https://doi.org/10.1016/j.jse.2011.08.049CrossRefGoogle Scholar
  28. Kasten P, Maier M, Rettig O, Raiss P, Wolf S, Loew M (2009) Proprioception in total, hemi- and reverse shoulder arthroplasty in 3D motion analyses: a prospective study. Int Orthop 33(6):1641–1647.  https://doi.org/10.1007/s00264-008-0666-0CrossRefGoogle Scholar
  29. Kasten P, Maier M, Wendy P, Rettig O, Raiss P, Wolf S, Loew M (2010) Can shoulder arthroplasty restore the range of motion in activities of daily living? A prospective 3D video motion analysis study. J Shoulder Elbow Surg 19(2 Suppl):59–65.  https://doi.org/10.1016/j.jse.2009.10.012CrossRefGoogle Scholar
  30. Kontaxis A, Cutti AG, Johnson GR, Veeger HE (2009) A framework for the definition of standardized protocols for measuring upper-extremity kinematics. Clin Biomech 24(3):246–253.  https://doi.org/10.1016/j.clinbiomech.2008.12.009CrossRefGoogle Scholar
  31. Kwon YW, Pinto VJ, Yoon J, Frankle MA, Dunning PE, Sheikhzadeh A (2012) Kinematic analysis of dynamic shoulder motion in patients with reverse total shoulder arthroplasty. J Shoulder Elbow Surg 21(9):1184–1190.  https://doi.org/10.1016/j.jse.2011.07.031CrossRefGoogle Scholar
  32. Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, Cassanelli G, Giannini S (1999) Validation of a functional method for the estimation of hip joint Centre location. J Biomech 32(1):99–103CrossRefGoogle Scholar
  33. Lempereur M, Leboeuf F, Brochard S, Rousset J, Burdin V, Remy-Neris O (2010) In vivo estimation of the glenohumeral joint Centre by functional methods: accuracy and repeatability assessment. J Biomech 43(2):370–374.  https://doi.org/10.1016/j.jbiomech.2009.09.029CrossRefGoogle Scholar
  34. Lempereur M, Brochard S, Leboeuf F, Remy-Neris O (2014) Validity and reliability of 3D marker based scapular motion analysis: a systematic review. J Biomech 47(10):2219–2230.  https://doi.org/10.1016/j.jbiomech.2014.04.028CrossRefGoogle Scholar
  35. Lugli T (1978) Artificial shoulder joint by Pean (1893): the facts of an exceptional intervention and the prosthetic method. Clin Orthop Relat Res 133:215–218Google Scholar
  36. Magermans DJ, Chadwick EK, Veeger HE, van der Helm FC (2005) Requirements for upper extremity motions during activities of daily living. Clin Biomech 20(6):591–599.  https://doi.org/10.1016/j.clinbiomech.2005.02.006CrossRefGoogle Scholar
  37. Maier MW, Niklasch M, Dreher T, Wolf SI, Zeifang F, Loew M, Kasten P (2012) Proprioception 3 years after shoulder arthroplasty in 3D motion analysis: a prospective study. Arch Orthop Trauma Surg 132(7):1003–1010.  https://doi.org/10.1007/s00402-012-1495-6CrossRefGoogle Scholar
  38. Maier MW, Caspers M, Zeifang F, Dreher T, Klotz MC, Wolf SI, Kasten P (2014a) How does reverse shoulder replacement change the range of motion in activities of daily living in patients with cuff tear arthropathy? A prospective optical 3D motion analysis study. Arch Orthop Trauma Surg 134(8):1065–1071.  https://doi.org/10.1007/s00402-014-2015-7CrossRefGoogle Scholar
  39. Maier MW, Niklasch M, Dreher T, Zeifang F, Rettig O, Klotz MC, Wolf SI, Kasten P (2014b) Motion patterns in activities of daily living: 3- year longitudinal follow-up after total shoulder arthroplasty using an optical 3D motion analysis system. BMC Musculoskelet Disord 15:244.  https://doi.org/10.1186/1471-2474-15-244CrossRefGoogle Scholar
  40. Maier MW, Lauer S, Klotz MC, Bulhoff M, Spranz D, Zeifang F (2015) Are there differences between stemless and conventional stemmed shoulder prostheses in the treatment of glenohumeral osteoarthritis? BMC Musculoskelet Disord 16:275.  https://doi.org/10.1186/s12891-015-0723-yCrossRefGoogle Scholar
  41. Matsuki K, Matsuki KO, Mu S, Yamaguchi S, Ochiai N, Sasho T, Sugaya H, Toyone T, Wada Y, Takahashi K, Banks SA (2011) In vivo 3-dimensional analysis of scapular kinematics: comparison of dominant and nondominant shoulders. J Shoulder Elbow Surg 20(4):659–665.  https://doi.org/10.1016/j.jse.2010.09.012CrossRefGoogle Scholar
  42. Meskers CG, van der Helm FC, Rozendaal LA, Rozing PM (1998a) In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J Biomech 31(1):93–96CrossRefGoogle Scholar
  43. Meskers CG, Vermeulen HM, de Groot JH, van Der Helm FC, Rozing PM (1998b) 3D shoulder position measurements using a six-degree-of-freedom electromagnetic tracking device. Clin Biomech 13(4–5):280–292CrossRefGoogle Scholar
  44. Meskers CG, Fraterman H, van der Helm FC, Vermeulen HM, Rozing PM (1999) Calibration of the “flock of birds” electromagnetic tracking device and its application in shoulder motion studies. J Biomech 32(6):629–633CrossRefGoogle Scholar
  45. Meskers CG, van de Sande MA, de Groot JH (2007) Comparison between tripod and skin-fixed recording of scapular motion. J Biomech 40(4):941–946.  https://doi.org/10.1016/j.jbiomech.2006.02.011CrossRefGoogle Scholar
  46. Michener LA, McClure PW, Sennett BJ (2002) American shoulder and elbow surgeons standardized shoulder assessment form, patient self-report section: reliability, validity, and responsiveness. J Shoulder Elbow Surg 11(6):587–594.  https://doi.org/10.1067/mse.2002.127096CrossRefGoogle Scholar
  47. Neer CS 2nd (1955) Articular replacement for the humeral head. J Bone Joint Surg Am 37-A(2):215–228CrossRefGoogle Scholar
  48. Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP (2012) Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture 35(4):636–640.  https://doi.org/10.1016/j.gaitpost.2011.12.015CrossRefGoogle Scholar
  49. Phadke V, Braman JP, LaPrade RF, Ludewig PM (2011) Comparison of glenohumeral motion using different rotation sequences. J Biomech 44(4):700–705.  https://doi.org/10.1016/j.jbiomech.2010.10.042CrossRefGoogle Scholar
  50. Radnay CS, Setter KJ, Chambers L, Levine WN, Bigliani LU, Ahmad CS (2007) Total shoulder replacement compared with humeral head replacement for the treatment of primary glenohumeral osteoarthritis: a systematic review. J Shoulder Elbow Surg 16(4):396–402.  https://doi.org/10.1016/j.jse.2006.10.017CrossRefGoogle Scholar
  51. Raiss P, Schmitt M, Bruckner T, Kasten P, Pape G, Loew M, Zeifang F (2012) Results of cemented total shoulder replacement with a minimum follow-up of ten years. J Bone Joint Surg Am 94(23):e1711–e1710.  https://doi.org/10.2106/JBJS.K.00580CrossRefGoogle Scholar
  52. Razmjou H, Holtby R, Christakis M, Axelrod T, Richards R (2013) Impact of prosthetic design on clinical and radiologic outcomes of total shoulder arthroplasty: a prospective study. J Shoulder Elbow Surg 22(2):206–214.  https://doi.org/10.1016/j.jse.2012.04.016CrossRefGoogle Scholar
  53. Rettig O, Fradet L, Kasten P, Raiss P, Wolf SI (2009) A new kinematic model of the upper extremity based on functional joint parameter determination for shoulder and elbow. Gait Posture 30(4):469–476.  https://doi.org/10.1016/j.gaitpost.2009.07.111CrossRefGoogle Scholar
  54. Rettig O, Maier MW, Gantz S, Raiss P, Zeifang F, Wolf SI (2013) Does the reverse shoulder prosthesis medialize the center of rotation in the glenohumeral joint? Gait Posture 37(1):29–31.  https://doi.org/10.1016/j.gaitpost.2012.04.019CrossRefGoogle Scholar
  55. Sager MA, Dunham NC, Schwantes A, Mecum L, Halverson K, Harlowe D (1992) Measurement of activities of daily living in hospitalized elderly: a comparison of self-report and performance-based methods. J Am Geriatr Soc 40(5):457–462CrossRefGoogle Scholar
  56. Sandow MJ, David H, Bentall SJ (2013) Hemiarthroplasty vs total shoulder replacement for rotator cuff intact osteoarthritis: how do they fare after a decade? J Shoulder Elbow Surg 22(7):877–885.  https://doi.org/10.1016/j.jse.2012.10.023CrossRefGoogle Scholar
  57. Schwartz MH, Rozumalski A (2005) A new method for estimating joint parameters from motion data. J Biomech 38(1):107–116.  https://doi.org/10.1016/j.jbiomech.2004.03.009CrossRefGoogle Scholar
  58. Stokdijk M, Nagels J, Rozing PM (2000) The glenohumeral joint rotation Centre in vivo. J Biomech 33(12):1629–1636CrossRefGoogle Scholar
  59. van Andel CJ, Wolterbeek N, Doorenbosch CA, Veeger DH, Harlaar J (2008) Complete 3D kinematics of upper extremity functional tasks. Gait Posture 27(1):120–127.  https://doi.org/10.1016/j.gaitpost.2007.03.002CrossRefGoogle Scholar
  60. van Andel C, van Hutten K, Eversdijk M, Veeger D, Harlaar J (2009) Recording scapular motion using an acromion marker cluster. Gait Posture 29(1):123–128.  https://doi.org/10.1016/j.gaitpost.2008.07.012CrossRefGoogle Scholar
  61. Vanezis A, Robinson MA, Darras N (2015) The reliability of the ELEPAP clinical protocol for the 3D kinematic evaluation of upper limb function. Gait Posture 41(2):431–439.  https://doi.org/10.1016/j.gaitpost.2014.11.007CrossRefGoogle Scholar
  62. Veeger HE, Magermans DJ, Nagels J, Chadwick EK, van der Helm FC (2006) A kinematical analysis of the shoulder after arthroplasty during a hair combing task. Clin Biomech 21(Suppl 1):S39–S44.  https://doi.org/10.1016/j.clinbiomech.2005.09.012CrossRefGoogle Scholar
  63. Walker D, Wright TW, Banks SA, Struk AM (2014) Electromyographic analysis of reverse total shoulder arthroplasties. J Shoulder Elbow Surg 23(2):166–172.  https://doi.org/10.1016/j.jse.2013.05.005CrossRefGoogle Scholar
  64. Walker D, Matsuki K, Struk AM, Wright TW, Banks SA (2015) Scapulohumeral rhythm in shoulders with reverse shoulder arthroplasty. J Shoulder Elbow Surg 24(7):1129–1134.  https://doi.org/10.1016/j.jse.2014.11.043CrossRefGoogle Scholar
  65. Warner MB, Chappell PH, Stokes MJ (2015) Measurement of dynamic scapular kinematics using an acromion marker cluster to minimize skin movement artifact. J Vis Exp 96:e51717.  https://doi.org/10.3791/51717Google Scholar
  66. Woltring HJ (1990) Estimation of the trajectory of the instantaneous centre of rotation in planar biokinematics. J Biomech 23(12):1273–1274CrossRefGoogle Scholar
  67. Woltring HJ (1994) 3-D attitude representation of human joints: a standardization proposal. J Biomech 27(12):1399–1414CrossRefGoogle Scholar
  68. Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B, International Society of B (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion – part II: shoulder, elbow, wrist and hand. J Biomech 38(5):981–992CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hendrik Bruttel
    • 1
  • David M. Spranz
    • 1
  • Jan M. Eckerle
    • 1
  • Michael W. Maier
    • 1
  1. 1.Clinic for Orthopedics and Trauma SurgeryHeidelberg University HospitalHeidelbergGermany

Section editors and affiliations

  • Freeman Miller
    • 1
  • Sebastian I. Wolf
    • 2
  1. 1.duPont Hospital for ChildrenWilmingtonUSA
  2. 2.Movement Analysis LaboratoryClinic for Orthopedics and Trauma Surgery; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury;Heidelberg University HospitalHeidelbergGermany

Personalised recommendations