Advertisement

Brain-Computer Interfaces for Motor Rehabilitation

  • Rüdiger Rupp
Reference work entry

Abstract

Injuries of the central nervous system such as stroke or spinal cord injury are a major cause for severe motor impairments. The inability to activate muscles voluntarily and the associated loss of ambulatory or manipulation skills constitute a substantial handicap in the patients’ life. This results in a tremendously reduced quality of life and represents a severe barrier for social and professional integration. Therefore, rehabilitation aims at achieving the greatest amount of autonomy in everyday life by application of restorative or compensatory therapeutic approaches. While restorative strategies are based on principles of motor learning and aim at the recovery of the original function, compensatory therapies are applied in cases where recovery is unlikely to happen and are often based on the use of assistive technology.

Brain-computer interfaces (BCIs) are an emerging technology that measure brain activities and translate them into control signals for a variety of assistive devices. BCIs may contribute to both rehabilitative and compensatory therapeutic strategies. While most of the BCI-controlled assistive technology such as communication devices, robot arms, or neuroprostheses based on functional electrical stimulation focus on the compensation of a lost function, there are only a few, however, very promising examples on the successful use of rehabilitative BCIs for restoration of grasping or walking.

Although assistive and rehabilitative BCIs seem to be a valuable component of motor rehabilitation programs, more end user studies are needed to reveal the full potential of BCIs for better participation and improved quality of life.

Keywords

Brain-computer interface Brain-machine interface Motor rehabilitation Restoration Recovery Compensation Robotic arm Neuroprosthesis Functional electrical stimulation Grasp Exoskeleton Ambulation 

References

  1. Aflalo T, Kellis S, Klaes C, Lee B, Shi Y, Pejsa K, Shanfield K, Hayes-Jackson S, Aisen M, Heck C, Liu C, Andersen RA (2015) Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348(6237):906–910.  https://doi.org/10.1126/science.aaa5417CrossRefGoogle Scholar
  2. Anderson KD (2004) Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 21(10):1371–1383CrossRefGoogle Scholar
  3. Ang KK, Guan C, Chua KS, Ang BT, Kuah C, Wang C, Phua KS, Chin ZY, Zhang H (2010) Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference 2010:5549–5552.  https://doi.org/10.1109/IEMBS.2010.5626782
  4. Ang KK, Guan C, Phua KS, Wang C, Zhao L, Teo WP, Chen C, Ng YS, Chew E (2015) Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Arch Phys Med Rehabil 96(3 Suppl):S79–S87.  https://doi.org/10.1016/j.apmr.2014.08.008CrossRefGoogle Scholar
  5. Arya KN, Verma R, Garg RK (2011) Estimating the minimal clinically important difference of an upper extremity recovery measure in subacute stroke patients. Top Stroke Rehabil 18(Suppl 1):599–610.  https://doi.org/10.1310/tsr18s01-599CrossRefGoogle Scholar
  6. Blabe CH, Gilja V, Chestek CA, Shenoy KV, Anderson KD, Henderson JM (2015) Assessment of brain-machine interfaces from the perspective of people with paralysis. J Neural Eng 12(4):043002.  https://doi.org/10.1088/1741-2560/12/4/043002CrossRefGoogle Scholar
  7. Bouton CE, Shaikhouni A, Annetta NV, Bockbrader MA, Friedenberg DA, Nielson DM, Sharma G, Sederberg PB, Glenn BC, Mysiw WJ, Morgan AG, Deogaonkar M, Rezai AR (2016) Restoring cortical control of functional movement in a human with quadriplegia. Nature 533(7602):247–250.  https://doi.org/10.1038/nature17435CrossRefGoogle Scholar
  8. Broetz D, Braun C, Weber C, Soekadar SR, Caria A, Birbaumer N (2010) Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil Neural Repair 24(7):674–679.  https://doi.org/10.1177/1545968310368683CrossRefGoogle Scholar
  9. Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N (2008) Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39(3):910–917.  https://doi.org/10.1161/STROKEAHA.107.505313CrossRefGoogle Scholar
  10. Caria A, Weber C, Brotz D, Ramos A, Ticini LF, Gharabaghi A, Braun C, Birbaumer N (2011) Chronic stroke recovery after combined BCI training and physiotherapy: a case report. Psychophysiology 48(4):578–582.  https://doi.org/10.1111/j.1469-8986.2010.01117.xPSYP1117CrossRefGoogle Scholar
  11. Chaudhary U, Birbaumer N, Ramos-Murguialday A (2016) Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol 12(9):513–525.  https://doi.org/10.1038/nrneurol.2016.113CrossRefGoogle Scholar
  12. Chavarriaga R, Sobolewski A, Millan Jdel R (2014) Errare machinale est: the use of error-related potentials in brain-machine interfaces. Front Neurosci 8:208.  https://doi.org/10.3389/fnins.2014.00208CrossRefGoogle Scholar
  13. Cincotti F, Mattia D, Aloise F, Bufalari S, Schalk G, Oriolo G, Cherubini A, Marciani MG, Babiloni F (2008) Non-invasive brain-computer interface system: towards its application as assistive technology. Brain Res Bull 75(6):796–803.  https://doi.org/10.1016/j.brainresbull.2008.01.007CrossRefGoogle Scholar
  14. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564.  https://doi.org/10.1016/S0140-6736(12)61816-9CrossRefGoogle Scholar
  15. Contreras-Vidal JL, Grossman RG (2013) NeuroRex: a clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference 2013:1579–1582.  https://doi.org/10.1109/EMBC.2013.6609816
  16. Contreras-Vidal J, Presacco A, Agashe H, Paek A (2012) Restoration of whole body movement: toward a noninvasive brain-machine interface system. IEEE Pulse 3(1):34–37.  https://doi.org/10.1109/MPUL.2011.2175635CrossRefGoogle Scholar
  17. Contreras-Vidal JL, AB N, Brantley J, Cruz-Garza JG, He Y, Manley Q, Nakagome S, Nathan K, Tan SH, Zhu F, Pons JL (2016) Powered exoskeletons for bipedal locomotion after spinal cord injury. J Neural Eng 13(3):031001.  https://doi.org/10.1088/1741-2560/13/3/031001CrossRefGoogle Scholar
  18. Curt A, Schwab ME, Dietz V (2004) Providing the clinical basis for new interventional therapies: refined diagnosis and assessment of recovery after spinal cord injury. Spinal Cord 42(1):1–6.  https://doi.org/10.1038/sj.sc.3101558CrossRefGoogle Scholar
  19. Daly JJ, Wolpaw JR (2008) Brain-computer interfaces in neurological rehabilitation. Lancet Neurol 7(11):1032–1043.  https://doi.org/10.1016/S1474-4422(08)70223-0S1474-4422(08)70223-0 [pii]CrossRefGoogle Scholar
  20. Daly JJ, Cheng R, Rogers J, Litinas K, Hrovat K, Dohring M (2009) Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J Neurol Phys Ther 33(4):203–211.  https://doi.org/10.1097/NPT.0b013e3181c1fc0b. 01253086-200912000-00007 [pii]CrossRefGoogle Scholar
  21. Dietz V, Fouad K (2014) Restoration of sensorimotor functions after spinal cord injury. Brain J Neurol 137(Pt 3):654–667.  https://doi.org/10.1093/brain/awt262CrossRefGoogle Scholar
  22. Dimyan MA, Cohen LG (2011) Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol 7(2):76–85.  https://doi.org/10.1038/nrneurol.2010.200CrossRefGoogle Scholar
  23. Do AH, Wang PT, King CE, Chun SN, Nenadic Z (2013) Brain-computer interface controlled robotic gait orthosis. J Neuroeng Rehabil 10:111.  https://doi.org/10.1186/1743-0003-10-111CrossRefGoogle Scholar
  24. Downey JE, Weiss JM, Muelling K, Venkatraman A, Valois JS, Hebert M, Bagnell JA, Schwartz AB, Collinger JL (2016) Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping. J Neuroeng Rehabil 13:28.  https://doi.org/10.1186/s12984-016-0134-9CrossRefGoogle Scholar
  25. Enzinger C, Ropele S, Fazekas F, Loitfelder M, Gorani F, Seifert T, Reiter G, Neuper C, Pfurtscheller G, Müller-Putz GR (2008) Brain motor system function in a patient with complete spinal cord injury following extensive brain-computer interface training. Exp Brain Res 190(2):215–223.  https://doi.org/10.1007/s00221-008-1465-yCrossRefGoogle Scholar
  26. Ethier C, Gallego JA, Miller LE (2015) Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery. Curr Opin Neurobiol 33:95–102.  https://doi.org/10.1016/j.conb.2015.03.007CrossRefGoogle Scholar
  27. Exner G (2004) The working group “paraplegia” of the federation of commercial professional associations in Germany. Facts, figures and prognoses. Trauma Berufskrankh 6:147–151CrossRefGoogle Scholar
  28. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8(4):355–369.  https://doi.org/10.1016/S1474-4422(09)70025-0CrossRefGoogle Scholar
  29. Flesher SN, Collinger JL, Foldes ST, Weiss JM, Downey JE, Tyler-Kabara EC, Bensmaia SJ, Schwartz AB, Boninger ML, Gaunt RA (2016) Intracortical microstimulation of human somatosensory cortex. Sci Transl Med 8(361):361ra141.  https://doi.org/10.1126/scitranslmed.aaf8083CrossRefGoogle Scholar
  30. Gunasekera B, Saxena T, Bellamkonda R, Karumbaiah L (2015) Intracortical recording interfaces: current challenges to chronic recording function. ACS Chem Neurosci 6(1):68–83.  https://doi.org/10.1021/cn5002864CrossRefGoogle Scholar
  31. Hassan MA, Fraser M, Conway BA, Allan DB, Vuckovic A (2015) The mechanism of neurofeedback training for treatment of central neuropathic pain in paraplegia: a pilot study. BMC Neurol 15:200.  https://doi.org/10.1186/s12883-015-0445-7CrossRefGoogle Scholar
  32. He Y, Nathan K, Venkatakrishnan A, Rovekamp R, Beck C, Ozdemir R, Francisco GE, Contreras-Vidal JL (2014) An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference 2014:3985–3988.  https://doi.org/10.1109/EMBC.2014.6944497
  33. Hendricks HT, van Limbeek J, Geurts AC, Zwarts MJ (2002) Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil 83(11):1629–1637CrossRefGoogle Scholar
  34. Hiremath SV, Chen W, Wang W, Foldes S, Yang Y, Tyler-Kabara EC, Collinger JL, Boninger ML (2015) Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays. Front Integr Neurosci 9:40.  https://doi.org/10.3389/fnint.2015.00040CrossRefGoogle Scholar
  35. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375.  https://doi.org/10.1038/nature11076CrossRefGoogle Scholar
  36. ISO (2010) ISO 9241:2010 Ergonomics of human-system interaction Part 210: Human-centred design for interactive systems, GenevaGoogle Scholar
  37. Jackson A, Zimmermann JB (2012) Neural interfaces for the brain and spinal cord – restoring motor function. Nat Rev Neurol 8(12):690–699.  https://doi.org/10.1038/nrneurol.2012.219CrossRefGoogle Scholar
  38. Jiang N, Gizzi L, Mrachacz-Kersting N, Dremstrup K, Farina D (2015) A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clin Neurophysiol 126(1):154–159.  https://doi.org/10.1016/j.clinph.2014.05.003CrossRefGoogle Scholar
  39. Kaiser V, Bauernfeind G, Kreilinger A, Kaufmann T, Kübler A, Neuper C, Müller-Putz GR (2014) Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG. NeuroImage 85(Pt 1):432–444.  https://doi.org/10.1016/j.neuroimage.2013.04.097CrossRefGoogle Scholar
  40. Kim YJ, Park SW, Yeom HG, Bang MS, Kim JS, Chung CK, Kim S (2015) A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals. Biomed Eng Online 14:81.  https://doi.org/10.1186/s12938-015-0075-8CrossRefGoogle Scholar
  41. King CE, Wang PT, McCrimmon CM, Chou CC, Do AH, Nenadic Z (2015) The feasibility of a brain-computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia. J Neuroeng Rehabil 12:80.  https://doi.org/10.1186/s12984-015-0068-7CrossRefGoogle Scholar
  42. Kleih SC, Kaufmann T, Zickler C, Halder S, Leotta F, Cincotti F, Aloise F, Riccio A, Herbert C, Mattia D, Kübler A (2011) Out of the frying pan into the fire – the P300-based BCI faces real-world challenges. Prog Brain Res 194:27–46.  https://doi.org/10.1016/B978-0-444-53815-4.00019-4CrossRefGoogle Scholar
  43. Kreilinger A, Kaiser V, Breitwieser C, Williamson J, Neuper C, Müller-Putz GR (2011) Switching between manual control and brain-computer interface using long term and short term quality measures. Front Neurosci 5:147.  https://doi.org/10.3389/fnins.2011.00147Google Scholar
  44. Kübler A, Kotchoubey B, Hinterberger T, Ghanayim N, Perelmouter J, Schauer M, Fritsch C, Taub E, Birbaumer N (1999) The thought translation device: a neurophysiological approach to communication in total motor paralysis. Exp Brain Res 124(2):223–232CrossRefGoogle Scholar
  45. Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. Lancet Neurol 8(8):741–754.  https://doi.org/10.1016/S1474-4422(09)70150-4CrossRefGoogle Scholar
  46. Langhorne P, Bernhardt J, Kwakkel G (2011) Stroke rehabilitation. Lancet 377(9778):1693–1702.  https://doi.org/10.1016/S0140-6736(11)60325-5CrossRefGoogle Scholar
  47. Lee S, Shin S, Woo S, Kim K, Lee H-N (2013) Review of wireless brain-computer interface systems. In: Fazel-Rezai R (ed) Brain-computer interface systems – recent progress and future prospects.  https://doi.org/10.5772/56436Google Scholar
  48. Mark VW, Taub E (2004) Constraint-induced movement therapy for chronic stroke hemiparesis and other disabilities. Restor Neurol Neurosci 22(3–5):317–336Google Scholar
  49. McCaughey EJ, Purcell M, McLean AN, Fraser MH, Bewick A, Borotkanics RJ, Allan DB (2016) Changing demographics of spinal cord injury over a 20-year period: a longitudinal population-based study in Scotland. Spinal Cord 54(4):270–276.  https://doi.org/10.1038/sc.2015.167CrossRefGoogle Scholar
  50. McFarland DJ, Sarnacki WA, Wolpaw JR (2010) Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng 7(3):036007.  https://doi.org/10.1088/1741-2560/7/3/036007CrossRefGoogle Scholar
  51. Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R (2005) EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 382(1–2):169–174.  https://doi.org/10.1016/j.neulet.2005.03.021CrossRefGoogle Scholar
  52. Müller-Putz GR, Breitwieser C, Cincotti F, Leeb R, Schreuder M, Leotta F, Tavella M, Bianchi L, Kreilinger A, Ramsay A, Rohm M, Sagebaum M, Tonin L, Neuper C, Millan JR (2011) Tools for brain-computer interaction: a general concept for a hybrid BCI. Front Neuroinform 5:30.  https://doi.org/10.3389/fninf.2011.00030CrossRefGoogle Scholar
  53. Müller-Putz G, Leeb R, Tangermann M, Hohne J, Kubler A, Cincotti F, Mattia D, Rupp R, Müller KR, Millan JD (2015) Towards noninvasive hybrid brain-computer interfaces: framework, practice, clinical application, and beyond. P Ieee 103(6):926–943.  https://doi.org/10.1109/Jproc.2015.2411333CrossRefGoogle Scholar
  54. Muralidharan A, Chae J, Taylor DM (2011) Extracting attempted hand movements from EEGs in people with complete hand paralysis following stroke. Front Neurosci 5:39.  https://doi.org/10.3389/fnins.2011.00039CrossRefGoogle Scholar
  55. Nardone R, Holler Y, Brigo F, Seidl M, Christova M, Bergmann J, Golaszewski S, Trinka E (2013) Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res 1504:58–73.  https://doi.org/10.1016/j.brainres.2012.12.034CrossRefGoogle Scholar
  56. Neuper C, Scherer R, Reiner M, Pfurtscheller G (2005) Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res 25(3):668–677.  https://doi.org/10.1016/j.cogbrainres.2005.08.014CrossRefGoogle Scholar
  57. Nilsen DM, Gillen G, Gordon AM (2010) Use of mental practice to improve upper-limb recovery after stroke: a systematic review. Am J Occup Ther 64(5):695–708CrossRefGoogle Scholar
  58. NSCISC (2015) The 2015 annual statistical report for the model spinal cord injury care systems. National SCI Statistical Center. Available online: https://www.nscisc.uab.edu/PublicDocuments/reports/pdf/2015%20NSCISC%20Annual%20Statistical%20Report%20Complete%20Public%20Version.pdf, Last date of access: 10th of November 2016
  59. Ono T, Shindo K, Kawashima K, Ota N, Ito M, Ota T, Mukaino M, Fujiwara T, Kimura A, Liu M, Ushiba J (2014) Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Front Neuroeng 7:19.  https://doi.org/10.3389/fneng.2014.00019CrossRefGoogle Scholar
  60. Osuagwu BC, Wallace L, Fraser M, Vuckovic A (2016) Rehabilitation of hand in subacute tetraplegic patients based on brain computer interface and functional electrical stimulation: a randomised pilot study. J Neural Eng 13(6):065002.  https://doi.org/10.1088/1741-2560/13/6/065002CrossRefGoogle Scholar
  61. Ouzký M (2002) Towards concerted efforts for treating and curing spinal cord injury, Report of the Council of Europe Doc. No. 9401. https://assembly.coe.int/nw/xml/XRef/X2H-Xref-ViewHTML.asp?FileID=9680&lang=en. Accessed Doc.9401
  62. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol: Off J Int Fed Clin Neurophys 110(11):1842–1857CrossRefGoogle Scholar
  63. Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R (2003) ‘Thought’ – control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351(1):33–36CrossRefGoogle Scholar
  64. Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S, Inghilleri M, Astolfi L, Cincotti F, Mattia D (2015) Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol 77(5):851–865.  https://doi.org/10.1002/ana.24390CrossRefGoogle Scholar
  65. Pineda JA, Silverman DS, Vankov A, Hestenes J (2003) Learning to control brain rhythms: making a brain-computer interface possible. IEEE Trans Neural Syst Rehab Eng: Publ IEEE Eng Med Biol Soc 11(2):181–184.  https://doi.org/10.1109/TNSRE.2003.814445CrossRefGoogle Scholar
  66. Prasad G, Herman P, Coyle D, McDonough S, Crosbie J (2010) Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J Neuroeng Rehabil 7:60.  https://doi.org/10.1186/1743-0003-7-60CrossRefGoogle Scholar
  67. Prochazka A (2015) Technology to enhance arm and hand function. In: Dietz V, Ward N (eds) Oxford textbook of neurorehabilitation. Oxford University Press, Oxford.  https://doi.org/10.1093/med/9780199673711.003.0031_update_001Google Scholar
  68. Ramos-Murguialday A, Broetz D, Rea M, Laer L, Yilmaz O, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG, Birbaumer N (2013) Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol 74(1):100–108.  https://doi.org/10.1002/ana.23879CrossRefGoogle Scholar
  69. Rohm M, Schneiders M, Müller C, Kreilinger A, Kaiser V, Müller-Putz GR, Rupp R (2013) Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif Intell Med 59(2):133–142.  https://doi.org/10.1016/j.artmed.2013.07.004CrossRefGoogle Scholar
  70. Rupp R (2014) Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury. Front Neuroeng 7:38.  https://doi.org/10.3389/fneng.2014.00038CrossRefGoogle Scholar
  71. Rupp R, Rohm M, Schneiders M, Weidner N, Kaiser V, Kreilinger A, Müller-Putz GR (2013) Think2grasp – BCI-controlled neuroprosthesis for the upper extremity. Biomed Tech.  https://doi.org/10.1515/bmt-2013-4440Google Scholar
  72. Rupp R, Rohm M, Schneiders M, Kreilinger A, Müller-Putz GR (2015a) Functional rehabilitation of the paralyzed upper extremity after spinal cord injury by Noninvasive Hybrid Neuroprostheses. P Ieee 103(6):954–968.  https://doi.org/10.1109/Jproc.2015.2395253
  73. Rupp R, Rohm M, Schneiders M (2014) Brain-computer interfaces for control of upper extremity neuroprostheses in individuals with high spinal cord injury, In: Naik G (ed) Emerging Theory and Practice in Neuroprosthetics, IGIGlobal, Hershey, 237–264Google Scholar
  74. Rupp R, Schließmann D, Schuld C, Weidner N (2015b) Technology to enhance locomotor function. In: Dietz V, Ward N (eds) Oxford textbook of neurorehabilitation. Oxford University Press, Oxford.  https://doi.org/10.1093/med/9780199673711.003.0032_update_001Google Scholar
  75. Savic AM, Malesevic NM, Popovic MB (2014) Feasibility of a hybrid brain-computer interface for advanced functional electrical therapy. TheScientificWorldJOURNAL 2014:797128.  https://doi.org/10.1155/2014/797128CrossRefGoogle Scholar
  76. Sburlea AI, Montesano L, Cano de la Cuerda R, Alguacil Diego IM, Miangolarra-Page JC, Minguez J (2015) Detecting intention to walk in stroke patients from pre-movement EEG correlates. J Neuroeng Rehabil 12:113.  https://doi.org/10.1186/s12984-015-0087-4CrossRefGoogle Scholar
  77. Severens M, Perusquia-Hernandez M, Nienhuis B, Farquhar J, Duysens J (2015) Using actual and imagined walking related desynchronization features in a BCI. IEEE Trans Neural Syst Rehabil Eng: Publ IEEE Eng Med Biol Soc 23(5):877–886.  https://doi.org/10.1109/TNSRE.2014.2371391CrossRefGoogle Scholar
  78. Shih JJ, Krusienski DJ, Wolpaw JR (2012) Brain-computer interfaces in medicine. Mayo Clin Proc 87(3):268–279.  https://doi.org/10.1016/j.mayocp.2011.12.008CrossRefGoogle Scholar
  79. Snoek GJ, IJ MJ, Hermens HJ, Maxwell D, Biering-Sorensen F (2004) Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics. Spinal Cord 42(9):526–532.  https://doi.org/10.1038/sj.sc.31016383101638CrossRefGoogle Scholar
  80. Soekadar SR, Birbaumer N, Slutzky MW, Cohen LG (2015) Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol Dis 83:172–179.  https://doi.org/10.1016/j.nbd.2014.11.025CrossRefGoogle Scholar
  81. Toppi J, Risetti M, Quitadamo LR, Petti M, Bianchi L, Salinari S, Babiloni F, Cincotti F, Mattia D, Astolfi L (2014) Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery. J Neural Eng 11(3):035010.  https://doi.org/10.1088/1741-2560/11/3/035010CrossRefGoogle Scholar
  82. Truelsen T, Prescott E, Gronbaek M, Schnohr P, Boysen G (1997) Trends in stroke incidence. The Copenhagen City Heart Study. Stroke 28(10):1903–1907CrossRefGoogle Scholar
  83. van den Berg ME, Castellote JM, Mahillo-Fernandez I, de Pedro-Cuesta J (2010) Incidence of spinal cord injury worldwide: a systematic review. Neuroepidemiology 34(3):184–192.  https://doi.org/10.1159/000279335discussion 192CrossRefGoogle Scholar
  84. van Dokkum LE, Ward T, Laffont I (2015) Brain computer interfaces for neurorehabilitation – its current status as a rehabilitation strategy post-stroke. Ann Phys Rehabil Med 58(1):3–8.  https://doi.org/10.1016/j.rehab.2014.09.016CrossRefGoogle Scholar
  85. Wang W, Collinger JL, Degenhart AD, Tyler-Kabara EC, Schwartz AB, Moran DW, Weber DJ, Wodlinger B, Vinjamuri RK, Ashmore RC, Kelly JW, Boninger ML (2013) An electrocorticographic brain interface in an individual with tetraplegia. PLoS One 8(2):e55344.  https://doi.org/10.1371/journal.pone.0055344CrossRefGoogle Scholar
  86. Ward NS, Cohen LG (2004) Mechanisms underlying recovery of motor function after stroke. Arch Neurol 61(12):1844–1848.  https://doi.org/10.1001/archneur.61.12.1844CrossRefGoogle Scholar
  87. Warlow C, van Gijn J, Dennis M, Wardlaw J, Bamford J, Sandercock P, Rinkel G, Langhorne P, Sudlow C, Rothwell P (2008) Stroke: practical management, 3rd edn. Blackwell Publishing, OxfordCrossRefGoogle Scholar
  88. Wodlinger B, Downey JE, Tyler-Kabara EC, Schwartz AB, Boninger ML, Collinger JL (2015) Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations. J Neural Eng 12(1):016011.  https://doi.org/10.1088/1741-2560/12/1/016011CrossRefGoogle Scholar
  89. Wolpaw JR, McFarland DJ (1994) Multichannel EEG-based brain-computer communication. Electroencephalogr Clin Neurophysiol 90(6):444–449CrossRefGoogle Scholar
  90. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791. doi:S1388245702000573 [pii]Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Spinal Cord Injury Center – Experimental NeurorehabilitationHeidelberg University HospitalHeidelbergGermany

Section editors and affiliations

  • Freeman Miller
    • 1
  1. 1.duPont Hospital for ChildrenWilmingtonUSA

Personalised recommendations