Advertisement

Gait Rehabilitation with Exoskeletons

  • Stefano Federici
  • Fabio Meloni
  • Marco Bracalenti
Reference work entry

Abstract

The exoskeleton is a robotics-assisted, powered device that enables paralyzed patients to stand up and walk. This chapter examines the state of art concerning the use of active, powered, and wearable lower limb exoskeletons for aiding and rehabilitating paraplegic patients’ gait disorders resulting from serious central nervous system lesions. A qualitative analysis of the literature review found that the rehabilitative use of an exoskeleton is safe and practical, not physically exhausting, and requires just a little cognitive effort. In addition, exoskeleton use is easy to learn, increases mobility and functional abilities, and decreases the risk of secondary injuries, restoring a gait pattern comparable to normal when walking over ground. Nevertheless, the rehabilitative use of an exoskeleton has some important limitations: the wearability criteria are too restrictive, the training to use it autonomously at home is very complex, and the device is still extremely expensive. A further limitation is the scarcity of experimental designs that demonstrate the effectiveness of the exoskeleton compared to other rehabilitative techniques and technologies.

Keywords

Powered active lower limb exoskeleton Paraplegic patients Gait disorders Central nervous system lesions Gait rehabilitation 

References

  1. Aach M, Meindl R, Hayashi T, Lange I, Geßmann J, Sander A, Nicolas V, Schwenkreis P, Tegenthoff M, Sankai Y, Schildhauer TA (2013) Exoskeletal neuro-rehabilitation in chronic paraplegic patients – initial results. In: Pons JL, Torricelli D, Pajaro M (eds) Converging clinical and engineering research on neurorehabilitation. Springer, Berlin, pp 233–236.  https://doi.org/10.1007/978-3-642-34546-3_99CrossRefGoogle Scholar
  2. Aach M, Cruciger O, Sczesny-Kaiser M, Hoffken O, Meindl RC, Tegenthoff M, Schwenkreis P, Sankai Y, Schildhauer TA (2014) Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J 14(12):2847–2853.  https://doi.org/10.1016/J.Spinee.2014.03.042CrossRefGoogle Scholar
  3. Agrawal Y, Carey JP, Hoffman HJ, Sklare DA, Schubert MC (2011) The modified Romberg balance test: normative data in US adults. Otol Neurotol 32(8):1309–1311.  https://doi.org/10.1097/MAO.0b013e31822e5beeCrossRefGoogle Scholar
  4. Andersson P, Franzen E (2015) Effects of weight-shift training on walking ability, ambulation, and weight distribution in individuals with chronic stroke: a pilot study. Top Stroke Rehabil [Epub ahead of print].  https://doi.org/10.1179/1074935715Z.00000000052
  5. Asselin P, Knezevic S, Kornfeld S, Cirnigliaro C, Agranova-Breyter I, Bauman WA, Spungen AM (2015) Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J Rehabil Res Dev 52(2):147–158.  https://doi.org/10.1682/JRRD.2014.02.0060CrossRefGoogle Scholar
  6. Belforte G, Gastaldi L, Sorli M (2001) Pneumatic active gait orthosis. Mechatronics 11(3):301–323.  https://doi.org/10.1016/S0957-4158(00)00017-9CrossRefGoogle Scholar
  7. Benson I, Hart K, Tussler D, van Middendorp JJ (2016) Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil 30(1):73–84.  https://doi.org/10.1177/0269215515575166CrossRefGoogle Scholar
  8. Bishop L, Stein J, Wong CK (2012) Robot-aided gait training in an individual with chronic spinal cord injury: a case study. J Neurol Phys Ther 36(3):138–143.  https://doi.org/10.1097/NPT.0b013e3182624c87CrossRefGoogle Scholar
  9. Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL (2015) The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil 12:54.  https://doi.org/10.1186/s12984-015-0048-yCrossRefGoogle Scholar
  10. Buxton RB (2013) The physics of functional magnetic resonance imaging (fMRI). Rep Prog Phys 76(9):096601.  https://doi.org/10.1088/0034-4885/76/9/096601CrossRefGoogle Scholar
  11. Chaigneau D, Arsicault M, Gazeau JP, Zeghloul S (2008) LMS robotic hand grasp and manipulation planning (an isomorphic exoskeleton approach). Robotica 26(2):177–188.  https://doi.org/10.1017/S0263574707003736CrossRefGoogle Scholar
  12. Cuesta-Vargas AI, Perez-Cruzado D (2014) Relationship between Barthel index with physical tests in adults with intellectual disabilities. SpringerPlus 3(543).  https://doi.org/10.1186/2193-1801-3-543
  13. Dickstein R, Levy S, Shefi S, Holtzman S, Peleg S, Vatine J-J (2014) Motor imagery group practice for gait rehabilitation in individuals with post-stroke hemiparesis: a pilot study. NeuroRehabilitation 34(2):267–276.  https://doi.org/10.3233/NRE-131035Google Scholar
  14. Ditunno JFJ, Ditunno PL, Scivoletto G, Patrick M, Dijkers M, Barbeau H, Burns AS, Marino RJ, Schmidt-Read M (2013) The walking index for spinal cord injury (WISCI/WISCI II): nature, metric properties, use and misuse. Spinal Cord 51(5):346–355.  https://doi.org/10.1038/sc.2013.9CrossRefGoogle Scholar
  15. Downs S, Marquez J, Chiarelli P (2013) The berg balance scale has high intra- and inter-rater reliability but absolute reliability varies across the scale: a systematic review. J Physiother 59(2):93–99.  https://doi.org/10.1016/S1836-9553(13)70161-9CrossRefGoogle Scholar
  16. Esquenazi A, Talaty M, Packel A, Saulino M (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91(11):911–921.  https://doi.org/10.1097/PHM.0b013e318269d9a3CrossRefGoogle Scholar
  17. Farris RJ, Quintero HA, Goldfarb M (2011) Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng 19(6):652–659.  https://doi.org/10.1109/TNSRE.2011.2163083CrossRefGoogle Scholar
  18. Farris RJ, Quintero HA, Goldfarb M (2012) Performance evaluation of a lower limb exoskeleton for stair ascent and descent with paraplegia. In: 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: EMBC 2012, San Diego, 28 Aug–1 Sep 2012. pp 1908–1911.  https://doi.org/10.1109/EMBC.2012.6346326
  19. Farris RJ, Quintero HA, Murray SA, Ha KH, Hartigan C, Goldfarb M (2014) A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng 22(3):482–490.  https://doi.org/10.1109/TNSRE.2013.2268320CrossRefGoogle Scholar
  20. Fondazione Santa Lucia (2015) Maratona di roma 2015, un esoscheletro hi-tech per tornare a correre. http://www.hsantalucia.it/modules.php?name=News&file=article&sid=989. Accessed 15 May 2015
  21. Fung S, Byl N, Melnick M, Callahan P, Selinger A, Ishii K, Devins J, Fischer P, Torburn L, Andrade C-K (1997) Functional outcomes: the development of a new instrument to monitor the effectiveness of physical therapy. Eur J Phys Rehab Med 7(2):31–41Google Scholar
  22. Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, Etheridge S, Farris R (2015) Mobility outcomes following five training sessions with a powered exoskeleton. Top Spinal Cord Inj Rehabil 21(2):93–99.  https://doi.org/10.1310/sci2102-93CrossRefGoogle Scholar
  23. Hellstrom K, Lindmark B, Fugl-Meyer A (2002) The falls-efficacy scale, Swedish version: does it reflect clinically meaningful changes after stroke? Disabil Rehabil 24(9):471–481.  https://doi.org/10.1080/09638280110105259CrossRefGoogle Scholar
  24. Herr H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. J Neuroeng Rehabil 6(1):1–9.  https://doi.org/10.1186/1743-0003-6-21CrossRefGoogle Scholar
  25. Ikehara T, Nagamura K, Ushida T, Tanaka E, Saegusa S, Kojima S, Yuge L (2011) Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity. In: IEEE International Conference on Rehabilitation Robotics: ICORR 2011, Zurich, 29 Jun–1 Jul 2011. pp 1–7.  https://doi.org/10.1109/ICORR.2011.5975449
  26. Kao P-C, Lewis CL, Ferris DP (2010) Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech 43(2):203–209.  https://doi.org/10.1016/j.jbiomech.2009.09.030CrossRefGoogle Scholar
  27. Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi K, Sankai Y (2010) Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia. In: 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society: EMBC 2010, Buenos Aires, 31 Aug–4 Sep 2010. pp 462–466.  https://doi.org/10.1109/IEMBS.2010.5626191
  28. Kolakowsky-Hayner SA, Crew J, Moran S, Shah A (2013) Safety and feasibility of using the EksoTM bionic exoskeleton to aid ambulation after spinal cord injury. J Spine S4(3):1–8.  https://doi.org/10.4172/2165-7939.S4-003
  29. Lee HS, Song J, Min K, Choi Y-S, Kim S-M, Cho S-R, Kim M (2014) Short-term effects of erythropoietin on neurodevelopment in infants with cerebral palsy: a pilot study. Brain Dev 36(9):764–769.  https://doi.org/10.1016/j.braindev.2013.11.002CrossRefGoogle Scholar
  30. Li L, Ding L, Chen N, Mao Y, Huang D, Li L (2015) Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke. Biomed Mater Eng 26:S329–S340.  https://doi.org/10.3233/bme-151320Google Scholar
  31. McHorney CA, Ware JE, Raczek AE (1993) The MOS 36-item short-form health survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care 31(3):247–263CrossRefGoogle Scholar
  32. Mehrholz J, Wagner K, Rutte K, Meissner D, Pohl M (2007) Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch Phys Med Rehabil 88(10):1314–1319.  https://doi.org/10.1016/j.apmr.2007.06.764CrossRefGoogle Scholar
  33. Mohseni Bandpei MA, Rahmani N, Majdoleslam B, Abdollahi I, Ali SS, Ahmad A (2014) Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: an updated systematic review. J Manipulative Physiol Ther 37(7):510–521.  https://doi.org/10.1016/j.jmpt.2014.05.006CrossRefGoogle Scholar
  34. Mooney LM, Rouse EJ, Herr HM (2014) Autonomous exoskeleton reduces metabolic cost of human walking. J Neuroeng Rehabil 11(151):2–5.  https://doi.org/10.1186/1743-0003-11-151Google Scholar
  35. Moreno J, Ama A, Reyes-Guzmán A, Gil-Agudo Á, Ceres R, Pons J (2011) Neurorobotic and hybrid management of lower limb motor disorders: a review. Med Biol Eng Comput 49(10):1119–1130.  https://doi.org/10.1007/s11517-011-0821-4CrossRefGoogle Scholar
  36. Mori Y, Takayama K, Zengo T, Nakamura T (2004) Development of straight style transfer equipment for lower limbs disabled “able”. J Robot Mechatron 16(5):456–463CrossRefGoogle Scholar
  37. Mori Y, Okada J, Takayama K (2006) Development of a standing style transfer system “able” for disabled lower limbs. IEEE/ASME Trans Mechatronics 11(4):372–380.  https://doi.org/10.1109/TMECH.2006.878558CrossRefGoogle Scholar
  38. Nef T, Riener R (2012) Three-dimensional multi-degree-of-freedom arm therapy robot (ARMin). In: Dietz V, Nef T, Rymer WZ (eds) Neurorehabilitation technology. Springer, London, pp 141–157CrossRefGoogle Scholar
  39. Neuhaus PD, Noorden JH, Craig TJ, Torres T, Kirschbaum J, Pratt JE (2011) Design and evaluation of mina: a robotic orthosis for paraplegics. In: IEEE International Conference on Rehabilitation Robotics: ICORR 2011, Zurich, 29 Jun–1 Jul 2011. pp 1–8.  https://doi.org/10.1109/ICORR.2011.5975468
  40. Nilsson A, Vreede KS, Haglund V, Kawamoto H, Sankai Y, Borg J (2014) Gait training early after stroke with a new exoskeleton – the hybrid assistive limb: a study of safety and feasibility. J Neuroeng Rehabil 11(92):1–10.  https://doi.org/10.1186/1743-0003-11-92Google Scholar
  41. Pandyan AD, Johnson GR, Price CI, Curless RH, Barnes MP, Rodgers H (1999) A review of the properties and limitations of the Ashworth and modified Ashworth scales as measures of spasticity. Clin Rehabil 13(5):373–383CrossRefGoogle Scholar
  42. Park EY, Choi YI (2014) Psychometric properties of the lower extremity subscale of the Fugl-Myer assessment for community-dwelling hemiplegic stroke patients. J Phys Ther Sci 26(11):1775–1777.  https://doi.org/10.1589/jpts.26.1775CrossRefGoogle Scholar
  43. Peters DM, Middleton A, Donley JW, Blanck EL, Fritz SL (2014) Concurrent validity of walking speed values calculated via the GAITRite electronic walkway and 3 meter walk test in the chronic stroke population. Physiother Theory Pract 30(3):183–188.  https://doi.org/10.3109/09593985.2013.845805CrossRefGoogle Scholar
  44. Podsiadlo D, Richardson S (1991) The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39(2):142–148CrossRefGoogle Scholar
  45. Quintero HA, Farris RJ, Goldfarb M (2012) A method for the autonomous control of lower limb exoskeletons for persons with paraplegia. J Med Devices 6(4):1–6. 10.1115/1.4007181CrossRefGoogle Scholar
  46. Raab K, Krakow K, Tripp F, Jung M (2016) Effects of training with the ReWalk exoskeleton on quality of life in incomplete spinal cord injury: a single case study. Spinal Cord Ser Cases 1(1):15025.  https://doi.org/10.1038/scsandc.2015.25CrossRefGoogle Scholar
  47. Rahman T, Sample W, Jayakumar S, King MM, Wee JY, Seliktar R, Alexander M, Scavina M, Clark A (2006) Passive exoskeletons for assisting limb movement. J Rehabil Res Dev 43(5):583–590.  https://doi.org/10.1682/JRRD.2005.04.0070CrossRefGoogle Scholar
  48. Reed MD, Van Nostran W (2014) Assessing pain intensity with the visual analog scale: a plea for uniformity. J Clin Pharmacol 54(3):241–144.  https://doi.org/10.1002/jcph.250CrossRefGoogle Scholar
  49. Reybrouck T (2003) Clinical usefulness and limitations of the 6-minute walk test in patients with cardiovascular or pulmonary disease. Chest 123(2):325–327.  https://doi.org/10.1378/chest.123.2.325CrossRefGoogle Scholar
  50. Saji N, Kimura K, Ohsaka G, Higashi Y, Teramoto Y, Usui M, Kita Y (2015) Functional independence measure scores predict level of long-term care required by patients after stroke: a multicenter retrospective cohort study. Disabil Rehabil 37(4):331–337.  https://doi.org/10.3109/09638288.2014.918195CrossRefGoogle Scholar
  51. Sanz-Merodio D, Cestari M, Arevalo JC, Garcia E (2012) A lower-limb exoskeleton for gait assistance in quadriplegia. In: IEEE International Conference on Robotics and Biomimetics: ROBIO 2012, Guangzhou, 11–14 Dec 2012. pp 122–127.  https://doi.org/10.1109/ROBIO.2012.6490954
  52. Sczesny-Kaiser M, Höffken O, Lissek S, Lenz M, Schlaffke L, Nicolas V, Meindl R, Aach M, Sankai Y, Schildhauer TA, Tegenthoff M, Schwenkreis P (2013) Neurorehabilitation in chronic paraplegic patients with the HAL® exoskeleton – preliminary electrophysiological and fMRI data of a pilot study. In: Pons JL, Torricelli D, Pajaro M (eds) Converging clinical and engineering research on neurorehabilitation. Springer, Berlin, pp 611–615.  https://doi.org/10.1007/978-3-642-34546-3_99CrossRefGoogle Scholar
  53. Shin JC, Yoo JH, Jung TH, Goo HR (2011) Comparison of lower extremity motor score parameters for patients with motor incomplete spinal cord injury using gait parameters. Spinal Cord 49(4):529–533.  https://doi.org/10.1038/sc.2010.158CrossRefGoogle Scholar
  54. Spungen AM, Asselin P, Fineberg DB, Kornfeld SD, Harel NY (2013) Exoskeletal-assisted walking for persons with motor-complete paraplegia. In: STO Human Factors and Medicine Panel (HFM) Symposium, Milan, 15–17 Apr 2013Google Scholar
  55. Stein J, Bishop L, Stein DJ, Wong CK (2014) Gait training with a robotic leg brace after stroke: a randomized controlled pilot study. Am J Phys Med Rehabil 93(11):987–994.  https://doi.org/10.1097/PHM.0000000000000119CrossRefGoogle Scholar
  56. Stookey AD, Katzel LI, Steinbrenner G, Shaughnessy M, Ivey FM (2014) The short physical performance battery as a predictor of functional capacity after stroke. J Stroke Cerebrovasc Dis 23(1):130–135.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.11.003CrossRefGoogle Scholar
  57. Strausser KA, Kazerooni H (2011) The development and testing of a human machine interface for a mobile medical exoskeleton. In: IEEE/RSJ International Conference on Intelligent Robots and Systems: IROS 2011, San Francisco, 25–30 Sep 2011. pp 4911–4916.  https://doi.org/10.1109/IROS.2011.6095025
  58. Strausser KA, Swift TA, Zoss AB, Kazerooni H (2010) Prototype medical exoskeleton for paraplegic mobility: first experimental results. In: ASME 2010 Dynamic Systems and Control Conference: DSCC 2010, Cambridge, MA, 12–15 Sep 2010. ASME, pp 453–458.  https://doi.org/10.1115/DSCC2010-4261
  59. Suzuki K, Kawamura Y, Hayashi T, Sakurai T, Hasegawa Y, Sankai Y (2005) Intention-based walking support for paraplegia patient. In: IEEE International Conference on Systems, Man and Cybernetics: SMC 2005, Waikoloa, 10–12 Oct 2005. pp 2707–2713 Vol. 2703.  https://doi.org/10.1109/ICSMC.2005.1571559
  60. Sylos-Labini F, La Scaleia V, d’Avella A, Pisotta I, Tamburella F, Scivoletto G, Molinari M, Wang S, Wang L, van Asseldonk E, van der Kooij H, Hoellinger T, Cheron G, Thorsteinsson F, Ilzkovitz M, Gancet J, Hauffe R, Zanov F, Lacquaniti F, Ivanenko YP (2014) EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci 8(423):1–12.  https://doi.org/10.3389/fnhum.2014.00423Google Scholar
  61. Talaty M, Esquenazi A, Briceño JE (2013) Differentiating ability in users of the ReWalk™ powered exoskeleton: an analysis of walking kinematics. In: IEEE International Conference on Rehabilitation Robotics: ICORR 2013 Seattle, 24–26 Jun 2013. pp 1–5.  https://doi.org/10.1109/ICORR.2013.6650469
  62. Tinetti ME (1986) Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 34(2):119–126.  https://doi.org/10.1111/j.1532-5415.1986.tb05480.xCrossRefGoogle Scholar
  63. Tsukahara A, Hasegawa Y, Sankai Y (2009) Standing-up motion support for paraplegic patient with robot suit hal. In: IEEE International Conference on Rehabilitation Robotics: ICORR 2009, Kyoto, 23–26 Jun 2009. pp 211–217.  https://doi.org/10.1109/ICORR.2009.5209567
  64. Tsukahara A, Kawanishi R, Hasegawa Y, Sankai Y (2010) Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL. Adv Robotics 24(11):1615–1638.  https://doi.org/10.1163/016918610X512622CrossRefGoogle Scholar
  65. Watanabe H, Tanaka N, Inuta T, Saitou H, Yanagi H (2014) Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Arch Phys Med Rehabil 95(11):2006–2012.  https://doi.org/10.1016/J.Apmr.2014.07.002CrossRefGoogle Scholar
  66. Whitney SL, Wrisley DM, Marchetti GF, Gee MA, Redfern MS, Furman JM (2005) Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the five-times-sit-to-stand test. Phys Ther 85(10):1034–1045Google Scholar
  67. Wolf SL, Catlin PA, Gage K, Gurucharri K, Robertson R, Stephen K (1999) Establishing the reliability and validity of measurements of walking time using the Emory functional ambulation profile. Phys Ther 79(12):1122–1133Google Scholar
  68. Yang N, Zhang B, Gao C (2014) The baseline NIHSS score in female and male patients and short-time outcome: a study in young ischemic stroke. J Thromb Thrombolysis 37(4):565–570.  https://doi.org/10.1007/s11239-013-0986-9CrossRefGoogle Scholar
  69. Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A (2012) Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med 35(2):96–101.  https://doi.org/10.1179/2045772312Y.0000000003CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stefano Federici
    • 1
  • Fabio Meloni
    • 1
  • Marco Bracalenti
    • 1
  1. 1.Department of Philosophy, Social and Human Sciences and EducationUniversity of PerugiaPerugiaItaly

Section editors and affiliations

  • Sebastian I. Wolf
    • 1
  1. 1.Movement Analysis LaboratoryClinic for Orthopedics and Trauma Surgery; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury;Heidelberg University HospitalHeidelbergGermany

Personalised recommendations