Detecting and Measuring Ataxia in Gait

  • Mariano Serrao
  • Carmela Conte
Reference work entry


Gait ataxia is traditionally described as clumsy, staggering movements with a wide-based gait which resembles the gait of drunken people. Recent modern motion analysis systems have been used to quantitatively characterize the nature and degree of walking dysfunction. These findings have revealed that the whole range of locomotor activities is impaired, including linear steady-state gait, turning, gait initiation, and gait termination. All these locomotor abnormalities reflect poor limb coordination and impaired balance, which greatly restrict patients in their daily life activities and predispose them to falls (van de Warrenburg et al. 2005).

Detecting and measuring gait in patients with ataxia gives further insights on the motor deficit and may allow to discern the complex relationship between the primary deficits and the compensatory mechanisms, to recognize specific abnormalities and their impact on clinical decision-making, and to individualize rehabilitative treatment and better evaluating its effects over the time.


Gait ataxia Cerebellum Gait analysis Muscle coordination Gait variability 


  1. Bastian AJ (2011) Moving, sensing and learning with cerebellar damage. Curr Opin Neurobiol 21:596–601CrossRefGoogle Scholar
  2. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, Mariën P, Nowak DA, Schmahmann JD, Serrao M, Steiner KM, Strupp M, Tilikete C, Timmann D, van Dun K (2016) Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 15:369–391CrossRefGoogle Scholar
  3. Brenière Y, Do MC (1986) When and how does steady state gait movement induced from upright posture begin? J Biomech 19:1035–1040CrossRefGoogle Scholar
  4. Breniere Y, Do MC, Sanchez J (1981) A biomechanical study of gait initiation process. J Biophys Nucl Med 5:197–205Google Scholar
  5. Brenière Y, Cuong Do M, Bouisset S (1987) Are dynamic phenomena prior to stepping essential to walking? J Mot Behav 19:62–76. Scholar
  6. Chini G, Ranavolo A, Draicchio F, Casali C, Conte C, Martino G, Leonardi L, Padua L, Coppola C, Pierelli F, Serrao M (2016) Local stability of the trunk in patients with degenerative cerebellar ataxia during walking. Cerebellum. Scholar
  7. Conte C, Serrao M, Casali C, Ranavolo A, Mari S, Draicchio F, Di Fabio R, Monami S, Padua L, Iavicoli S, Sandrini G, Pierelli F (2012) Planned gait termination in cerebellar ataxias. Cerebellum 11:896–904CrossRefGoogle Scholar
  8. Conte C, Pierelli F, Casali C, Ranavolo A, Draicchio F, Martino G, Harfoush M, Padua L, Coppola G, Sandrini G, Serrao M (2014) Upper body kinematics in patients with cerebellar ataxia. Cerebellum 13:689–697. Scholar
  9. Crenna P, Frigo C (1991) A motor programme for the initiation of forward-oriented movements in humans. J Physiol 437:635–653CrossRefGoogle Scholar
  10. Cuesta-Vargas AI, Galán-Mercant A, Williams JM (2010) The use of inertial sensors system for human motion analysis. Phys Ther Rev 15:462–473CrossRefGoogle Scholar
  11. Dietrich G, Brenière Y, Do MC (1994) Organization of local anticipatory movements in single step initiation. Hum Mov Sci 13:195–210CrossRefGoogle Scholar
  12. Dominici N, Ivanenko YP, Cappellini G, d’Avella A, Mondì V, Cicchese M, Fabiano A, Silei T, Di Paolo A, Giannini C, Poppele RE, Lacquaniti F (2011) Locomotor primitives in newborn babies and their development. Science 334:997–999CrossRefGoogle Scholar
  13. Earhart GM, Bastian AJ (2000) Form switching during human locomotion: traversing wedges in a single step. J Neurophysiol 84:605–615CrossRefGoogle Scholar
  14. Earhart GM, Bastian AJ (2001) Selection and coordination of human locomotor forms following cerebellar damage. J Neurophysiol 85:759–769CrossRefGoogle Scholar
  15. Ebersbach G, Sojer M, Valldeoriola F, Wissel J, Müller J, Tolosa E, Poewe W (1999) Comparative analysis of gait in Parkinson’s disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy. Brain 122:1349–1355CrossRefGoogle Scholar
  16. Fonteyn EM, Schmitz-Hubsch T, Verstappen CC, Baliko L, Bloem BR, Boesch S et al (2010) Falls in spinocerebellar ataxias: results of the EuroSCA Fall Study. Cerebellum 9(2):232CrossRefGoogle Scholar
  17. Glaister BC, Bernatz GC, Klute GK, Orendurff MS (2007) Video task analysis of turning during activities of daily living. Gait Posture 25:289–294CrossRefGoogle Scholar
  18. Grimaldi G, Manto M (2012) Topography of cerebellar deficits in humans. Cerebellum 11:336–351CrossRefGoogle Scholar
  19. Gryfe CI, Amies A, Ashley MJ (1977) A longitudinal study of falls in an elderly population: I. Incidence and comorbidity. Age Ageing 6:201–210CrossRefGoogle Scholar
  20. Hase K, Stein RB (1998) Analysis of rapid stopping during human walking. J Neurophysiol 80:255–261CrossRefGoogle Scholar
  21. Herculano-Houzel S (2010) Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat 4:12. Scholar
  22. Ilg W, Golla H, Thier P, Giese MA (2007) Specific influences of cerebellar dysfunctions on gait. Brain 130:786–788CrossRefGoogle Scholar
  23. Ilg W, Giese MA, Gizewski ER, Schoch B, Timmann D (2008) The influence of focal cerebellar lesions on the control and adaptation of gait. Brain 131:2913–2927CrossRefGoogle Scholar
  24. Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F (2005) Coordination of locomotion with voluntary movements in humans. J Neurosci 25:7238–7253CrossRefGoogle Scholar
  25. Ivanenko YP, Dominici N, Cappellini G, Paolo AD, Giannini C, Poppele RE, Lacquaniti F (2013) Changes in the spinal segmental motor output for stepping during development from infant to adult. J Neurosci 33:3025–3036CrossRefGoogle Scholar
  26. Jian Y, Winter DA, Ishac MG, Glichrist L (1993) Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture 1:9–22CrossRefGoogle Scholar
  27. Kozio LF, Budding D, Andreasen N et al (2014) Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13:151–177. Scholar
  28. Mari S, Serrao M, Casali C, Conte C, Ranavolo A, Padua L, Draicchio F, Iavicoli S, Monamì S, Sandrini G, Pierelli F (2012) Turning strategies in patients with cerebellar ataxia. Exp Brain Res 222:65–75. Scholar
  29. Mari S, Serrao M, Casali C, Conte C, Martino G, Ranavolo A, Coppola G, Draicchio F, Padua L, Sandrini G, Pierelli F (2014) Lower limb antagonist muscle co-activation and its relationship with gait parameters in cerebellar ataxia. Cerebellum 13:226–236. Scholar
  30. Martino G, Ivanenko YP, Serrao M, Ranavolo A, d’Avella A, Draicchio F, Conte C, Casali C, Lacquaniti F (2014) Locomotor patterns in cerebellar ataxia. J Neurophysiol 112:2810–2821CrossRefGoogle Scholar
  31. Martino G, Ivanenko YP, d’Avella A, Serrao M, Ranavolo A, Draicchio F, Cappellini G, Casali C, Lacquaniti F (2015) Neuromuscular adjustments of gait associated with unstable conditions. J Neurophysiol 114:2867–2882. Scholar
  32. Masud T, Morris RO (2001) Epidemiology of falls. Age Ageing 30:3–7CrossRefGoogle Scholar
  33. McAndrew Young PM, Dingwell JB (2012) Voluntary changes in step width and step length during human walking affect dynamic margins of stability. Gait Posture 36:219–224. Scholar
  34. Michel V, Do MC (2002) Are stance ankle plantar flexor muscles necessary to generate propulsive force during human gait initiation? Neurosci Lett 325:139–143CrossRefGoogle Scholar
  35. Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H (2000) Characteristics of parkinsonian and ataxic gaits: a study using surface electromyograms, angular displacements and floor reaction forces. J Neurol Sci 174:22–39CrossRefGoogle Scholar
  36. Morton SM, Bastian AJ (2003) Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. J Neurophysiol 89:1844–1856CrossRefGoogle Scholar
  37. Nowak DA, Timmann D, Hermsdörfer J (2007) Dexterity in cerebellar agenesis. Neuropsychologia 45:696–703CrossRefGoogle Scholar
  38. Palliyath S, Hallett M, Thomas SL, Lebiedowska MK (1998) Gait in patients with cerebellar ataxia. Mov Disord 13:958–964CrossRefGoogle Scholar
  39. Patla AE, Adkin A, Ballard T (1999) Online steering: coordination and control of body center of mass, head and body reorientation. Exp Brain Res 129:629–634CrossRefGoogle Scholar
  40. Perry J, Burnfield JM (1992) Gait analysis: normal and pathological function. SLACK Incorporated, ThorofareGoogle Scholar
  41. Salman ME (2002) The cerebellum: it’s about time! But timing is not everything – new insights into the role of the cerebellum in timing motor and cognitive tasks. J Child Neurol 17:1–9CrossRefGoogle Scholar
  42. Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M, Brandt T, Jahn K (2014) Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol 261:213–223CrossRefGoogle Scholar
  43. Schniepp R, Schlick C, Pradhan C, Dieterich M, Brandt T, Jahn K, Wuehr M (2016) The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia. J Neurol 263:1409–1417. Scholar
  44. Serrao M, Bartolo M, Ranavolo A, Pierelli F (2012a) Analisi quantitativa del cammino e nuove tecnologie in riabilitazione neurologica. In: Sandrini G, Dattola R (eds) compendio neuroriabilitazione. Verduci Editore, Rome, ItalyGoogle Scholar
  45. Serrao M, Pierelli F, Ranavolo A, Draicchio F, Conte C, Don R, Di Fabio R, LeRose M, Padua L, Sandrini G, Casali C (2012b) Gait pattern in inherited cerebellar ataxias. Cerebellum 11:194–211Google Scholar
  46. Serrao M, Conte C, Casali C, Ranavolo A, Mari S, Di Fabio R, Perrotta A, Coppola G, Padua L, Monamì S, Sandrini G, Pierelli F (2013a) Sudden stopping in patients with cerebellar ataxia. Cerebellum 12:607–616CrossRefGoogle Scholar
  47. Serrao M, Mari S, Conte C, Ranavolo A, Casali C, Draicchio F, Di Fabio R, Bartolo M, Monamì S, Padua L, Pierelli F (2013b) Strategies adopted by cerebellar ataxia patients to perform U-turns. Cerebellum 12:460–468CrossRefGoogle Scholar
  48. Stack EL, Ashburn AM, Jupp KE (2006) Strategies used by people with Parkinson’s disease who report difficulty turning. Parkinsonism Relat Disord 12:87–92CrossRefGoogle Scholar
  49. Stolze H, Klebe S, Petersen G, Raethjen J, Wenzelburger R, Witt K, Deuschl G (2002) Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry 73:310–312CrossRefGoogle Scholar
  50. Stolze H, Klebe S, Zechlin C, Baecker C, Friege L, Deuschl G (2004) Falls in frequent neurological diseases – prevalence, risk factors and aetiology. J Neurol 251:79–84CrossRefGoogle Scholar
  51. Timmann D, Horak FB (2001) Perturbed step initiation in cerebellar subjects: 2. Modification of anticipatory postural adjustments. Exp Brain Res 141:110–120CrossRefGoogle Scholar
  52. Tirosh O, Sparrow WA (2003) Gait termination in young and older adults: effects of stopping stimulus probability and stimulus delay. Gait Posture 19:243–251CrossRefGoogle Scholar
  53. Tong K, Granat MH (1999) A practical gait analysis system using gyroscopes. Med Eng Phys 21:87–94CrossRefGoogle Scholar
  54. Topka H, Konczak J, Schneider K, Boose A, Dichgans J (1998) Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp Brain Res 119:493–503CrossRefGoogle Scholar
  55. van de Warrenburg BP, Steijns JA, Munneke M, Kremer BP, Bloem BR (2005) Falls in degenerative cerebellar ataxias. Mov Disord 20:497–500CrossRefGoogle Scholar
  56. Xu D, Carlton LG, Rosengren KS (2004) Anticipatory postural adjustments for altering direction during walking. J Mot Behav 36:316–326CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical and Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
  2. 2.Movement Analysis LABRehabilitation Centre Policlinico ItaliaRomeItaly

Personalised recommendations