Interpreting Joint Moments and Powers in Gait

  • L. H. Sloot
  • M. M. van der Krogt
Reference work entry


Gait analysis is becoming an increasingly important tool to provide a quantitative description of a patient’s gait deviations. It is not only used to diagnose walking disorders but also for treatment selection and evaluation. While spatiotemporal, kinematic, and EMG parameters are commonly used to describe movement and muscle activity, kinetic measures are less often evaluated, even though they give insight into the moments and powers that drive human walking. As such, kinetic parameters are able to connect abnormal movement to underlying muscle malfunction and bony malalignment. This chapter focuses on the role of joint moments and powers of the lower extremities in clinical gait analysis. After a brief introduction of normal kinetic patterns, the clinical interpretation of abnormal joint moments and powers is described. Next, typical deviations in lower limb kinetics are illustrated for several patient populations, including stroke, cerebral palsy, Duchenne muscular dystrophy, anterior cruciate ligament (ACL) injury, and osteoarthritis (OA), and for patients walking with prostheses or orthotics. This section also illustrates the clinical usefulness of specific kinetic parameters in these patient populations, including their sensitivity to treatment and ability to predict treatment outcome. The chapter illustrates that the role of kinetics within clinical gait analysis deserves more attention, and potential applications should be further pursued.


Clinical gait analysis Kinetics Joint moments Joint powers 


  1. Adolfsen SE et al (2007) Kinematic and kinetic outcomes after identical multilevel soft tissue surgery in children with cerebral palsy. J Pediatr Orthop 27(6):658–667CrossRefGoogle Scholar
  2. Aiello E et al (2005) Visual EMG biofeedback to improve ankle function in hemiparetic gait. Conference proceedings: ... Annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society. Conference, 7(August 2016), pp 7703–7706Google Scholar
  3. Alvarez C et al (2007) Classification of idiopathic toe walking based on gait analysis: development and application of the ITW severity classification. Gait Posture 26(3):428–435CrossRefGoogle Scholar
  4. Andriacchi TP, Mündermann A (2006) The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol 18(5):514–518CrossRefGoogle Scholar
  5. Astephen JL et al (2008) Biomechanical changes at the hip, knee, and ankle joints during gait are associated with knee osteoarthritis severity. J Orthop Res 26(3):332–341CrossRefGoogle Scholar
  6. Bovi G et al (2011) A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture 33(1):6–13CrossRefGoogle Scholar
  7. Boyd RN et al (2016) Biomechanical transformation of the gastroc – soleus muscle with botulinum toxin A in children with cerebral palsy. Dev Med Child Neurol 42:32–41Google Scholar
  8. Brouwer B, Parvataneni K, Olney SJ (2009) A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke. Clin Biomech 24(9):729–734. Available at: Scholar
  9. Carda S et al (2009) Gait changes after tendon functional surgery for equinovarus foot in patients with stroke. Am J Phys Med Rehabil 88(4):292–301. Available at: Scholar
  10. Chu CR, Andriacchi TP (2015) Dance between biology, mechanics, and structure: a systems-based approach to developing osteoarthritis prevention strategies. J Orthop Res 33(7):939–947CrossRefGoogle Scholar
  11. D’Angelo MG et al (2009) Gait pattern in Duchenne muscular dystrophy. Gait Posture 29(1):36–41MathSciNetCrossRefGoogle Scholar
  12. Desloovere K et al (2001) A randomized study of combined botulinum toxin type A and casting in the ambulant child with cerebral palsy using objective outcome measures. Eur J Neurol 8(5):75–87CrossRefGoogle Scholar
  13. Doglio L et al (2011) Early signs of gait deviation in Duchenne muscular dystrophy. Eur J Phys Rehabil Med 47(4):587–594Google Scholar
  14. Donelan JM, Kram R, Kuo AD (2002) Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J Exp Biol 205(23):3717–3727. Available at: Scholar
  15. Ferber R et al (2002) Gait mechanics in chronic ACL deficiency and subsequent repair. Clin Biomech 17(4):274–285CrossRefGoogle Scholar
  16. Foroughi N, Smith R, Vanwanseele B (2009) The association of external knee adduction moment with biomechanical variables in osteoarthritis: a systematic review. Knee 16(5):303–309. Available at: Scholar
  17. Gaudreault N et al (2010) Gait patterns comparison of children with Duchenne muscular dystrophy to those of control subjects considering the effect of gait velocity. Gait Posture 32(3):342–347. Available at: Scholar
  18. Hart JM et al (2010) Sagittal plane knee joint moments following anterior cruciate ligament injury and reconstruction: a systematic review. Clin Biomech 25(4):277–283. Available at: Scholar
  19. Heberer K et al (2016) Hip kinetics during gait are clinically meaningful outcomes in young boys with Duchenne muscular dystrophy. Gait Posture 48:159–164. Available at: Scholar
  20. Hewett TE et al (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501. Available at: Scholar
  21. Ingraham KM et al (2016) Assessing the relative contributions of active ankle and knee assistance to the walking mechanics of transfemoral amputees using a powered prosthesis. PLoS One 11(1):e0147661CrossRefGoogle Scholar
  22. Jonkers I et al (2009) Capacity to increase walking speed is limited by impaired hip and ankle power generation in lower functioning persons post-stroke. Gait Posture 29(1):129–137. Available at: Accessed 30 Aug 2016CrossRefGoogle Scholar
  23. Kerrigan DC, Todd MK, Della Croce U (1998) Gender differences in joint biomechanics during walking: normative study in young adults. Am J Phys Med Rehabil Assoc Acad Physiatrists 77(1):2–7CrossRefGoogle Scholar
  24. Kerrigan DC et al (1999) Spastic paretic stiff-legged gait: biomechanics of the unaffected limb. Am J Phys Med Rehabil 78(4):354–360. Available at: Scholar
  25. Kim CM, Eng JJ (2004) Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: relationship to walking speed. Gait Posture 20(2):140–146CrossRefGoogle Scholar
  26. Kim H, Sakurai S, Ahn J (2007) CoP Errors and 3D lower limb joint moment of gait. Int J Sport Health Sci 5:71–82. Available at: Accessed 6 Oct 2016CrossRefGoogle Scholar
  27. Lee JH, Sung IY, Yoo JY (2008) Therapeutic effects of strengthening exercise on gait function of cerebral palsy. Disabil Rehabil 30(19):1439–1444CrossRefGoogle Scholar
  28. Lennon S, Ashburn A, Baxter D (2006) Gait outcome following outpatient physiotherapy based on the Bobath concept in people post stroke. Disabil Rehabil 28:13–14. Available at: Scholar
  29. Lin C et al (2000) Common abnormal kinetic patterns of the knee in gait in spastic diplegia of cerebral palsy. Gait and Posture 11(3):224–232MathSciNetCrossRefGoogle Scholar
  30. Mavroidis C et al (2011) Patient specific ankle-foot orthoses using rapid prototyping. J Neuroengineering Rehabil 8(1):1. Available at: Scholar
  31. McCaw ST, DeVita P (1995) Errors in alignment of center of pressure and foot coordinates affect predicted lower extremity torques. J Biomech 28(8):985–988CrossRefGoogle Scholar
  32. Mirelman A et al (2010) Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture 31(4):433–437CrossRefGoogle Scholar
  33. Mulroy SJ et al (2010) Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: an exploratory study. Phys Ther 90(2):209–223CrossRefGoogle Scholar
  34. Muro-de-la-Herran A, García-Zapirain B, Méndez-Zorrilla A (2014) Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 14(2):3362–3394. Available at: Accessed 30 Aug 2016CrossRefGoogle Scholar
  35. Novak AC et al (2015) Gait changes following botulinum toxin A treatment in stroke. Top Stroke Rehabil 16(5):367–376CrossRefGoogle Scholar
  36. Olney SJ, Richards C (1996) Hemiparetic gait following stroke. Part I: characteristics. Gait Posture 4(2):136–148CrossRefGoogle Scholar
  37. Park CI et al (2006) Soft tissue surgery for equinus deformity in spastic hemiplegic cerebral palsy: effects on kinematic and kinetic parameters. Yonsei Med J 47(5):657–666CrossRefGoogle Scholar
  38. Paterno MV et al (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978. Available at:\npapers3://publication/doi/10.1177/0363546510376053CrossRefGoogle Scholar
  39. Polese JC et al (2012) The effects of walking sticks on gait kinematics and kinetics with chronic stroke survivors. Clin Biomech 27(2):131–137CrossRefGoogle Scholar
  40. Reeves ND, Bowling FL (2011) Conservative biomechanical strategies for knee osteoarthritis. Nat Rev Rheumatol 7(2):113–122. Available at:\ Scholar
  41. Riad J, Haglund-Akerlind Y, Miller F (2008) Power generation in children with spastic hemiplegic cerebral palsy. Gait Posture 27(4):641–647CrossRefGoogle Scholar
  42. Richards R et al (2016) Gait retraining with real-time biofeedback to reduce knee adduction moment: systematic review of effects and methods used. Arch Phys Med Rehabil 98:137–150. Available at: Scholar
  43. Ridgewell E et al (2010) A systematic review to determine best practice reporting guidelines for AFO interventions in studies involving children with cerebral palsy. Prosthetics Orthot Int 34(2):129–145CrossRefGoogle Scholar
  44. Rietman JS, Postema K, Geertzen JHB (2002) Gait analysis in prosthetics: opinions, ideas and conclusions. Prosthetics Orthot Int 26(1):50–57CrossRefGoogle Scholar
  45. Riley PO, Kerrigan DC (2005) Laboratory-based evaluation of gait disorders: high-tech. In: Hausdorff JM, Alexander NB (eds) Gait disorders: evaluation and management. T&F, Boca Raton. Available at: Scholar
  46. Rose SA, Ounpuu S, DeLuca PA (1991) Strategies for the assessment of pediatric gait in the clinical setting. Phys Ther 71(12):961–980CrossRefGoogle Scholar
  47. Rosenbaum P et al (2007) A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol 49(109):8–14Google Scholar
  48. Sadeghi H et al (2001) Functional roles of ankle and hip sagittal muscle moments in able-bodied gait. Clin Biomech 16(8):688–695CrossRefGoogle Scholar
  49. Sawers AB, Hafner BJ (2013) Outcomes associated with the use of microprocessor-controlled prosthetic knees among individuals with unilateral transfemoral limb loss: a systematic review. J Prosthetics Orthot 50(3):273–314Google Scholar
  50. Schwartz MH, Rozumalski A, Trost JP (2008) The effect of walking speed on the gait of typically developing children. J Biomech 41(8):1639–1650CrossRefGoogle Scholar
  51. Seroussi RE et al (1996) Mechanical work adaptations of above-knee amputee ambulation. Arch Phys Med Rehabil 77(11):1209–1214CrossRefGoogle Scholar
  52. Sheffler LR et al (2016) HHS Public Access 94(5):341–357Google Scholar
  53. Silverman AK et al (2008) Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture 28(4):602–609CrossRefGoogle Scholar
  54. Simic M et al (2011) Gait modification strategies for altering medial knee joint load: a systematic review. Arthritis Care Res 63(3):405–426MathSciNetGoogle Scholar
  55. Sprager S, Juric MB (2015) Inertial sensor-based gait recognition: a review. Sensors 15(9):22089–22127CrossRefGoogle Scholar
  56. Stansfield BW et al (2001) Sagittal joint kinematics, moments, and powers are predominantly characterized by speed of progression, not age, in normal children. J Pediatr Orthop 21(3):403–411. Available at: Scholar
  57. Stoquart GG et al (2008) Effect of botulinum toxin injection in the rectus femoris on stiff-knee gait in people with stroke: a prospective observational study. Arch Phys Med Rehabil 89(1):56–61CrossRefGoogle Scholar
  58. Sutherland D (1997) The development of mature gait. Gait Posture 6(2):163–170CrossRefGoogle Scholar
  59. Sutherland DH (2005) The evolution of clinical gait analysis part III – kinetics and energy assessment. Gait Posture 21(4):447–461CrossRefGoogle Scholar
  60. Tate J et al (2012) Gait analysis in musculoskeletal conditions, prosthetics and orthotics. In: Levine D, Richards J, Whittle MW (eds) Gait Analysis. Churchill Livingstone Elsevier, LondonGoogle Scholar
  61. Umberger BR, Martin PE (2007) Mechanical power and efficiency of level walking with different stride rates. J Exp Biol 210(18):3255–3265. Available at: Scholar
  62. van der Krogt MM, Delp SL, Schwartz MH (2012) How robust is human gait to muscle weakness? Gait Posture 36(1):113–119. Available at: Scholar
  63. van der Krogt MM et al (2015) Kinetic comparison of walking on a treadmill versus over ground in children with cerebral palsy. J Biomech 48(13):3577–3583CrossRefGoogle Scholar
  64. Vanicek N et al (2009) Gait patterns in transtibial amputee fallers vs. non-fallers: biomechanical differences during level walking. Gait Posture 29(3):415–420CrossRefGoogle Scholar
  65. Ventura JD, Klute GK, Neptune RR (2011) The effects of prosthetic ankle dorsiflexion and energy return on below-knee amputee leg loading. Clin Biomech 26:298–303CrossRefGoogle Scholar
  66. Versluys R et al (2009) Prosthetic feet: state-of-the-art review and the importance of mimicking human ankle-foot biomechanics. Disabil Rehabil Assist Technol 4(2):65–75CrossRefGoogle Scholar
  67. Whittle M (1996) Clinical gait analysis: a review. Hum Mov Sci 15(3):369–387. Available at: Scholar
  68. Winter DA, Sienko SE (1988) Biomechanics of below-knee amputee gait. J Biomech 21(5):361–367CrossRefGoogle Scholar
  69. Woolley SM (2001) Characteristics of gait in hemiplegia. Top Stroke Rehabil 7(4):1–18CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Rehabilitation Medicine, MOVE Research Institute AmsterdamVU University Medical CenterAmsterdamThe Netherlands

Section editors and affiliations

  • Sebastian I. Wolf
    • 1
  1. 1.Movement Analysis LaboratoryClinic for Orthopedics and Trauma Surgery; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury;Heidelberg University HospitalHeidelbergGermany

Personalised recommendations